
Simulation of Vibrational Spectra of Large Molecules by
Arbitrary Time Propagation

Jan Kubelka*,† and Petr Bouř*,‡
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Abstract: Modern ab initio and multiscale methods enable the simulation of vibrational properties
of very large molecules. Within the harmonic approximation, the traditional generation of the
spectra based on the force field diagonalization can become inefficient due to the excessive
demands on computer time and memory. The present study proposes to avoid completely the
matrix diagonalization with a direct generation of the spectral shapes. For infrared absorption
(IR) and vibrational circular dichroism (VCD) electric and magnetic dipole moments are
propagated in a fictitious time and spectral intensities are obtained by Fourier transformation.
The algorithm scales quasi-linearly, and for model polypeptide molecules the method was found
numerically stable and faithfully reproduced exact transition frequencies and relative intensities.

1. Introduction

Modern vibrational spectroscopy provides a powerful means
for studying the structure of polymeric materials and biologi-
cal molecules.1 In particular, the infrared absorption (IR) and
vibrational circular dichroism (VCD) techniques shed light
on structure and structural transitions in peptides and
proteins,2,3 nucleic acids,4,5 biological membranes,6 and on
enzymatic function.7 Kinetic and nonlinear response en-
hancements are possible owing to the time-dependent8 and
two-dimensional (two-photon) techniques.9

Ultimately, the information about the structure and dy-
namics of studied systems can be verified by comparison of
the measured spectra with simulations. Unfortunately, struc-
tural interpretation of the vibrational spectra is often far from
being straightforward, especially for large molecules with a
plethora of overlapping spectral transitions. Although the
molecular size remains the main limitation for quantum
mechanical calculations, the exciting possibility of obtaining
accurate vibrational force fields for the whole molecules
appears realistic owing to the latest advances in quantum
chemistry.10-12 In the meantime, the Cartesian transfer tensor

techniques13 obtained spectroscopically accurate fields for
large molecules from quantum-chemical computations on
smaller fragments.3,14 In principle, such fragmentation ap-
proaches would enable calculation of the vibrational spectra
for arbitrarily large structures. However, for systems with
thousands of atoms a new problem arises: the force field
matrices become too large for direct diagonalization, which
is necessary to obtain the vibrational frequencies and
intensities. For such very large matrices special computa-
tional procedures have to be applied.11

Traditionally, the Householder transformation and the
following complete diagonalization routine based on the QL
or QR algorithm provide the fastest in-memory procedure
for the determination of the eigenvectors and eigenvalues
of a real symmetric matrix.15 Similar routines exist for a
partial diagonalization, yielding a given number of the lowest
or highest eigenvalues, but these algorithms are less efficient
except for cases when the number of the vectors of interest
is small.16 For matrices that cannot be stored in computer
memory or elements of which are created on the fly, the
power iteration methods appear as a better alternative.11,17

The eigenvalues and vectors are built from the smallest or
the largest value iteratively, using a limited number of trial
vectors (“Krylov space”).18 This is very convenient, for
example, for the configuration interaction electron computa-
tions, when only a limited number of the low energy
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electronic states (often just the ground state) is needed.
However, for the vibrational problem it is usually not
sufficient to find a few largest or smallest eigenvalues.
Rather, a complete spectrum, or at least a broad frequency
range, is desired, which is rarely limited to either the high
or low frequency side. For such a task the iterative (often
called Davidson) methods quickly become impractical. As
each new vector has to be normalized to the rest, the process
slows down progressively. Additionally, for semidegenerate
eigenvalues, the method can become numerically unstable.11

Fortunately, in some cases, the force field matrix diago-
nalization can be completely avoided by Fourier techniques
and time propagations of molecular properties. An interesting
alternative is offered by the normal mode tracking,19 where
the orthogonality of the harmonic normal modes is used to
construct an incomplete Hamiltonian, and, in a final effect,
a preselected part of the vibrational spectrum is obtained.
The decision as to which mode to follow has to be done
already at the ab initio stage of computation of the force
field, which somewhat limits possible applications. The
Fourier procedures pursued in the presented work were also
successfully used in the past, e.g. for generation of the
infrared absorption (IR) and optical activity (vibrational
circular dichroism, VCD) in connection with empirical12 or
ab initio20 based force fields. In this work, we investigate a
variant of these approaches which differs from the previous
schemes in that the time propagation is based directly on
the force field matrix instead of the harmonic Hamiltonian.
The spectra are not collected in a real frequency (ω) space,
but in the space of the force field eigenvalues λ (λ)ω2).
This approach brings a tremendous simplification of the
process, because it eliminates the problems associated with
molecular dynamics, such as the temperature definition,
normal mode energy-redistribution,20 and the need to hold
the large force field matrix in memory. For giant molecules
this method yields accurate relative absorption and VCD
intensities and the exact IR/VCD ratio in a fraction of
computer time needed for the direct diagonalization routines.
The principal drawback is that the exact relative intensity
distribution is somewhat dependent on the initial guess, but
this can be circumvented by averaging of more trajectories.
While the absolute intensities retain a small amount of error,
this does not represent a major problem in the practical
applications.

In this report, we briefly review the process of generating
the theoretical IR and VCD spectra within the harmonic
approximation. Most of the Method section is devoted to
the detailed description of the new algorithm. Finally, the
numerical stability and convergence tests and comparisons
with other diagonalization methods for model polypeptide
IR and VCD spectra simulations are presented and discussed.

2. The Method

Vibrational Analysis. In the harmonic approximation21

the vibrational Hamiltonian can be written in terms of nuclear
momenta Pi and displacements from equilibrium positions
of N atoms ∆Ri (i ) 1..N) as
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where Mi are nuclear masses, pi ) Pi/(Mi)1/2 qi ) (Mi)1/2 ∆Ri,
and fij ) Fij/(MiMj)1/2 are the respective mass-weighted
momenta, coordinates, and force field. The harmonic force
field (referred to also as the Hessian or Cartesian force
constant matrix) is formed by the second energy (ε) deriva-
tives
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The multidimensional problem is solved by a transformation
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where E is the identity matrix and the transformed force field
becomes diagonal
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where δij is the Kronecker symbol (δij ) 1 for i ) j, δij )
0 for i * j), and ωi are the normal mode angular frequencies.
The vibrational Hamiltonian then becomes a sum of one-
dimensional harmonic oscillator Hamiltonians hi
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Consequently, the equations of motion for the nuclei reduce
to a set of 3N uncoupled one-dimensional Schrödinger
equations, energies, and wave functions of which can be
obtained analytically.21 (Equation 4 comprises also the
translational and rotational modes not visible in the spec-
trum.) In particular, frequencies of the fundamental
vibrational bands are equal to ωi. Solving the vibrational
problem therefore reduces to the diagonalization of the force
field matrix f (eq 3).

The intensities of the absorption and VCD bands of a
fundamental transition 0fυ are proportional, respectively,
to the dipolar (D) and rotational (R) strength defined as D0υ

) µ0υ ·µυ0 and R0υ ) Im µ0υ ·mυ0, where µ0υ is the electric
and the m0υ is the magnetic transition dipole moment, υ )
1..3N. These are obtained as22
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where pi is the atomic polar tensor (APT), and ai is the atomic
axial tensor (AAT) with Cartesian (�)x,y,z) components
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Sυi ) ∂Ri/∂Qυ ) sυi/�Mi is the direct (not mass-weighed)
Cartesian-normal mode transformation matrix, and p is the
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Planck constant.23 For calculation of the infrared absorption
and VCD intensities it is therefore necessary to compute the
derivatives of the molecular electric (µ) and magnetic (m)
dipole moments.

The Algorithm. As stated in the Introduction, for very
large molecules the direct or iterative procedures for finding
the eigenvalues and eigenfunctions of the force field matrix
f (eq 3) become impractical. An alternative means is to use
the force field matrix to propagate an arbitrary test vector in
time. The process is started by a generation of a random set
of M unit vectors σ1...σM at the Cartesian coordinate 3N-
dimensional space. These can be thought of as linear
combinations of the eigenvectors of the force field matrix,
σi ) ∑j)1

3N cijsj. Then we introduce time-dependent vectors σi(t)
) ∑jcijsjeiλjt. Note that t referred to as the fictitious “time”
has units of second2 (in this work corresponding atomic units
are used) since λj is not a frequency, but λj ) Λjj ) ωj

2.
Using eq 3 we get f�RsjR ) λjsj�, and the propagation of σi

can be approximated for small time intervals dt as

σi(t+ dt)= σi(t)+
dσi(t)

dt
dt+ 1

2

d2σi(t)

dt2
dt2 ) σi(t)+

∑
j

icijλjsje
iλjtdt+ σi

(2) ) σi(t)+ if.σi(t)dt+ σi
(2) (7)

In the current implementation the second-derivative correc-
tion σi

(2) is not calculated directly, as this would involve a
computationally impractical formation of the square matrix
f2. Instead, we use an approximate formula, σi

(2)(t) =
0.5(σj i(t-2dt) + σj i(t) - 2σj i(t-dt)), where σj i are the vectors
propagated according to eq 7 with finite time steps dt and
normalized afterward. The involvement of σ(2) appeared very
beneficial for the quality of the results by allowing for a
significant increase of dt. Only a minor influence of a third-
derivative correction introduced in a similar manner was
observed; therefore, the third derivative was not used by
default.

In principle, we can construct autocorrelation functions

Ci(t)) σi(t)·σi )∑
j
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2eiλjt (8)

and obtain the eigenvalues as peak positions of its Fourier
transform Ii(λ)
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In a similar way, we can define M time-dependent electric
and magnetic dipole moments as

µi�(t))∑
j)1
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with corresponding Fourier transforms

µi(λ))∫µi(t)e
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For a finite-time propagation the δ-functions in (9) can
be thought of as finite-width peaks. In fact, in the actual
simulations the transforms (eq 11) were calculated for a
discrete set of vibrational frequencies ωi (ωi ) λi

2), typi-
cally spaced by 1 cm-1 from 100 to 4000 cm-1. Instead of

the usual fast Fourier transformation the Fourier sums (9.
11) were incremented at each step, which did not significantly
increase the total time but enabled to avoid storage of the
entire trajectory in computer memory. To avoid too narrow
peaks, at each time step the transforms were additionally
convoluted with a dispersion function in the form of either
Lorentzian, (2/π∆)/{1+[2(ω-ω0)/∆]2}, or Gaussian, 2(ln
(2))1/2exp {-[2(ln (2))1/2(ω-ω0)/∆]2}/(∆�π), peaks; ∆ is
the full width at half-maximum.

Performing the integration (11), from (8) and (10) we
obtain for the electric dipole µi(λ) ) 2π∑υciυ∑kpksυkδ(λυ-λ).
Thus for each resolved transition υ the integration of µi(λ)
would yield a spectral intensity proportional to the sum
∑kpksυk (cf. eq 5a). But the expansion coefficients ciυ are
unknown. They can in principle be obtained from eq 9, but
this is impractical as unrealistically long accumulation times
are required to resolve modes that are very close in
frequency. Instead, we use a numerically more stable
procedure and directly calculate the dipolar strengths aver-
aged over the M σ-vectors as
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where we multiplied the finite-width “δ-functions” as
δ(λυ-λ)*δ(λυ′-λ) ) Kδυυ′δ(λυ-λ), where K is a constant
dependent on the actual shape of δ. For the Gaussian shapes,
for example, K ) 1/(∆�2π), ∆ ) 2ωd, where d is the
bandwidth. For a random initial distribution of the coef-
ficients 〈ciυ

2〉 ) (3N)-1, where N is the number of atoms.
Analogously, we get for the rotational strength

〈R(λ)〉 )M-1 ∑
i)1,M

Re µi(λ)·Re mi(λ)= (3N)-1K(2π)2M-1 ×
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Thus, if we allow for a small inaccuracy of the absolute
intensity scale given by the variance of the peak shapes (“δ-
functions”, which may deviate from the Gaussian peaks),
we obtain precise relative absorption and circular dichroism
peak intensities with correct ABS/CD ratios from eqs
12a-b.

Matrix Storage. The storage of the Hessian matrix F
requires (3N)2 words of memory. Although this is usually a
minor problem for modern computers, the handling of the
matrix may still become impractical for systems with several
thousands of atoms. Moreover, because of the locality of
vibrational interactions,24 an overwhelming majority of the
matrix elements is negligible. Particularly if the force field
of a “big” molecule is constructed from smaller fragments,
as in the Cartesian tensor transfer (CCT) method,13 for linear
biopolymers (nucleic acids, peptides) only a diagonal-like
band of the matrix is formed, and the required amount of
memory scales linearly with N. Therefore, in the current
implementation, for each line l of the matrix we store only
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nl nonzero nonredundant elements Flk, k ) r1...rnl (using
Fij)Fji) and the corresponding row-indices ri. For conven-
ience, diagonal elements Fii are divided by two; then
multiplication of a vector A by F, B ) F.A, can be realized
by a simple algorithm when only one line of F at a time is
read from the disk and stored in computer memory:

1. Zero-out B, l ) 1.
2. Read-in l-line of F.
3. For all j∈ (r1...rnl), update Bj ) Bj + FljAl and Bl ) Bl

+ FljAj.
4. Increment l ) l + 1, if l < 3N go to 2.
The storage required for the atomic axial and polar tensors

cannot be reduced; however, this scales linearly with N and
thus does not limit computations of even considerably large
molecules.

Model Systems. The method was tested on model periodic
systems, the polyglycine peptide in an R-helical conforma-
tion, and a five-strand antiparallel �-sheet 5 × Ac-(Ala)12-
Me, shown in Figure 1. The periodicity facilitated the
construction of a reasonably accurate force field based on
ab initio computation of smaller fragments. For the R-helix
a peptide heptamer (containing 7 peptide bonds), Ac-[Gly]6-
Me, in the same conformation was subjected to the normal
mode optimization routine25 with modes within -300.300

cm-1 fixed. Thus the higher-frequency mode visible in the
spectra could be relaxed under a minimal change of the
geometry. Similarly for the �-sheet, a smaller 3 × Ac-(Ala)2-
Me fragment26 was used as a source of the force field and
the intensity tensors, the geometry of which was optimized
with fixed main chain torsion angles. The BPW91 level of
approximation27 and 6-31+G** (R-helix) and 6-31G** (�-
sheet) bases were used for the calculation with the aid of
the Gaussian program package.28 For the optimized geom-
etries, the harmonic force field and intensity tensors were
computed at the same level by Gaussian and transferred on
the polymer by the Cartesian tensor transfer techniques.13

3. Results and Discussion

Time Step Dependence. First we have investigated the
sensitivity of the method to the size of the integration time
step. Previous simulation of the vibrational spectra using
classical molecular dynamics trajectories revealed a signifi-
cant dependence of the Fourier-transformed frequencies on
the integration steps.20 This is true also for the current
method, as can be seen in Figure 2 where the dependence is
plotted for a low (carbonyl stretching) and high (N-H
stretching) frequency band of the (Gly)130 system. The “time”
variable, the force field, and the eigenvalues Λii are given
in atomic units; then we can obtain the angular frequency ω
(wavenumber) in cm-1 as ω ) 1302.8�Λii. We can see that
the dependence is much sharper for the N-H stretching band,
where the time step dt of 0.05 (au) introduces a huge error
of ∼200 cm-1. However, this can be easily fixed by keeping
the step small as with dt ∼0.01 an acceptable error is
obtained even for the higher-frequency band, while the
propagation gives virtually the exact value for the carbonyl
stretch. Note that harmonic frequencies of the higher-
frequency hydrogen stretching transitions computed by
quantum chemical methods are regularly by up to 10% larger
than the experimental transitions,29 which makes a 1%
inaccuracy (∼10-30 cm-1) in the vibrational frequencies
acceptable. Shorter steps are not desirable as they make the
computation unnecessarily longer.

Band Width Convergence. As pointed out in the Method
section, the consequence of the finite interval of time
propagation is that spectral peaks are not infinitely sharp but
have finite widths. Therefore, it is necessary to establish the
number of the time propagation steps needed to obtain
sufficiently narrow bands. The dependence of the absorption
and VCD spectra on the number of the propagation steps
plotted in Figure 3 reflects the obvious behavior of the
Fourier transformation where the peak width is inversely
proportional to the evolution time. However, as the square
of the frequency is transformed, we can observe that the
higher-frequency bands become narrower than the lower-
frequency ones. This is shown quantitatively in Figure 4,
where the spectral line widths for the CdO (1718 cm-1) and
N-H (3505 cm-1) stretching bands are plotted as functions
of the number of propagation steps. Needless to say, for any
given region of the spectrum, an arbitrarily narrow width
can be obtained by a sufficiently long simulation time.
Overall, already at the early stages of the propagation correct
relative absorption intensities are obtained. The converged

Figure 1. The model systems, variable-length polyglycine in
the R-helical conformation (top) and the 5-strand antiparallel
�-sheet with Ac-(Ala)12-Me strands (Ac)acetyl, Ala)alanine,
Me)methyl, bottom).

Figure 2. The dependence of the frequency on the integration
time step (fictitious time in atomic units, see text), for a N-H
stretching (high frequency - top) and CdO stretching (low
frequency -bottom) vibrational bands of Gly130.
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VCD shapes require a longer time; for example, the
conservative carbonyl stretching split-band at ∼1718 cm-1

stabilizes at ∼20000 steps. For a typical IR or VCD
experiment where the inhomogeneous band widths seldom
become smaller than ∼10 cm-1 a propagation with ∼20000

steps thus already provides the desired spectral shape in the
CdO stretching region.

Trial Vector Averaging. With a sufficiently small inte-
gration step the procedure yields the correct vibrational
frequencies. However, the spectral intensities resulting from
a particular propagation run differ as a consequence of the
randomly chosen initial vectors σi. To obtain a stable
solution, independent of the choice of the initial conditions,
it is necessary to average several such runs. The convergence
of the relative IR and VCD band intensities on the number
of the initial vectors σi is explored in Figure 5. An
instantaneous convolution with the Lorentzian bands was
performed during the simulation in order to achieve a
constant bandwidth of 10 cm-1. The resultant spectra of
(Gly)130 for M ) 1, 5, 10, and 50 are compared with the
exact result based on the direct Householder diagonalization.
While a randomly selected vector (M ) 1) provides
unrealistic relative intensities, even with some wrongly
predicted VCD signs, the spectral profile quickly stabilizes,
and for M ) 50 the spectra are practically indistinguishable
from the exact intensities. As explained above, the minor
underestimation of the absolute intensities can be explained

Figure 3. The dependence of the absorption (left) and VCD (right) spectra of Gly130 on the number of the propagation steps
(indicated in the left panel, for 50 average spectra).

Figure 4. The dependence of the full widths at half-maximum
of the two selected peaks, the N-H stretch (3505 cm-1) and
CdO stretch (1718 cm-1) in Gly130 on the number of the
propagation steps. Note, that the y-scale is logarithmic.

Figure 5. Absorption (left) and VCD (right) spectra simulated
(from top, for 2000 propagation points) for 1, 5, 10, and 50
random vector averages as compared to the exact results
obtained by the direct diagonalization (bottom traces), for
Gly130.

Figure 6. The dependence of the time (in seconds, on a
logarithmic scale) needed to diagonalize the force field matrix
on the number of atoms in the (Gly)N polymer. (Detailed
description of each method is given in the text.)
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by the approximation for the averaging and the δ-function
multiplication.

CPU Time Scaling. As the number of nonzero matrix
elements is approximately proportional to the number of
atoms N, and the matrix-vector multiplication in eq 7 required
for the propagation σi involves a number of multiplications
proportional to N2, we can expect practical scaling between
N1 and N2. This is confirmed by the time dependence on the
number of atoms for (Gly)K, K ) 28...0.642 plotted in Figure
6. The detailed scaling of the disk-based time-propagation
procedure is dependent on the disk fragmentation and
detailed memory management; therefore, two computers with
the same processors (“computer I and II” in the Figure 6,
AMD64 1 GHz) provided slightly different dependencies.
Curiously, a larger force field matrix can occasionally even
yield a shorter simulation time. We can see that the Fourier
method scales much more favorably than the other proce-
dures. For the comparison we used our own implementation

of the iteration (Davidson) method based on the Mitin’s
modification of the algorithm,26 while a standard code was
used for the direct (Householder) diagonalization, expanded
by the possibility of correcting the ab intio force fields for
the translational and rotational invariance.15 In Figure 6 we
can see that the complete Davidson diagonalization is faster
than the time propagation up to N∼500, and then the time
quickly grows to immeasurable values. The direct House-
holder diagonalization is more efficient up to N∼1500, which
can be somewhat improved by skipping the projection of
the zero-vibrational modes (rotations and translations) from
the force field. However, because of the intrinsic N3

dependence and huge memory requirements of the direct
method, the propagation in the fictitious time becomes the
only method usable for N > 3000.

Large Peptide Systems. We have applied the Hessian
propagation to simulations of the IR and VCD spectra for
the �-sheet poly alanine segment (660 atoms) and the poly

Figure 7. Absorption (left) and VCD (right) spectra of the 660 atom �-sheet simulated by the time propagation (FT, for M ) 100
and 1000 trial vectors) as compared to the exact results obtained by the direct diagonalization (bottom trace); the 5 cm-1 bandwidth
was used in the simulations.

Figure 8. Absorption (left) and VCD (right) spectra of the 14000 atom poly glycine R-helix simulated by the time propagation
(for M ) 100 and 1000 trial vectors, 8 h and 3.5 days of the computer time was needed, respectively) as compared to the exact
result obtained by the Davidson method (finished in 9 days and 15 h, only the CdO stretching was included). The spectra were
normalized to one amide, and 5 cm-1 bandwidth was used. For the Davidson method, positions of the dipolar and rotatory
strengths of individual CdO stretching transitions are indicated in the inset graphs.
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glycine R-helix containing 14000 atoms (Figure 1). The
absorption and VCD spectra for these two protein models
simulated for 20000 time steps are plotted in Figures 7 and
8. The �-sheet spectrum could be compared to that obtained
by the Householder diagonalization, while the reference
R-helical spectrum was calculated using a limited Davidson
diagonalization. The Davidson method provided 2000 vi-
brational CdO stretching mode frequencies, starting from
the highest value, when hydrogen masses were arbitrarily
increased to 10 g/mol, not to interfere with the carbonyl
vibrations. For both systems, we can see that the time
propagation method faithfully reproduces the relative IR
intensity and VCD sign patterns, although a relatively large
number of the trial vectors is needed for accurate results.
Particularly, for the R-helix, the 100-vector average (Figure
8, top) is not sufficient for the VCD simulation as it provides
a net positive signal instead of the split carbonyl band. The
results nicely confirm the ability of the IR and VCD
spectroscopies to distinguish various peptide and protein
secondary structures: the high-frequency IR carbonyl stretch
components (1660-1740 cm-1, Figure 8) and the associated
weak VCD signal are characteristic for the �-sheet forms,30

while a single IR carbonyl band and an intense, positive VCD
couplet (i.e., positive to negative, from low to high fre-
quency) correspond well to the experimental data from helix-
rich proteins.3

The absorption and VCD spectra of regular structures,
particularly the poly glycine R-helix, originate in a few
semidegenerate transitions. The positions of the most intense
peaks are shown in the insets in the bottom panels of Figure
8. Most of the intensities come from a frequency interval
about 0.5 cm-1 wide. As discussed previously, this ac-
cumulation of spectral intensities reflects the translational
symmetry of the structure and phonon-like delocalized
normal modes.5 Therefore, the propagation method is capable
of correctly reproducing the overall spectral shape arising
from the specific intensity distribution also among nearly
degenerate modes. However, the degeneracy of the CdO
stretching transitions requires a relatively large number of
the trial vectors (∼1000) to be averaged, which leads to
longer computational time.

Another limitation of the present approach is the restriction
to the harmonic force field, although diagonal anharmonic
effects and Fermi resonances might be important for many
spectroscopic phenomena.21,31 In general, the wave function
propagation and Fourier transformation of an autocorrelation
function is suitable for obtaining transition energies of any
Hamiltonian;32 the implementation for large molecules,
however, exceeds the scope of the present work.

4. Summary

The force-field mediated time propagation of trial vectors
proved to be a stable algorithm for the generation of
vibrational spectra. It can offer important computational
advantages over standard matrix diagonalization methods for
very large systems. The method yielded accurate IR and
VCD intensities for model systems, provided that the time
propagation was averaged over a sufficient number of the
trial initial vectors. As a drawback, the procedure provides

only approximate absolute spectral intensities. However, this
is seldom a problem in most applications, since the absolute
IR and VCD intensities are difficult to measure, and the
structural properties are deduced mostly from the spectral
shapes. Because of the modest computer time and memory
requirements the time propagation thus represents a conve-
nient means for modeling of vibrational properties of large
molecular systems.
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