BRIDGED BIS-TRÖGER’S BASE MOLECULAR TWEEZERS AS NEW CAVITAND FAMILY

Martin Havlík*, Václav Parčanšký, Petr Bouř, Vladimír Král and Bohumil Dolešský

a Department of Analytical Chemistry, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic; e-mail: havlikm@vscht.cz,
2 vparcansky@gmail.com, 3 kralv@vscht.cz, 4 dolenskb@vscht.cz

Received March 13, 2009
Accepted April 27, 2009
Published online July 16, 2009

Dedicated to Dr. Alfred Bader with heartfelt thanks for his fatherly support of Czech scientists.

New molecular tweezers based on bis-Tröger’s base with methoxycarbonyl groups on its pincers was prepared. These groups were converted into hydroxymethyl groups, which were interconnected by a linker to give the bridged molecular tweezers, a cavitand. The cavitand was studied and its ability to bind nitrobenzene was compared with similar bis-Tröger’s base molecular tweezers.

Keywords: Bis-Tröger’s base; Molecular tweezers; Binding; Cavitand.

One of today chemistry mainstreams deals with intermolecular interactions and their utilization in construction of molecular tools, e.g., molecular reactors and receptors. A significant part of these studies employs container-shaped molecules, the cavitands, i.e., the hollow molecules with an accessible cavity. Those cavities were found to be the stage of many unique and exploitable processes. Because those processes are extremely useful, e.g., in the development of molecular robotics, there is an increasing requirement for new cavitands differing namely in their cavity shape, size, charge, hydrophilicity, etc. Note that the famous cavitands such as calixarenes, cyclodextrins and cucurbiturils have largely cylindrical cavities. In this article, we present the first member of a new cavitand family based on bridged bis-Tröger’s base molecular tweezers.

The common Tröger’s base (TB) derivatives consist of two arenes, which are fused to the opposite sides of methylene-bridged 1,5-diazocine. Due to
this structure, the TB derivatives are rigid molecules, in which the arenes make an angle of 80–114°. That makes TB derivatives coveted building blocks of molecular engineers to build up, e.g., selective receptors. Recently, there were introduced new TB derivatives, the bis-Tröger’s bases (bisTB), in which one arene is common to two TB units. Due to that, next two arenes of certain syn-bisTB diastereoisomers are parallel at a distance of about 0.7 nm, and mimic pincers of tweezers. These molecules excellently fulfill the requirements to be classified as molecular tweezers (0.64–0.70 nm). We demonstrate here that the pincers of syn-bisTB can be bridged with a proper linker to form a cavitant.

EXPERIMENTAL

The NMR spectra were obtained with a Varian Mercury Plus (300.077 MHz for \(^1\)H and 75.460 MHz for \(^{13}\)C) at 23 °C in CDCl\(_3\) or DMSO-d\(_6\). The chemical shifts (\(\delta\)) are presented in ppm (relative to TMS) and the coupling constants (\(J\)) in Hz. Mass spectra were obtained by atmospheric pressure chemical ionization (APCI) with an LTQ Orbitrap spectrometer. The fluorescence spectra (\(\lambda, \text{nm}\); \(\varepsilon, \text{l cm}^{-1} \text{ mol}^{-1}\)) were recorded with FluoroMax-2 at 298 K. Silica (32–63 D, 60 Å) was used for separation by column chromatography. Molecule pictures are provided by HyperChem. The distances were measured and calculated with Mercury 1.4.2 (build 2).

Preparation of Tetramine 4b

Dibromide 2 (1.9 g, 3.8 mmol) was treated with methyl 6-amino-2-naphthoate (5 g, 24.9 mmol) and \(K_2CO_3\) (0.6 g, 4.3 mmol) in DMF (200 ml) at 80 °C for 5 h. The reaction mixture was evaporated to dryness in vacuo. The residue was separated by column chromatography (CHCl\(_3\)/Et\(_2\)O 10:1) to give 1.5 g (54%) of tetramine 4b. \(^1\)H NMR (DMSO-d\(_6\)): 8.73 s, 2 H; 8.23 d, 2 H, \(J = 1.3\); 7.61 d, 2 × 2 H, \(J = 8.8\); 7.43 s, 1 H; 7.35 s, 1 H; 7.28 d, 2 H, \(J = 8.8\); 6.92 dd, 2 H, \(J = 8.8, J = 2.1\); 6.81 t, 2 H, \(J = 4.7\); 6.49 d, 2 H, \(J = 2.1\); 4.24 d, 4 H, \(J = 4.7\); 3.85 s, 6 H; 1.45 s, 18 H. \(^{13}\)C APT NMR (DMSO-d\(_6\)): 166.58 (C), 153.70 (C), 148.64 (C), 137.44 (C), 134.85 (C), 130.37 (CH), 129.96 (CH), 129.27 (C), 126.50 (CH), 125.26 (CH), 125.04 (C), 124.98 (CH), 121.53 (CH), 121.45 (C), 118.72 (CH), 102.21 (CH), 78.98 (C), 51.72 (CH\(_3\)), 42.62 (CH\(_2\)), 28.11 (CH\(_3\)). HRMS (APCI): for C\(_{42}\)H\(_{47}\)N\(_4\)O\(_8\) [M + H\(^+\)] calculated 735.3394, found 735.3381.

Preparations of bisTBs 1a and 1b

a) Preparation of 1a diastereoisomers were described previously. anti-1a: UV (CHCl\(_3\)), \(\lambda_{\text{max}}\) (log \(\varepsilon\)): 243 (4.66), 283 (4.12), 295 (3.97), 329 (3.23). syn-1a: UV (CHCl\(_3\)), \(\lambda_{\text{max}}\) (log \(\varepsilon\)): 242 (4.66), 283 (4.05), 295 (3.92), 329 (3.23).

b) Tetramine 4b (1.0 g, 1.4 mmol) was dissolved in TFA (50 mL) and paraformaldehyde (0.5 g, 10.8 mmol of “CH\(_2\)O”) was added, and the reaction mixture was stirred at room temperature for 1 h. The solution was alkalinized at 0 °C with 25% aqueous NH\(_3\) and extracted with CH\(_2\)Cl\(_2\). The organics were extracted with water, dried over Na\(_2\)SO\(_4\) and evaporated to
dryness in vacuo. The residue was separated by column chromatography (CHCl₃/methanol 20:1) to give crude isomer anti-1b followed by syn-1b. Isomer anti-1b was purified by column chromatography (toluene/acetone 9:1 to 7:3) to obtain 340 mg (43%). Isomer syn-1b was purified by column chromatography (toluene/acetone 1:1) to obtain 267 mg (34%).

anti-1b: ¹H NMR (CDCl₃): 8.48 d, 2 H, J = 1.7; 8.04 dd, 2 H, J = 8.8, J = 1.7; 7.76 d, 2 H, J = 8.8; 7.67 d, 2 H, J = 8.8; 7.29 d, 2 H, J = 8.8; 7.10 s, 1 H; 6.50 s, 1 H; 4.98 d, 2 H, J = 16.7; 4.66 d, 2 H, J = 16.7; 4.58 d, 2 H, J = 16.7; 4.34 d, 2 H, J = 12.5; 4.26 d, 2 H, J = 12.5; 4.25 d, 2 H, J = 16.7; 3.96 s, 6 H. ¹³C APT NMR (CDCl₃): 167.15 (C), 147.37 (2 × C), 133.70 (C), 131.40 (CH), 129.85 (C), 129.17 (CH), 126.22 (C), 126.07 (CH), 125.22 (CH), 125.17 (CH), 123.87 (C), 121.46 (CH), 121.41 (C), 121.06 (CH), 66.48 (CH₂), 57.09 (CH₃), 57.04 (CH₂), 52.18 (CH₃).

syn-1b: ¹H NMR (CDCl₃): 8.35 d, 2 H, J = 1.7; 7.93 dd, 2 H, J = 8.8, J = 1.7; 7.64 d, 2 H, J = 8.8; 7.60 d, 2 H, J = 8.8; 7.22 d, 2 H, J = 8.8; 7.03 s, 1 H; 6.49 s, 1 H; 4.97 d, 2 H, J = 16.7; 4.66 d, 2 H, J = 16.7; 4.42 d, 2 H, J = 16.7; 4.37 d, 2 H, J = 13.5; 4.32 d, 2 H, J = 13.5; 4.20 d, 2 H, J = 16.7; 3.88 s, 6 H. ¹³C APT NMR (CDCl₃): 167.03 (C), 147.61 (C), 147.51 (C), 133.56 (C), 131.26 (CH), 129.67 (C), 128.96 (CH), 126.05 (C), 126.00 (CH), 125.16 (CH), 124.99 (CH), 123.97 (C), 121.46 (CH), 121.45 (C), 121.40 (CH), 66.53 (CH₂), 56.97 (CH₂), 56.79 (CH₂), 52.07 (CH₂), UV (CHCl₃), λₘₐₓ (log ε): 250 (4.83), 314 (4.20). HRMS (APCI): for C₃₆H₃₁N₄O₄ [M+H⁺] calculated 583.2345, found 583.2335.

Preparation of bisTB 1c
BisTB syn-1b (100 mg, 172 µmol) was dissolved in THF (25 ml) and LAH (38 mg, 1000 µmol, 0.5 ml of 2 M solution in THF) was added at room temperature, and then stirred for 3 h. The solution was carefully quenched with water and evaporated to dryness in vacuo. The residue was separated by column chromatography (CH₂Cl₂/methanol 93:7) to obtain 75 mg (83%) of bisTB 1c. ¹H NMR (DMSO-d₆): 7.53 m, 6 H; 7.33 dd, 2 H, J = 8.8, J = 1.4; 7.14 d, 2 H, J = 8.8; 6.95 s, 1 H; 6.54 s, 1 H; 5.18 t, 2 H, J = 5.5; 4.82 d, 2 H, J = 16.7; 4.51 d, 4 H, J = 5.5; 4.38 d, 2 H, J = 17.0; 4.23 d, 2 H, J = 12.5; 4.19 d, 2 H, J = 12.5; 4.10 d, 2 H, J = 16.7. ¹³C APT NMR (DMSO-d₆): 147.36 (C), 147.61 (C), 147.51 (C), 133.56 (C), 131.26 (CH), 129.67 (C), 128.96 (CH), 126.05 (C), 126.00 (CH), 125.16 (CH), 124.99 (CH), 123.97 (C), 121.46 (CH), 121.45 (C), 121.40 (CH), 66.53 (CH₂), 56.97 (CH₂), 56.79 (CH₂), 52.07 (CH₂), UV (CHCl₃), λₘₐₓ (log ε): 250 (4.83), 314 (4.20). HRMS (APCI): for C₃₄H₃₁N₄O₂ [M+H⁺] calculated 527.2447, found 527.2438.

Preparation of the Cavitand 6
BisTB 1c (50 mg, 95 µmol) and dibromide 5⁹ (29 mg, 95 µmol) was dissolved in DMF (12 ml) and NaH (20 mg, 833 µmol) was added at room temperature, and then stirred for 3 h. The solution was carefully washed with water and evaporated to dryness in vacuo. The residue was purified by preparative TLC (CHCl₃/methanol 93:7) to obtain 75 mg (83%) of BisTB 1c. ¹H NMR (CDCl₃): 8.13 s, 2 H; 7.58 m, 6 H; 7.40 dd, 2 H, J = 8.7; J = 1.7; 7.19 d, 2 H, J = 8.7; 7.16 s, 1 H; 7.00 s, 1 H; 6.43 s, 1 H; 4.97 d, 2 H, J = 16.7; 4.81 d, 2 H, J = 11.4; 4.63 d, 2 H, J = 16.6; 4.54 d, 2 H, J = 11.4; 4.38 m, 10 H; 4.15 d, 2 H, J = 16.6. ¹³C APT NMR (CDCl₃): 148.28 (C), 147.66 (C), 145.47 (C), 140.33 (C), 133.56 (C), 132.03 (CH), 130.94 (C), 130.27 (C), 128.55 (CH), 127.71 (CH), 127.45 (CH), 124.94 (CH), 124.66 (CH), 124.04 (C), 122.08 (CH), 121.51 (C), 121.12 (2 × CH), 73.41 (CH₂), 69.92 (CH₂), 66.70.

RESULTS AND DISCUSSION

The required bisTB 1b was prepared based on the protocol we have published recently for preparation of bisTB 1a (Scheme 1)\(^8\). Thus, dibromide 2 was treated with an excess of naphthylamine 3b to produce tetramine 4b in 54% preparative yield. The following treatment with paraformaldehyde in TFA led to the formation of both diastereoisomers of bisTB 1b in preparative yields 43 and 34% of anti-1b and syn-1b, respectively. Both ester func-
tions of the syn-1b were reduced by LiAlH₄ to corresponding dihydroxy-
bisTB 1c (83% yield). The treatment of 1c with dibromide 5 gave cavitand 6 in a preparative yield of 33%.

Since we were not successful in obtaining a single crystal for X-ray diffraction analysis, the Fig. 1 shows the covalent structure and molecular model of cavitand 6, wherein the geometry was optimized by RM1 method). The cavity volume of cavitand 6 could be estimated as cuboid, which is defined by the width 0.78 nm, length 0.85 nm and depth 0.36 nm, wherein the width and length are decreased by about van der Waals radius of carbon (0.17 nm). That gives the cavity volume about 0.149 nm³ (90 ml mol⁻¹, 0.13 ml g⁻¹), which is similar to cucurbituril[6] (0.164 nm³)₁¹ or α-cyclodextrin (0.174 nm³)₁².

The ability of cavitand 6 to bind nitrobenzene in chloroform was tested by the titration experiment followed by quenching of fluorescence. Since both α-cyclodextrin and cucurbituril[6] show insufficient solubility in chloroform, we have compared the binding ability of cavitand 6 and non-bridged bisTB molecular tweezers syn-1a. As nitrobenzene is added, the fluorescence intensities of both compounds fall down, partly due to the expected interactions and partly due to the nitrobenzene absorption at both excitation and emission wavelengths. Because of that, the binding constants were determined with LETAGROP¹³ after correction¹⁴ for the

Fig. 1
Structural compartments of cavitand 6 (a); the lowest energy structure of cavitand 6 (optimized by RM1) (b, c); the view into cavitand 6 with the distances of the centroids of opposite aromatic rings (b); the side view with estimation of the cavity length and depth (c)
nitrobenzene absorptions (Fig. 2). In the case of syn-1a the formation of the expected (syn-1a)-(PhNO₂) complex was confirmed and the binding constant 1 200 ± 400 l mol⁻¹ (ΔG = 17.0 ± 1.0 kJ mol⁻¹) was determined. Unfortunately, in the case of cavitand 6, no binding of nitrobenzene was observed. Since it is important for the design of new cavitands, we have tried to point out the origin of the binding failure.

Inspection of the fluorescence spectra (Fig. 3) shows that molecular tweezers syn-1a has a high-frequency band at 387 nm and a less intensive low-frequency band at 756 nm. In contrast, cavitand 6 has the high-frequency band at 467 nm (red shift 80 nm, significantly less intensive than high-frequency band of syn-1a) and no low-frequency band (below 900 nm). Since the covalent structure of syn-1a is a subset of the cavitand 6 structure, so different spectra are not expected. Next, when nitrobenzene is added to syn-1a the intensities of both its bands are reduced and red-shifted by 10–20 nm. In other words, the spectrum of 6 is more similar to the spectrum of the (syn-1a)-(PhNO₂) complex than pure syn-1a. Obviously, this is a consequence of the cavitand 6 bridge, which is a certain equivalent of nitrobenzene. The nitrobenzene bridge could be either bound by the cavity of another cavitand molecule to form an intermolecular complex (6)ₙ wherein n > 1, or immersed into the cavity of the same molecule to form an intramolecular complex (6)₁. As the fluorescence intensity of both

![Fig. 2](image-url)

The titration experiments of syn-1a and 6 with nitrobenzene
intermolecular and intramolecular complex could be similar to that of the desirable nitrobenzene complex \((6)_n\cdot(\text{PhNO}_2)_n\), the potential binding could not be detectable when followed by the fluorescence quenching. In other words, our negative observation can be interpreted in two ways: (i) no complexation of nitrobenzene occurred because a self-complex is much stronger than the expected one and (ii) the complexation cannot be observed by fluorescence quenching.

It is well known that an intramolecular process is usually preferred over similar but intermolecular one. Since the intramolecular complex of \((6)_1\) is a conformer, we have performed conformational search by molecular modeling\(^{15}\) using the dispersion-corrected DFT method (DFT-D)\(^{16}\). The functional BPW91 on 6-31G basis was used. In contrary to the computation by semi-empirical RM1 method, the DFT-D computation has revealed two conformers (Fig. 4). The nitrobenzene bridge of filled-6 conformer is immersed in the cavity (intramolecular complex), while in the case of empty-6 conformer is outside the cavity. The geometries of these conformers were optimized and their energies were calculated on the DFT-D/BPW91/6-31G** level. The energy difference ca. 18 kJ mol\(^{-1}\) (4.2 kcal mol\(^{-1}\)) corresponds to the ratio of empty-6 to filled-6 ca. 0.0008 (at 298 K), which makes the binding less probable.
Those arguments suggest the conclusion that there is no binding of nitrobenzene to cavitand 6. However, it should be kept in mind that ortho protons of the nitrobenzene bridge of filled-6 conformer are not equivalent, but only one signal is observed in the experimental NMR spectrum of cavitand 6. It could mean the bridge of cavitand 6 is not permanently bound in the cavity.

CONCLUSION

We have shown the pincers of the molecular tweezers base on bisTBs can be interconnected forming molecule with cavity, a cavitand. Based on our previous results, we believe this cavitand type can be modified in many ways. The molecular tweezers can be prepared with a variety of pincers and tethers to increase or decrease their length, width, depth, shape and many physico-chemical properties of the cavity. In addition, both bridges and molecular tweezers can bear other functional groups to adjust the binding constant and selectivity, or a probe to report a binding. A detailed research of these cavitands is in progress and the results will be published soon.

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic (MSM 6046137307 and LC06077), and the Czech Science Foundation (203/08/1445 and 203/06/0786).

REFERENCES

