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ABSTRACT: Kohn–Sham (KS) and Hartree–Fock (HF) determinants were used
as the true many-body wave functions for calculations of molecular energies,
vibrational frequencies, and excited electronic states. The results justified
common practice, encountered in the sum over states theories, in which these
two determinants are used as the first-order approximation of the wave function.
However, a distinct behavior with respect to the second-order perturbation
calculation was observed for the two cases. The Raleigh–Schrödinger
perturbation theory, which is formally identical to the Levy–Görling formalism
and analogous to the usual HF/Møller–Plesset approach, leads to rather
discouraging results for the KS determinant. On the other hand, the rigid KS
orbitals are more suitable for modeling of excited electronic states, which was
indicated by the obtained transition energies for model molecules.
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Introduction

T he Kohn–Sham (KS) determinant is often used
as an approximation to the molecular wave

function in density functional theory (DFT) studies.1

Also, the determinant may be taken as a ref-
erence point for further configuration interaction
instead of the usual Hartree–Fock (HF) function.2
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Although such approximations proved to be suc-
cessful, they were done on an empirical basis. In-
deed, there is no obvious physical meaning of the
KS determinant, which was introduced originally as
an arbitrary function for the construction of electron
density. Thus, it appears important to evaluate the
errors and other further aspects of this approxima-
tion as attempted in this study.

DFT analogues of electron wave functions are
most frequently encountered in the modeling of
excited electronic states. A crude approximation
based on the rigid KS determinant proved to be
equally or even more suitable than the HF ap-
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proximation. This approach was used in sum over
states (SOS) calculations of the nuclear magnetic
resonance,3, 4 vibrational circular dichroism,5, 6 Ra-
man optical activity,7 and electronic circular dichro-
ism spectra.8 More detailed studies revealed a close
relation between the KS orbital energies and exper-
imental excitation energies. In particular, the differ-
ence of the KS eigenvalues was found to lie between
triplet and singlet experimental excitation energies
for exact functionals.1 These studies suggest that
KS one-electron and molecular excitation energies
are closely related. The KS determinant can also be
used as a starting point for the usual configuration
interaction (CI) in advanced time-dependent DFT
combined with the random phase approximation.9

The relation between the electron density and
the wave function has been studied most exten-
sively for atomic systems. The central symmetry of
the nuclear field favored construction of optimal
wave functions via constrained-search techniques.10

Exploration of effective one-electron correlation-
corrected potentials attracted attention as a tool for
calculation of both the ground11 and excited12 state
properties. Also, a close relation between HF, post-
HF, and DFT densities stimulated many studies on
this field for atomic,12 – 14 and molecular15 systems.

It was previously recognized that usual pertur-
bation corrections can be applied directly to the KS
determinant. Encouraging results were obtained for
computation of excitation1 or atomization16 ener-
gies. Obviously, these corrections are necessary for
resolution of singlet and triplet electron states.1, 4, 8

The perturbation approach was elaborated in the
work of Görling and Levy17, 18 who related the
correction terms to the adiabatic theorem19 and ex-
panded the effective Hamiltonian in the Taylor se-
ries according to the electron–electron interaction
term. Later Ernzenhof suggested that more sophis-
ticated perturbation formulae may provide a faster
convergence than the Görling–Levy formula (GL).16

Nevertheless, the GL theory is adopted in this
study for its simplicity. As shown below, general
formalism based on the Raleigh–Schrödinger per-
turbation theory enables consistent treatment of the
GL and the usual Møller–Plesset (MP) perturbation
approach.20, 21 In the author’s opinion, such a per-
turbation treatment reveals interesting properties of
the KS determinant and enhances its comparison to
the HF wave function.

In this work the HF and KS many-body wave
functions are compared with respect to a wider
range of molecular properties: molecular and at-
omization energies and vibrational and electronic
excitation energy differences. Common DFT func-

tionals and medium-sized basis sets are explored
in order to obtain results that can be generalized
for bigger molecules. Specific questions to be an-
swered in this study include the errors caused by the
KS and HF one-determinant approximation of the
wave functions, the ability of the many-body pertur-
bation theory to improve the results, the significance
of the differences between KS and HF determinants
for nonbenchmark calculations of single point ener-
gies and potential energy surfaces and how well the
excited electronic states are represented with elec-
tronic configurations derived from frozen KS and
HF determinants.

Basic equations are provided together with the
perturbation formulae applicable for the KS deter-
minant, because the DFT-perturbation approach is
still rather rarely encountered in the literature. The
basic properties of the KS determinant for three
DFT functionals are documented on calculation of
molecular, atomization, and vibrational energies of
several small molecules. Finally, excitation energies
for CH2, formaldehyde, and acetone molecules are
calculated using the one-determinant wave func-
tions and compared to experimental values.

Theory

HF AND KS DETERMINANTS

The introductions of the HF and KS determinants
had a revolutionary impact on quantum chem-
istry. In neither case can the determinant be di-
rectly used in the Schrödinger equation because
of the self-interaction term. Nevertheless, consis-
tency with the quantum mechanical formalism can
be achieved with effective Hamiltonians containing
simple scalar correction constants. Thus, instead of
the exact many-body Hamiltonian,

H =
∑

i

hc(ri)+
∑
j<i

1
|ri − rj| ,

we define the HF Hamiltonian, HHF, as

HHF =
∑

i

hc(ri)+
∑
j<i

1
|ri − rj| − γHF, (1)

where the one-electron “core” part hc,i(r) = −(1/2)
+ ν(r), and the double-counting correction constant

γHF = 1
2

∫
ρ(r)ρ(r′)
|r− r′|−1 dr dr′ + EHF,X

2
.

The sum runs over all electrons with position
vectors ri, ν(r) is the nuclear potential, ρ(r) is the
electron density, and EHF,X is the usual HF exchange
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energy. Atomic units are used. The determinant φHF

corresponds to HF energy

EHF = 〈φHF|HHF|φHF〉 = 〈φHF|H|φHF〉 − γHF. (2)

The KS equations15, 22 can be analogously writ-
ten, introducing a formal Hamiltonian

HKS =
∑

i

hKS(ri)− γKS, (3)

where hKS is one-electron operator,

hKS(r) = −1
2
+ ν(r)+

∫
ρ(r′)
|r− r′|−1 dr′ + νXC(r),

the constant

γKS = 1
2

∫
ρ(r)ρ(r′)
|r− r′|−1 dr dr′ +

∫
ρ(r)νXC(r) dr− EXC,

and νXC and EXC are the exchange-correlation poten-
tial and energy, respectively, νXC(r) = ∂EXC/∂ρ(r).
Thus, the KS determinant φKS also provides KS en-
ergy in the integral form

EKS = 〈φKS|HKS|φKS〉. (4)

Obviously, in spite of the formalism similarities,
neither φKS nor φHF is the true Schrödinger wave
function. However, eq. (4) provides exact energy in
principle, while eq. (2), which lacks the correlation
energy, is intrinsically wrong.23

PERTURBATION CORRECTIONS

The differences between HF and KS determi-
nants, especially the nonexistence of the Brillouin
theorem21 for the latter, are reflected in the cor-
responding perturbation calculations. Perturbation
theory for DFT is often based on a Taylor expan-
sion with respect to the electron–electron interac-
tion term.18 In this study the standard Rayleigh–
Schrödinger perturbation theory is directly applied
in order to emphasize the link to the HF and
MP2 formalisms. As shown below, resulting second-
order correction formulae are identical to those of
Görling and Levi for the KS determinant and to the
MP expressions for the HF approximation.

For an approximate Hamiltonian H0 (either HKS

or HHF) a perturbation potential may be introduced

V = H −H0, (5)

so that the usual perturbation expansion for the
corrected energy of an eigenstate φ0 of H0 can be
written as E′0 = E0+E(1)

0 +E(2)
0 +· · · . For example, for

the KS Hamiltonian and the ground state (φKS = φ0)

E0 + E(1)
0 = EKS + 〈φKS|V|φKS〉 = 〈φKS|H|φKS〉, (6)

and

E(2)
0 =

∑
q 6= φKS

〈q|V|φKS〉2
EKS − Eq

. (7)

Usually a set of unoccupied molecular orbitals is
calculated within a basis of atomic orbitals and the
excited states |q〉 are obtained via changing of elec-
tron configuration in the ground state determinant.

Apparently, the unphysical self-interaction con-
tribution also survives in the first-order perturba-
tion term [eq. (6)]. Thus, it is convenient to directly
subtract this constant in the Hamiltonian and define
a new first-order perturbation energy for single-
determinant wave functions as

EMP0 = 〈φ0|HHF|φ0〉. (8)

Index MP0 was appended in order to empha-
size the link to the MP theory. Equation (7) can
be divided into two terms corresponding to con-
tributions from mono- and double-excited states
(φk→j,φk,k′→j,j′), E(2)

0 = 1EMP1 +1EMP2, where

1EMP1 =
∑

j

∑
k

(〈j|H|k〉 +∑k′(jk||k′k′)
)2

εk − εj
(9)

and

1EMP2 =
∑

j

∑
j′<j

∑
k

∑
k′<k

(jk||j′k′)2

εk + εk′ − εj − εj′
. (10)

The electron-interaction term is defined in accor-
dance with the usual notation,13 (ab||cd) = (ab|cd)−
(ad|cb), and εj is the KS or HF one-electron energy
of spin orbital j. The letters k and j are reserved for
occupied and virtual spin orbitals, respectively. For
the HF determinant EMP0 = EHF and 1EMP1 = 0
(Brillouin’s theorem), while for the KS determinant
all contributions are nontrivial.

HF ELECTRON DENSITY

It has been recognized that the self-consistency
in KS equations may be omitted in cases when HF
densities are directly used in DFT functionals. This
approach can be encountered in the early stages of
the DFT or in investigative studies,15 because of the
troublesome interpretation of such an approxima-
tion. Nevertheless, it is interesting to qualitatively
compare this practice to the present work. The
process of using HF density in KS equations will
be referred to as “inverse” in order to emphasize its
relation to the primary subject (using the KS deter-
minant as the wave function). Thus, such an inverse
(INV) energy [in a formal analogy to the “direct”
substitution Edirect = EMP0 = 〈φKS|HHF|φKS〉, see
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eq. (8)] can be defined as

EINV = 〈φHF|HKS|φHF〉. (11)

Computation of EINV can be easily done with
Gaussian24 and presumably with most of other
quantum-chemical programs when the HF function
is directly used for computation of the KS energy.
As shown below, this procedure leads to compara-
ble changes in energy because of the direct use of
the KS determinant [eq. (8)] small overall error, and
significant savings of computer time.

Results and Discussion

MOLECULAR ENERGIES

Energies of small systems calculated using the
expressions above are collected in Table I. Mole-
cular geometries were optimized at the MP2/6-
311G∗∗ level of approximation using the Gaussian
program.24 The same basis set was used for the
HF and KS determinants. Energies calculated at
the QCISD(T)/aug-cc-pVTZ level were used as a
reference point. Also, the QCISD(T)/6-311G∗∗ en-
ergies are given in order to estimate the error
stemming from incompleteness of the basis set.
However, no qualitative difference of the results
under variation of the basis set size was observed.
Three common DFT functionals were explored: the
SVWN (LDA, LSDA) approximation,10 the B3LYP
hybrid functional,25, 26 and the BPW91 combination
of functionals,25, 27 as implemented in Gaussian.

For all systems the HF/MP0 energies are lower
than the KS/MP0 values, which is an obvious re-
sult of the variation principle. (Note that negative
signs are skipped for energies in Table I.) Rather
surprisingly, the KS determinants of the three dis-
tinct functionals behave quite similarly. For ex-
ample, for the H2O molecule the SVWN, BPW91,
and B3LYP functionals yield energies (KS/KS) of
76.0812, 76.4398, and 76.4482 hartrees, respectively
(i.e., within a dispersion of about 0.5%). However,
the KS/MP0 expression gives 76.0338, 76.0378, and
76.0394 hartrees (i.e., a dispersion of about 0.007%).
The KS/MP0 values are also very close to the HF
limit (76.0463 for water), typically differing behind
the second decimal point. Rather surprisingly, no
qualitatively different behavior between the closed-
shell and high-spin systems (3C, 3O, 4N) can be
observed.

The MP1 correction for the DFT values leads
to energies almost identical to the HF limit and
even slightly closer to the reference calculation (cf.

the average deviations a at the bottom of Table I).
However, given the overall error and the additional
computational cost connected with enumeration of
eq. (9), little benefit of the MP1 correction can be
expected in the usual computations of molecular en-
ergies. This is a rather unfortunate consequence of
the similarity between HF and KS determinants, be-
cause the MP1 correction can still be computed with
significantly smaller effort than the MP2 expression.

On the other hand, the MP2 correction signifi-
cantly improves the agreement with the reference
calculation, again regardless of the functional used.
Typically, the KS/MP2 value is also better than or
comparable to the sole KS/KS energy (compare the
deviations of 0.141 and 0.072 for the B3LYP func-
tional). This is in agreement with the generally
accepted opinion that modern DFT functionals pro-
vide results of approximately the HF/MP2 quality.
Apparently only the older SVWN approximation
leads to an overall error comparable to the HF
theory (cf. a = −0.360). The HF/MP2 values are
generally closer to the reference calculation than
the KS/MP2 energies, the latter significantly over-
estimate the correlation correction. Thus, the MP2
perturbation calculation with the KS determinant
cannot be generally recommended.

Energies obtained by the inverse process are
listed for the B3LYP functional only. As a result of
the variation principle, KS/INV values are higher
than KS/KS energies for which the self-consistency
was allowed. The error caused by the HF approx-
imation of the KS density in the KS equations
approximately corresponds to the change caused
by the use of the KS determinant in the HF en-
ergy expression. For example, for the 3C atom,
EKS/MP0 − EHF/MP0 = 0.0041 and EKS/INV − EKS/KS =
0.0033; for H2O these values are 0.0069 and 0.0066
hartrees, respectively. Clearly, the KS/INV energies
are very close to the solution of fully converged
KS equations, which can be used for savings of
computer time when HF densities are available:
namely, the implementations of the hybrid DFT
methods requires longer computational time then
sole HF equations. Typically, in cases where a small
error in energy is acceptable, elimination of the
self-consistent procedure would reduce the compu-
tational time by 5–10 times. Also, construction of
DFT functionals based on HF density (and hence in-
dependent of the actual DFT model) comes in mind
as a possible application in the future. On the other
hand, self-consistency is currently not the main lim-
iting factor in computational quantum chemistry.21
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TABLE I.
Molecular Energies (Negative).

HF KS/SVWN KS/BPW91

MP0 MP2 KS MP0 MP1 MP2 KS MP0 MP1 MP2

3C 37.6892 37.7649 37.5772 37.6851 37.6893 37.8096 37.8432 37.6851 37.6893 37.8096
3O 74.8053 74.9426 74.6709 74.7950 74.8057 74.9966 75.0732 74.7999 74.8054 74.9941
4N 54.3981 54.4970 54.2600 54.3905 54.3985 54.5369 54.5891 54.3940 54.3982 54.5360
N2 108.9643 109.3420 108.9498 108.9389 108.9682 109.6244 109.5496 108.9463 108.9684 109.6197
CO 112.7669 113.1200 112.7303 112.7393 112.7750 113.3762 113.3354 112.7471 112.7742 113.3696
CO2 187.6826 188.2683 187.6785 187.6288 187.7029 188.6972 188.6356 187.6420 187.7009 188.6841
F2 198.7283 199.2108 198.6647 198.6954 198.7313 199.4859 199.5567 198.7054 198.7312 199.4777
H2O 76.0463 76.2886 76.0812 76.0338 76.0475 76.4069 76.4398 76.0378 76.0475 76.4044
HF 100.0467 100.2943 100.0191 100.0341 100.0478 100.3994 100.4608 100.0385 100.0477 100.3969

a −0.327 −0.049 −0.360 −0.348 −0.322 0.128 0.134 −0.342 −0.323 0.123

KS/B3LYP HF

KS MP0 MP1 MP2 INV QCISD/T QCISD/Ta

3C 37.8566 37.6851 37.6893 37.8096 37.8533 37.7684 37.7827
3O 75.0862 74.8006 74.8053 74.9815 75.0816 74.9383 74.9815
4N 54.5993 54.3945 54.3981 54.5260 54.5957 54.4942 54.5182
N2 109.5557 108.9504 108.9665 109.5348 109.5425 109.3015 109.3841
CO 113.3474 112.7522 112.7700 113.2925 113.3334 113.0999 113.1667
CO2 188.6428 187.6533 187.6897 188.5553 188.6155 188.2003 188.3486
F2 199.5652 198.7114 198.7296 199.3992 199.5490 199.1734 199.3225
H2O 76.4482 76.0394 76.0470 76.3740 76.4416 76.2749 76.3446
HF 100.4707 100.0402 100.0472 100.3706 100.4645 100.2757 100.3536

a 0.141 −0.338 −0.325 0.072 0.131 −0.073 0

The perturbation models are KS, eq. (4); MP0, eq. (8); MP1, eqs. (8) and (9); MP2, eqs. (8)–(10); and INV, eq. (11). The 6-311G∗∗ basis
set was used with HF/MP2/6-311G∗∗ geometries; the symbol a denotes an average deviation with respect to the last (QCISD/T/aug-cc-
pVTZ) calculation (a = 1−∑i xiyi/

∑
x2
i ) in %.

a In the aug-cc-pVTZ basis.

ENERGY DISTRIBUTION

One of the biggest advantages of KS equations
is a more balanced treatment of individual energy
components.15 In contrast, HF formalism leads to
unbalanced distribution of the kinetic and potential
energies. Individual energy parts for our systems
can be conveniently analyzed using the MP0 expres-
sion in eq. (8). The differences in total, kinetic, and
potential energies for both the KS and HF determi-
nants are given in Table II. Note however that eq. (8)
does not provide the correlation energy. Supposing
that the KS/MP0 kinetic energies are more accurate,
an underestimation of this component by HF the-
ory can be observed for all cases. This is partially
compensated by uniformly weaker electron-nuclear

attraction in the HF model, while no obvious corre-
lation can be found between KS and HF electron–
electron interaction energy. Individual energy com-
ponents are not experimentally observable and cal-
culated differences in HF and KS kinetic energies are
smaller than 1% of the total energy. Nevertheless,
these variations may be important for studies where
the kinetic energy is treated separately,28 because
the differences are comparable to energy changes
in most chemical processes. It is remarkable that
such an imbalance results in rather small changes
in total energies. For example, KS and HF MP0
energies of CO2 differ by 18 kcal/mol, while the dif-
ference of the nuclear–electron attraction is 35 times
bigger.

12 VOL. 21, NO. 1
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TABLE II.
Total (E), Kinetic (T), Electron–Nuclear (VeN), and
Electron–Electron Coulombic (Vee/C) and Exchange
(Vee/X) Energy Differences between MP0 [eq. (8)]
Values Obtained with KS and HF Determinants
(kcal/mol).

1E 1T 1VeN 1Vee/C 1Vee/X

3C 3 17 −43 14 15
3O 3 40 −59 −1 23
4N 2 24 −40 −1 20
N2 9 230 −464 246 −4
CO 9 180 −308 96 42
CO2 18 328 −638 313 15
F2 11 266 −400 −45 −5
H2O 4 129 −174 45 5
HF 4 115 −130 4 15

ATOMIZATION ENERGIES

Atomization energies for six small molecules are
listed in Table III and are organized analogously to
Table I. The energies are related to experimental val-
ues from ref. 29. Similar to the absolute energies,
the KS/MP0 and KS/MP1 values are qualitatively
similar to the HF limit. However, the KS/MP2 per-
turbation correction leads to an overestimation of
the atomization energies by about 40–50%. These
results are in accord with observations in ref. 16 in
which more sophisticated perturbation approaches
are also proposed for DFT. Similar systematic er-
ror is absent for the HF/MP2 computation, which
may be performed with approximately the same
computer cost. Nevertheless, the computation of the
KS/MP2 correction is still beneficial if compared to
the MP0 and MP1 values.

The inverse process leads to an acceptable error
of a few percent in KS energies (cf. 200 instead of
224 kcal/mol for N2, etc.), which could be explored
in practical calculations as discussed in the Theory
Section. Similar to the atomization energies, one can
observe the approximate relation

EKS/MP0 − EHF/MP0 ∼ EKS/INV − EKS/KS,

which may be explained as a result of the similarity
between the HF and KS Hamiltonian and the linear
dependence of energy on a small variation of den-
sity [see eqs. (4), (8), and (11)].

VIBRATIONAL ENERGIES

A more complex behavior of the KS determi-
nant can be observed for calculation of the vibra-

tional frequencies. Their values for CO, HF, and
N2 molecules were calculated using a seven-point
fit of the potential energy surface and are given
in Table IV for the BPW91/6-311G∗∗ approxima-
tion. Other functionals and bases did not lead to
qualitatively different results. For the frequencies
the KS/MP1 correction provided a significant im-
provement: the shift of about 60–150 cm−1 in the
three examples would be important for a compar-
ison with the experiment.

In spite of the improvement of the absolute ener-
gies in the vicinity of the equilibrium distance, quite
a defective potential surface was obtained with the
KS/MP2 calculation. This is demonstrated in Fig-
ure 1 for the N2 molecule. A reasonable shape of
the potential well in the vicinity of the equilibrium
distance was obtained with the HF/MP2 approxi-
mation, except for the divergence from the expected
curve at distances greater than about 2 Å. On the
contrary, the DFT/MP2 gradient was negative for
all distances and no energy minimum exists for this
model. The divergence, which is a sharp drop of the
energy also observed for the HF/MP2 computation,
starts already at the distance of about 1.6 Å. Clearly,
the KS/MP2 perturbation correction is not suitable
for calculation of potential energy surface.

EXCITATION ENERGIES

As mentioned in the Introduction, the one-
determinant approximation can be encountered
most frequently in the modeling of excited elec-
tronic states. In particular, frozen ground state KS
or HF orbitals with different electron configurations
are often adopted to evaluate molecular energies.
Because such states are mutually orthogonal, this
approach can be viewed as a zero-point approxima-
tion corresponding to the MP0 energy in eq. (8). The
determinant therein is replaced by an appropriate
spin-adapted wave function. Because of the numer-
ical instability observed for the ground state, a little
benefit of the higher MP1 and MP2 perturbation cor-
rections may be expected. However, the knowledge
of the properties of the diagonal MP0 terms may
be important for further variational treatment of the
wave functions.

In this section the excitation energies are esti-
mated for formaldehyde, acetone, and CH2 mole-
cules. Equilibrium MP2/6-311G∗∗ geometries and a
relatively large cc-pVTZ basis set involving a set
of f orbitals were used. Table V lists the computed
energies of the lowest four singlet and five triplet
transitions in formaldehyde and compares them
to experimental values. Apparently the KS deter-

JOURNAL OF COMPUTATIONAL CHEMISTRY 13
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TABLE III.
Atomization Energies (kcal/mol).

HF KS/BPW91 KS/SVWN

KS/SVWN MP0 MP2 KS MP0 MP1 MP2 KS MP0 MP1 MP2

N2 105 218 233 99 108 343 270 99 107 345
CO 171 259 263 164 175 355 303 165 176 357
CO2 240 388 405 224 251 556 479 226 252 560
F2 −41 30 47 −45 −40 117 75 −45 −40 119
H2O 152 217 225 150 152 258 262 151 152 258
HF 94 133 136 93 95 156 157 45 94 158

a −38 0 4 −41 −36 40 22 −43 −36 41

KS/B3LYP HF

KS MP0 MP1 MP2 INV Expt29

N2 224 101 107 303 220 225
CO 254 167 173 323 250 256
CO2 385 230 245 500 376 382
F2 35 −45 −40 86 31 37
H2O 224 151 152 247 224 219
HF 134 94 94 151 134 135

a 0 −40 −37 27 −1 0

The energies are without zero-point energy (deviation a defined as in Table I) with respect to the experimental values.

TABLE IV.
Vibrational Frequencies (cm−1).

HF BPW91

MP0 MP2 KS MP0 MP1 MP2 Expt28

CO 2431 2086 2085 2506 2345 — 2143
HF 4363 4087 3840 4428 4333 3146 3962
N2 2771 2117 2307 2810 2749 — 2331

minants of the three DFT approximations behave
similarly and readily differ from the HF determi-
nant. The KS energies of both the singlet and triplet
transitions between the border orbitals (HOMO→
LUMO, 8 → 9) are particularly significantly closer
to the experiment. Higher frequency excitations are
reproduced with similar errors by the KS and HF
methods. The triplet 7 → 9 transition is (probably
by an accident) best given by the HF computation.

The superiority of the KS determinant for model-
ing of excited states is also apparent for acetone and
CH2 molecules as can be seen in Table VI. The ener-

FIGURE 1. Potential energy surface of the N2 molecule
as calculated by the HF and KS methods and by the
three perturbation calculations.

gies of the singlet HOMO→ LUMO transitions for
acetone and CH2 are by 102 and 253 nm closer to the
experiment (to a full CI calculation for CH2), respec-
tively, than if calculated with the HF determinant.
Similar to formaldehyde, the difference between the

14 VOL. 21, NO. 1
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TABLE V.
Excitation Energies in Formaldehyde (nm).

Transition HF KSLDA KSB3L KSBPW Expt30

1A2 8→ 9 232 265 265 266 302
1B2 8→ 10 121 118 120 117 174
1A1 8→ 11 101 99 101 99 152
1B2 8→ 12 106 108 108 108 155

3A2 8→ 9 265 316 314 317 354
3A1 7→ 9 206 257 249 256 207
3B2 8→ 10 126 125 126 124 175
3A1 8→ 11 108 110 110 110 152
3B2 8→ 12 109 113 113 113 157

cc-pVTZ basis, MP2/6-311G∗∗ geometry.

KS and HF energies becomes insignificant for higher
energy transitions. Only for the 16 → 18 excita-
tion in acetone was a significantly more accurate
value obtained by the HF method. However, in a
smaller 6-311++G∗∗ basis, a better energy was ob-
tained with the KS approximation for this case. Such
a numerical instability indicates that a full varia-
tional rather than the rigid-determinant treatment
should be used for this transition. The sharp dete-
rioration of the HF excitation energies for the bigger
system (acetone), as well as the relative stability of
the error of the KS approximation, is in accord with
results observed for other molecules.8

Conclusions

KS and HF determinants provided similar val-
ues of molecular properties when used as the true
many-body wave functions in first-order pertur-
bation formulas (MP0). Greater differences were
observed for the second-order perturbations (MP1,
MP2). The KS/MP1 correction is small and can
be omitted for most applications. The MP2 correc-
tion applied to the KS determinant is less accurate
than the usual HF/MP2 method. This indicates a
slower convergence of the perturbation expansions
based on the KS determinant. On the other hand,
the KS determinant (rigid orbitals formally used in
the first-order perturbation approach) is more suit-
able for approximations of the lowest energy excited
electronic states. The results are in accord with pre-
vious observations where sum over states modeling
of electronic states with the KS wave function pro-
vided better values of molecular property tensors
than the HF approximation.

TABLE VI.
Excitation Energies for Acetone and CH2 (nm).

Transition HF KSB3L Expt30

Acetone
1A2 16→ 17 126 228 280
1B2 16→ 18 176 125 195
1A1 16→ 19 107 105 167
1A2 14→ 17 97 109 168
1B2 16→ 20 105 105 166
1A2 16→ 21 115 106 153

3A2 16→ 17 127 258 297
3A1 15→ 17 105 189 211
3A2 14→ 17 98 111 198
3A2 16→ 21 117 107 157

CH2 FCI31

1B2 4→ 5 633 886 691
1A1 4→ 6 148 155 266
1A2 3→ 5 167 183 212
1A1 4→ 9 82 84 190
1B1 4→ 7 123 128 161
1B1 3→ 6 91 93 155
1A1 3→ 7 76 77 146
1B2 4→ 10 85 85 139
1A2 3→ 10 61 61 131
1B2 2→ 5 72 72 117

cc-pVTZ basis, MP2/6-311G∗∗ geometry.
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