Programs for computation of molecular vibrations under external pressure

xgrad.f
together with the script runoptx drives optimization based on gradient only

runoptx:
g16 G98.INP G98.OUT

gfix 1

mv GN.OUT G98.OUT

xgrad

while [-f "INP.NEW"]; do

 mv INP.NEW G98.INP

 cp G98.OUT G98.OUT.last

 g16 G98.INP G98.OUT

 gfix 1

 mv GN.OUT G98.OUT

 xgrad

done
Output: INP.NEW ... new Gaussian input

Input: G98.OUT .. Gaussian output (geometry and gradient)

X.OPT or Q.OPT ... options (default):

glim

limit for gradient norm, in a.u.

glim (10-4)

slim

limit for coordinate shift, in Å

slim (10-4)

xmax

maximal coordinate change, in Å

xmax (0.1)

maxstep
maximal number of steps

maxstep (0.1)

gfix.f
adds gradient (forces) on atoms based on external pressure and PCM cavity
Input:
G98.OUT Gaussian output* with gradient and cavity parameters

GM.OUT output with modified gradient

* in input use options: #p force scrf=(cpcm, iop(3/33=2) nosymm

Usage: "gfix <p>", where <p> is the pressure in Gp

Adding second derivatives from the pressure
We need to calculate numerically second derivatives from gradients:

1) make FILE.X with geometry and G.TXT with Gaussian parameters

2) run pmz (see pmz.f, pmz.doc for advanced options) to make FILE.INP

3) run Gaussian* on FILE.INP, to produce FILE.OUT

4) run pfadd (pfadd.f) that gathers the gradients from FILE.OUT, calculates force field and adds it to FILE.FC
* options: #p sp scrf=(cpcm,... iop(2/11=1) iop(3/33=2) nosymm guess=(read,only)
we just need the cavity for each geometry, no quantum chemistry

pfadd.f
Input:
FILE.OUT, output with gradients for shifted geometries, two-point differentiation

FILE.FC, old force field

FILE.NEW.FC, sum of the old and pressure/gradient force field

Usage: "pfadd <p>", where <p> is the pressure in Gp

Optional: Usage: "pfadd <p> <k>", where <p> is the pressure in Gp, <k> arbitrary force constant for soft environment pressure (e.g. k =0.0005 hartree.bohr-4, F=S(k((r)
