Programs for numerical vibrational wave functions in internal coordinates

Petr Bour
	Program
	Input
	Output

	align.f
	FILE.X
	FILEC.X

	surfaces.f
	SURF.OPT

EN.LST

PROPERTY.LST

FILEC.X
	ENN.LST

PROPERTYN.LST

	peswf.f
	SURF.OPT

ENN.LST

PROPERTYN.LST
	*PRN,*LST files


Summary

The metric tensor surface is obtained in a numerical form, the Schrödinger equation can be solved via integration on a grid.
Method


In our approach we are interested large-amplitude motions that are not coupled with other molecular vibrational modes, such as a rotation around a covalent bond, and potential-energy surfaces for which can be obtained automatically by an ab initio software using internal coordinates and reasonably small steps. The construction of the vibrational wavefunction consists of three phases: 1) Reading the ab initio potential-energy surface (PES) and correction of the geometry points so that the linear and angular (Eckart) momentum conservation conditions are met. 2) Smoothing PES by a quadratic interpolation and numerical construction of the metric tensor. 3) Solving the Schrödinger equation by a numerical integration.

Step 1. Since we are interested in vibrational wave functions of stationary and non-rotating molecules, the usual constrains are applied to atomic movements:
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where {mi} are atomic masses and dri infinitesimal changes of position vectors ri. Practically, however, only finite changes of internal ({qi}) and consequently Cartesian coordinates are possible. Thus, while (1a) can be imposed rigorously, the condition (1b) is only approximately met for a finite scan step (q (see Figure 1) by applying iteratively rotations around x, y and z axes: 

Defining  an averaged moment and inertia tensor as
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correcting rotation by the angle
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(3)
is applied for (=x,y,z and repeated until convergence. In this way we obtain the Cartesian coordinates of all atoms as functions of the internal coordinates (
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) for a standing non-rotating molecule.


Step 2. In this step we have the possibility to smooth and resample the energy surface via a quadratic (spline) interpolation. More importantly, however, the metric tensor (g) and its inverse (G = g-1) are formed numerically using the coordinate dependence obtained at the previous step:
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Step 3. The potential energy and metric tensor surfaces can be resampled again and smoothed either using polynomial or plane wave (cos, sin) functions, in order to obtain the final grid used in integration of the Schrödinger equation. The kinetic energy (T) integrals
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 are transformed by integration per partes into
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This is not necessary, but avoids estimation of the second wave function and G tensor derivatives. Harmonic oscillator and plane wave (cos, sin) bases were used for the vibrational wavefunctions.
Time development of a wavepacket, from an initial (-function:
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(i is the eigenfunction of H
1) Pure (:
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  ... and normalize

2) Temperature - determined (
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Propagate according to the Schrödinger equation
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Calculation 
Restriction: 1 and 2 dimension only.

1) On an equidistant grid, scan energy and geometry
2) Prepare FILE.X with all geometries

3) Run allign to correct rotations/translations

4) Prepare EN.LST with all energies

5) Prepare SURF.OPT with options

Example of the SURF.OPT option file:

NVAR          number of variables

2  

t             FOR EACH:       periodic boundary condition

48                            number of grid points 

0 360                     min max

48                            number of grid points for for H-calculation

15 10 26                      number of basis functions for E G H

-1 0 0                        kind of basis for E G H 

10.0 75.0 200.0              freq, x0, red. mass (cm-1, any units, au=me)

t             FOR EACH:       periodic boundary condition

48                            number of grid points 

0 360                     min max

48                           number of grid points for for H-calculation

15 10 26                      number of basis functions for E G H

-1 0 0                        kind of basis for E G H 

10.0 150.0 200.0              freq, x0, red. mass (cm-1, any units, au=me)

STATES

4 1 2 3 4  states to plot

KINETIC

1           kind of the kinetic operator             

PLANES

1           kind of plane waves

DIAG

1           kind of diagonalization

TEMPERATURE

273.15      temperature
Explanation:
kind of basis for E G H
0 …. plane waves

1 …  harmonics

else .. quadratic fit

kind of plane waves:

0: cos

1: cos and sin

2: sin

TEMP

T [298 K]

temperature for probability plot

Advanced Options
TDEP

ltime [false]

Continue with a propagation of the wavefunction

NTSTEP

ntstep [10]

Number of time steps

DTSTEP

dt [4.3]

Time increment

XT10

xt1 [0.0]

x-coordinate of the initial packet position

XT20

xt2 [0.0]

y-coordinate of the initial packet position

Examples

EN.LST

1.7
0.29225953


1.75
0.22554434


1.8
0.17188021


1.85
0.12894141


1.9
0.09481713

...
first-coordinates, second – energies, relative, in au

ENN.LST
    0    1.700000    0.292260 0.38451E-05

    1    1.750000    0.225544 0.38451E-05

    2    1.800000    0.171880 0.38451E-05

    3    1.850000    0.128941 0.38451E-05

...
first column- only number, second – fine coordinate, third 0 energy in au, fourth – metric tensor, for diatomic molecule =

4*0.527177^2/(M*1822.88)( M is atomic mass (g/mol))

0.38451E-05




























































































































































































































































































































_1187017606.unknown

_1187247726.unknown

_1293182173.unknown

_1293182219.unknown

_1293199292.unknown

_1293199303.unknown

_1293182175.unknown

_1187516898.unknown

_1187017806.unknown

_1187247590.unknown

_1187017618.unknown

_1187015915.unknown

_1187017425.unknown

_1187015855.unknown

