MD geometry cluster analysis
Let us have two geometries/clusters i and j, with coordinates {xi(} and {xj(}, (=1…ni, (=1..nj, ni=3*number of atoms in cluster i, etc. We define a scalar product as
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where 
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 is a set of rotated coordinates {xj(} which provides a minimal sum of the square deviations if compared to i, 
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. The index ( may run over a subset of the coordinates only. The summation over the (-index can be done differently over a subset of coordinates. Particularly, in a cluster with one solute and few solvent molecules, the solutes in the clusters i and j are compared directly, while for each solvent atoms from cluster i a closest one of the same type is found in cluster j.

For an unknown cluster {yk(} and a set of library clusters {xi(}, i=1…m, we look for coefficients {aki} minimizing


[image: image5.wmf](

)

min

)

(

)

(

..

1

2

..

1

..

1

®

-

+

-

·

-

=

S

å

å

å

=

=

=

m

i

k

i

i

m

i

k

i

k

i

m

i

k

i

k

a

a

a

a

a

x

y

x

y

,

where the arbitrary constant ( insures, that  coefficients aki are close to the average 
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, ideally aki>0. We also require 
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From the Lagranges method of multipliers, we obtain 
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This can be written as
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or i a form of one matrix equation
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with the solution
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Supposedly, when the library coordinates are associated with some spectra {si}, the spectrum associated with the geometry yk can be written as 
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, and for the whole ensemble 
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Program gcomp.f


takes Tinker geometries listed in BIG.LST {yk(} and decomposes each of them into the library geometries listed in SMALL.LST {xi(}. Which atoms define the rotation is defined in CCT.INP. After the coefficients {aki} are calculated, an average spectrum AV.PRN is created from the library spectra listed in SPEC.LST.

 
In GCOMP.OPT following options can be defined

JOB

job (integer) … currently only 0 is allowed

ALPHA

alpha (real) … default 10.0, the forcing of the coefficient to an average positive value

CUT

cut (real) … default 2.6 Å, cutoff distance when distant solvent molecules from the solvent are deleted

IWR

iwr (integer) … default 0, amount of printed information by the program
_1236674540.unknown

_1236680673.unknown

_1236681197.unknown

_1236681551.unknown

_1236752520.unknown

_1236752519.unknown

_1236681303.unknown

_1236681052.unknown

_1236680441.unknown

_1236680509.unknown

_1236674728.unknown

_1236674636.unknown

_1236673532.unknown

_1236674084.unknown

_1236673397.unknown

