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Abstract: On model examples, we compare the performance of the vibrational self-consistent field, variational,

and four perturbational schemes used for computations of vibrational energies of semi-rigid molecules, with empha-

sis on the numerical stability. Although the accuracy of the energies is primarily dependent on the quality of the

potential energy surface, approximate approaches to the anharmonic vibrational problem often do not converge to

the same results due to the approximations involved. For furan, the sensitivity to variations of the anharmonic poten-

tial was systematically investigated by adding random noise to the cubic and quartic constants. The self-consistent

field methods proved to be the most resistant to the potential variations. The second order perturbational techniques

are sensitive to random degeneracies and provided the least stable results. However, their stability could be signifi-

cantly improved by a simple generalization of the perturbational formula. The variational configuration interaction is

practically limited by the size of the matrix that can be diagonalized for larger molecules; however, relatively fewer

states need to be involved than for smaller ones, in favor of the computing.
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Introduction

Computations of the vibrational molecular energies beyond the

harmonic limit appear necessary for many important systems

including biologically relevant molecules,1,2 solute-solvent com-

plexes,3 and industrially important compounds.4 Particularly, the

involvement of the anharmonic part is imperative for studies of

spectral temperature dependencies and molecular stability.5 For

semi-rigid molecules many methods have been developed,6

based primarily on perturbation calculus7–9 or vibrational self-

consistent field (VSCF).10–12 Except of small systems, nuclear

potentials (potential energy surfaces) used in these computations

as input parameters are known only approximately as they usu-

ally depend on the ab initio approximation of the electronic

problem. The errors in the potential frequently transfer differ-

ently into the errors of the vibrational energies if also approxi-

mate vibrational schemes are used. Therefore, in this study, we

try to compare various approaches and concentrate on the stabil-

ity of the vibrational energies obtained by various methods. It

turns out that small and big molecules behave differently. The

latter are notoriously affected by the random degeneracies of the

vibrational energy levels, which inhibits application of the per-

turbation calculus. For such cases we propose a generalization

of the second-order formula as outlined below. Our implementa-

tions of the VSCF, variational (vibrational configuration interac-

tion, VCI), and second-order perturbation (PT) methods in one

program package enabled us to make a consistent comparison.

In the next section working equations for the VCI, VSCF,

and PT approaches are outlined. Then their performances are

tested and discussed for two and three-dimensional analytical

potentials used for calibration of the anharmonic calculus previ-

ously.12 These tests are followed by applications to real mole-

cules, furan, formaldehyde, and �-pinene. For furan, systematic

noise was added in various ways to the ab initio potential so

that the numerical stability of the vibrational algorithms could

be analyzed. Finally, dependence of VCI energies on the basis

set size is analyzed.
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Methods

For semi-rigid molecules the nuclear potential V can be

expanded in a Taylor series around the equilibrium geometry.

For example, in the vibrational normal-mode coordinates (Qi)

and the atomic units,

VðQ1; . . . ;QMÞ ¼
XM
i¼1
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where M is the number of the modes.13 For simplicity we neglect

other anharmonic and rotation-vibration interaction terms stem-

ming from the kinetic energy operator. To approach the solution

of the Schrödinger equation,
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we implemented the VSCF, PT, and VCI approximations as fol-

lows.

Vibrational Self-Consistent Field

Following the usual procedure1,10 the wavefunction was

expressed as a product of one-dimensional parts,

�ðQ1; . . . ;QMÞ �
YM
i¼1

 iðQiÞ; (2)

and the potential as a sum of effective potentials,

VðQ1; . . . ;QMÞ !
XM
i¼1

viðQiÞ; (3)

with
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QM

j¼1; j6¼1

 jðQjÞ
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:

Note, that a general VSCF approach is not dependent on the

Taylor expansion (1) of the potential; the Taylor form; however,

was used here for the sake of comparison with the other meth-

ods. Under the assumption of the separability the Schrödinger

equation divides into a sum of effective 1D equation,

� 1

2

@2

@Q2
i

þ viðQiÞ
� �

 iðQiÞ ¼ ei iðQiÞ; (4)

where i ¼ 1 � � �M, and can be easily solved in a harmonic oscil-

lator basis. Because of the dependence of the effective potentials

on the resultant wavefunction, the solving has to be repeated

‘‘self-consistently’’ until the energy values (ei) stabilize. Also, a
self-interaction correction term has to be subtracted from the

energy sum, in order to obtain molecular energy of a physical

relevance,

E ¼
X

i¼1...M

ei � ðM � 1Þh�jVj�i: (5)

As the excited states can be treated only approximately within

the VSCF scheme two alternate approaches were implemented.

First, only the lowest-energy (ground) states ( i) were used for

determining the potential in eq. (3) (which is referred to as

gVSCF), while in the second approximation (‘‘eVSCF’’) excited

states were included in the averaging. Thus, in the gVSCF

method, resultant set of excited states is orthogonal, but not self-

consistent. On the contrary, in eVSCF the self-consistency holds

at the expense of the orthogonality. The gVSCF computation

requires only one set of the self-consistent iterations for the

ground state, while this has to be repeated for each excited state

in eVSCF.

Second-Order Perturbation

The cubic and quartic terms in eq. (1) are often small (in terms

of their influence on the energies of interest) and, with respect

to the harmonic solutions, can be treated as a perturbation poten-

tial directly. Also for the VSCF wave functions, the perturbation

can be defined, in analogy to the electronic MP2 theory,14 as a

difference between the exact and the VSCF potential,

W ¼ V �
X

i¼1...M

vi: (6)

Note, that for VSCF formula 5 is correct to the first order. A

second-order correction can be obtained from a standard pertur-

bation calculus as

En
ð2Þ ¼

X
m6¼n

Wnmj j2
En � Em

; (7a)

with Wnm ¼ hnjWjmi. The division by the energy difference in

eq. (7a) makes the second-order perturbation (PT2) numerically

unstable because of random degeneracies. Simple treatment

based on separation of the degenerate and non-degenerate states

was proposed previously.15 Here we explore a differently modi-

fied algorithm, replacing the PT2 formula 7a for all states by

En
ð2Þ ¼ 1

2

X
m 6¼n

�
Em � En þWmm �Wnn

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEm � En þWmm �WnnÞ2 þ 4jWnmj2

q �
ð7bÞ

where the þ sign holds for En > Em and �sign for En < Em. It

can be easily verified that the formula 7b provides exact solu-
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tions for two-state (n,m) system including the degenerate case,

while for small perturbations (W ? 0) its polynomial expansion

is equal to 7a up to the second powers of W.

Vibrational Configuration Interaction

If the wavefunction is expressed as a sum of harmonic oscillator

functions, we obtain a solution of the Schrödinger equation

directly by the Hamiltonian diagonalization. As this method is

limited by the size of the matrix that must be diagonalized,

number of the harmonic states (j) must be restricted. They

can be selected, for example, based on of the ratio

� ¼ Wfj=Ef � Ej

�� ��, bigger than given limit for at least some

ground or fundamental state f. Although indirect iterative diago-

nalization methods16 (not used in the present study) enable to

increase the number of the states significantly, for larger mole-

cules some selection is always necessary. In addition, the speed

of the diagonalization, mostly scaled as M3, becomes the limit-

ing factor for such cases. For our tests we systematically

increased the number the states varying the perturbation parame-

ter �. Because the force field (1) was expanded up to the quartic

terms, states with a maximum of five excitations were consid-

ered in VCI, similarly as for the methods described above. For

example, a non-zero force constant d1123 in a three mode system

can make the matrix element h001jVj212i non-zero, mediating

thus an interaction of 1� excited normal mode number 3 (j001i)
and the state with 2, 1, and 2 excitations on modes 1, 2, and 3

(j212i). By similar arguments we could deduce that a six-time

excited state (e.g. j213i) would have probably a negligible effect

on the j000i ? j001i fundamental transition, etc.

Computations

For equilibrium geometries of the model molecules analytical

second derivatives were calculated by the Gaussian program,17

while the third and fourth derivatives were obtained by a numer-

ical differentiation, using a step of 0.025 Å (0.07 Å for �-pi-
nene). The normal mode derivatives were calculated from the

Cartesian constants. The geometries were obtained as local

energy minima for each approximation used, that is for the

Becke3LYP(B3L)18,19/6-311þþG**, B3L/6-31G*, and MP2/6-

311þþG* methods. Only semi-diagonal quartic constants with

two and more identical indices (e.g. dijkk) were considered.

Anharmonic interactions of some lowest strongly anharmonic

modes were neglected in the computations (one for furan, ring

torsion calculated at 610 cm�1, five for �-pinene, CH3 rotation,

and wagging modes20 within 0–229 cm�1).

Results and Discussion

Model Potentials

To test our programs as well as to investigate the behavior of

the different anharmonic approaches for small systems, we

selected model two- and three-dimensional potentials introduced

previously.10–12 In Table1, state energies computed using the

harmonic, gVSCF, eVSCF, and perturbational [eq. (7a)] methods

are compared with (exact) VCI results. We see that any method

involving the anharmonic part of the potential reduces the error.

The VSCF methods are slightly inferior to the simple (harmonic)

perturbation theory. However, as found also in previous stud-

ies,12 application of the PT2 theory within the VSCF reduces

the overall error significantly. For the ground states (j00>,
j000>) the gVSCF and eVSCF approaches obviously provide

the same numbers. For the excited states the plain eVSCF

approach gives consistently smaller errors by *3–50% than

gVSCF. The difference is even emphasized when the self-con-

sistent methods are coupled with the perturbational approach, as

the eVSCF/PT2 errors of excited energies are several times

smaller than for gVSCF/PT2. This may reflect the fact that the

gVSCF/PT2 approach bases the perturbation expansion on

unperturbed ground state wave functions, not variationally opti-

mal for the excited states. However, even the gVSCF/PT2 calcu-

lus seems to be significantly better than the direct application of

the perturbation theory to harmonic solutions.

Ab Initio Potential Variation

To investigate possible effects of usual ab initio potential varia-

tions on the vibrational energies, we calculated three different

vibrational potentials of furan: in vacuum and with the

COSMO21,22 solvent models, using the B3L approximation, and

in vacuum at the MP2 level, all with the 6-311þþG** basis.

No significant differences in the equilibrium geometries were

observed, bond lengths varied less than by 0.01 Å, which con-

trasts with the force field changes. An inspection of the cubic

and quartic field, for example, revealed that for larger constants

the variations caused by the solvent inclusion are typically

smaller than about 5%. For small constants (smaller than about

10% of the maximal cubic or quartic term), however, no correla-

tion between the vacuum and COSMO values was observed.

Supposedly these differences are largely numerical artifacts of

the calculation and do not reflect physical changes that occur in

the potential when the molecule is submerged into water. In any

case, for computation of the vibrational energies beyond the har-

Table 1. State Energies Obtained for Two Model Potentials by

Various Methods.

Method

Statea

j00i j20i j000i j010i j101i

E-E(VCI)

Harmonic part 0.00837 0.05313 0.00625 0.02814 0.02328

gVSCF 0.00084 0.00564 0.00128 0.01259 0.00793

eVSCF 0.00084 0.00546 0.00128 0.00618 0.00478

Harmonic/PT2b 0.00031 0.00469 0.00013 0.00103 0.00116

gVSCF/PT2b 0.00001 0.00045 0.00002 0.00036 0.00053

eVSCF/PT2b 0.00001 0.00008 0.00002 0.00012 0.00009

E(VCI)

VCI 0.99163 2.03085 1.49375 2.77186 3.17672

aQuantum numbers are specified for the Henon–Heiles two- and Chris-

toffel three-dimensional dimensionless potentials, as implemented in

Refs. 11 and 12 (there is a misprint in the definition of the 3D potential

in the latter reference, for this case the original work11 was followed).
bFormula 7a.
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monic limit we obviously desire a method that does not unrealis-

tically magnify such a noise. The calculated average frequency

differences are summarized in Table 2. Apparently, both the

gVSCF and eVSCF methods provide rather conservative

estimates of energy changes under the force field variations

(B3L ? B3L/COSMO or B3L ? MP2). The changes are close

to those obtained by the VCI method, in terms of systematic and

absolute deviations. Interestingly, while the VCI maximal devia-

tion (30 cm�1) is comparable with that obtained by VSCF

(29 cm�1) for the B3L ? B3L/COSMO force field change, the

VCI method leads to a notably larger maximal deviation of

115 cm�1 for the B3L ? MP2 variations. Further increase of

the number of the states involved in VCI (from 1000 to 4000)

brought only minor energy changes of the order of 1 cm�1.

More importantly, direct application of the perturbation for-

mula 7a leads to rather unrealistic variations of the energies; this

is apparent namely from the values of the absolute and maximal

deviations (up to 179 cm�1 for harmonic/PT2). The gVSCF/PT2

combination seems to provide somewhat more stable results

than harmonic/PT2. Because the average deviations remain rea-

sonable we can conclude that the PT2 method even for such a

simple molecule effectively generates random errors in calcu-

lated energies due to near degeneracies. The erratic behavior of

the PT2 method; however, can be eliminated by using the gener-

alized formula 7b. Indeed, in this case, the frequency changes

given in parentheses in Table 2 are more realistic and also con-

sistent with the VSCF and VCI values.

An example of the effect of the ab initio potential variation

on the furan modes 2–7 is depicted in Figure 1. The B3L and

MP2 vacuum force fields are compared. For modes 2 and 7, out

and in plane deformations of the carbonyl five-member ring

respectively, the two ab initio methods provide similar force

fields. However, the harmonic approximation and the DFT

(B3L) method are known to be inadequate for an exact descrip-

tion of the C��H out of plane bending in the neighborhood of a

conjugated electronic �-system. For modes 3–6 involving this

motion, similarly as for the N��H bending in the amide group,23

rather complicated mixing of the � and � electrons takes place

and the MP2 computation may be more appropriate. Already the

harmonic DFT and MP2 frequencies for the four bending modes

differ significantly, up to 130 cm�1 for the mode number 6.

This nature of the vibrations clearly transmits differently to the

other vibrational differences given in Figure 1. The nearly har-

monic modes 2 and 7, where additionally the DFT and MP2

Table 2. Average Differences of Vibrational Energies of the Fundamental Transitions in Furan

Obtained with the B3L, MP2, and B3L/COSMO (H2O) Force Fields, as Calculated by Various

Vibrational Methods.

Method

E(B3L/COSMO)-E(B3L) E(B3L)-E(MP2)

�AVE j�jAVE j�jMAX �AVE j�jAVE j�jMAX

Harmonic �3 12 25 3 31 127

gVSCF �6 15 29 �18 23 59

eVSCF �6 15 29 �18 22 57

Harmonic/PT2a �5 (�7) 25 (15) 101 (27) 4 (�13) 46 (31) 179 (76)

gVSCF/PT2a �8 (�7) 14 (15) 26 (26) �14 (�16) 20 (22) 61 (61)

eVSCF/PT2a �14 (�2) 21 (20) 105 (79) �11 (�21) 25 (26) 94 (88)

VCIb �9 14 30 �25 32 115

�AVE, j�jAVE, and j�jMAX: average plain, absolute, and maximal deviations in cm�1.
aFormula 7b was used for the values in parentheses.
b1000 states (� > *0.001).

Figure 1. Differences between furan vibrational energies calculated with the B3L and MP2 force

fields, for fundamental transitions 2–7, as obtained by the 10 various approaches to the vibrational

problem indicated at the right hand side. [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]
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force fields are similar, are not affected by the treatment of the

anharmonic problem, while the modes 3–6 are more sensitive.

As an extreme case, the B3L frequency of mode number 3 is

bigger by 180 cm�1 than the MP2 value if calculated with the

harmonic/PT2 method (formula 7a). This is partially an artifact

of the perturbational calculus, but can be improved by the sim-

plified degeneracy treatment (formula 7b) only incompletely. A

similar situation occurs for the mode number 6. From the point

of the computational efficiency and reliability, it seems reasona-

ble to prefer the VSCF methods over the plain PT2, as the for-

mer quickly provides energy corrections mostly consistent with

the VCI results.

Random Potential Changes

To investigate the influence of the potential variations on vibra-

tional energies more systematically, the B3L/6-311þþG** furan

force field was arbitrarily modified. Firstly, random increments

were added to all anharmonic normal mode constants pertaining

to the dimensionless normal-mode coordinates qi, qi ¼ ffiffiffiffiffi
!i

p
Qi.

13

Increments within (�0.00031, 0.00031) hartree were used for

both cubics and quartics. As an alternate option, relative sizes of

the constants were modified up to 30% of their ab initio values.

Supposedly, both modifications are relevant, because smaller

anharmonic constants are usually produced with significantly

larger relative errors than the bigger ones. For each modification

type a series of 20 computations was performed, and the vibra-

tional energies obtained by various anharmonic methods were

compared with the unperturbed values.

The frequency changes caused by the two types of random

perturbations are summarized in Table 3. Similarly as for the

force field differences investigated in Table 2, the VSCF meth-

ods are least sensitive to the noise and tend to smooth the poten-

tial variations. Interestingly however, as can be seen in Table 3,

the behavior of the absolute and relative noise perturbations dif-

fer. For the former, the simple perturbation formula (7a) pro-

duces clearly worst artifacts, which can be removed by the

Table 3. Frequency Differences (cm�1) Caused by Random Noise in the

Anharmonic Potential (B3L/6-311þþG**) of Furan.

Method

Absolute noise ‘‘c 6 D’’
Relative noise

‘‘c � (1 6 D)’’

j�jAVE j�jMAX j�jAVE j�jMAX

gVSCF 20 84 11 123

eVSCF 22 96 12 180

Harmonic/PT2a 136 (81) 1538 (185) 12 (12) 141 (125)

gVSCF/PT2a 295 (83) 16245 (235) 16 (13) 501 (208)

eVSCF/PT2a 273 (94) 42285 (310) 23 (15) 567 (199)

VCIb 38 187 14 200

Averages for sets of 20 computations.
aFormula 7b was used for the values in parentheses.

Figure 2. Comparison of the errors of vibrational frequencies computed by different methods for B3L

(top) and MP2 (bottom) force field of formaldehyde (on the left) and furan (right hand side). Experi-

mental formaldehyde26 and furan27 frequencies were used as a reference, the 6-311þþG** basis used

in the force field computations. [Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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degeneracy correction (7b); the pure VSCF and VCI methods

remain the most stable. For the relative noise, the corrected per-

turbational calculus provides energy changes more in line with

the (supposedly correct) VCI values. The advantage of the com-

bined VSCF/PT2 over uncorrected harmonic/PT2 method

observed for the various ab initio force fields in Table 2 does

not seem to be conserved for the random noise perturbations

where the harmonic/PT2 approach appears slightly but consis-

tently more stable. The eVSCF/PT2 method is somewhat more

prone to the random noise than gVSCF/PT2, probably because

of bigger volatility of the excited states to the potential changes.

A problematic convergence behavior of the perturbation methods

with the VSCF was also observed previously;24,25 however, the

harmonic/PT2 computations may presumably exhibit similar dif-

ficulties as the degeneracies occur randomly.

Molecular Size

The numerical stability of the vibrational computations becomes

crucial for larger molecules. This can be seen in Figure 2 where

deviations of calculated (B3L/6-311þþG**) frequencies from

the experimental values26,27 of formaldehyde and furan are plot-

ted for individual fundamental transitions. The DFT (B3L) com-

putations presented at the upper part of the figure were repeated

with the MP2 force field and are plotted at the bottom. For

formaldehyde, similarly as for the model potentials mentioned

above, the anharmonic methods converge to common values,

mostly better than those obtained by the harmonic approxima-

tion. An exception is the highest-frequency mode where the

eVSCF method provides a frequency very close to the experi-

ment and the PT2 correction (7b) destroys this agreement. For

furan; however, various anharmonic methods provide very dif-

ferent results and often do not correct the harmonic values at all.

Especially for the lowest-frequency modes the perturbational,

but also pure VSCF methods, cause unrealistic frequency devia-

tions and thus the benefit of correcting the anharmonicity is

overshadowed by numerical artifacts. Obviously, the quality of

the computed frequencies is also dependent on the quality of the

ab initio force field, detailed analysis of which goes beyond the

scope of this work. Nevertheless, it should be noted that the

DFT methods are generally believed to be less sensitive to

potential variations, providing reasonable harmonic frequencies,

but are not able to capture the anharmonic effects to the same

accuracy as the accurate wavefunction methods (MP2,

CCSD(T)).28 Because of the great many of available DFT func-

tionals; however, it is difficult to generalize particular cases; for

example, a very good performance of the DFT for the anhar-

monic force fields was observed for azabenzenes recently.29 For

the formaldehyde presented in Figure 2 the MP2 computations

seems to be more appropriate, while for furan the B3L results

are closer to experiment.

Unlike for the perturbational and VSCF methods, accuracy of

the VCI energies can be systematically improved up to the

Schrödinger limit by increasing the vibrational basis set size.

Figure 3. Convergence of the VCI energies. For selected vibrational levels in water, formaldehyde,

furan and �-pinene the dependencies of the energy differences (cm�1) from the best calculation on the

number of the states involved are plotted. The B3L/6-31G** force fields and the maximum of 286, 2002,

2312, and 4000 vibrational functions (for H2O, H2CO, furan and �-pinene, respectively) were used.

[Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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Additionally, VCI fundamental and combination states can be

easily obtained at once. As aforementioned, however, only a

small fraction of the states formally interacting with the funda-

mental transitions of interest can be included for big molecules.

Therefore, in Figure 3, we look at the convergence of the VCI

energies with respect to the fraction of the 5-times excited vibra-

tional states needed for a balanced second-order correction to the

fundamental transitions in water, formaldehyde, furan, and �-pi-
nene. The energy differences (in %) are related to those obtained

with the biggest vibrational basis used. Clearly, if a small frac-

tion of the states is included, larger frequency deviations occur.

Combination transitions also included in the graphs behave simi-

larly as the fundamentals. Nevertheless the relative number of

the states needed for reasonably precise results is smaller for

larger molecules. For example, for water 16% of the states need

to be included to achieve errors smaller than 2%, while for form-

aldehyde and furan it is about 7 and 4% of all states, respec-

tively. It is obviously dangerous to approximate the dependence

for �-pinene in Figure 3, when only such a tiny fraction of the

states is considered. Nevertheless, relative frequency changes for

strongly anharmonic modes (not included) are even smaller, and

certainly the fraction of the states that must be considered in

order to produce comparable effect is again much smaller than

for the previous systems. Thus, from the point of practical com-

putations, application of VCI with reasonably-chosen basis set

may be meaningful even for larger molecules.

For �-pinene, as an example of a bigger molecule, we also

compare the performance of the vibrational methods in Table 4,

in terms of average deviations of calculated frequencies from

the experiment.30,31 The experimental values are preferred as a

fully converged VCI computation appears unrealistic, even with

the indirect diagonalization schemes.16 It is important to note

that (M þ 4)!/(5!(M � 1)!) states must be included to produce

the balanced second-order correction for the fundamental transi-

tions and the quartic potential (1), which makes the computa-

tional time of the diagonalization proportional to *(M5)3 ¼
M15. Thus we have to accept that the error of the VCI computa-

tion is caused by the basis set incompleteness. On the other

hand, all the other schemes lead to improvement of the har-

monic frequencies. Additionally, we can observe a different

behavior in the high and low(mid)-frequency region; in the for-

mer even the VCI is partially beneficial. On the contrary, for the

transitions in the mid ir, the convergence of the VSCF and PT2

is very convincing. The VSCF/PT2 (uncorrected) methods pro-

vide best performance and are followed by the harmonic/PT2

combination and the plain VSCF schemes. This corresponds to

the behavior of the benchmark potentials in Table 1 only

approximately; particularly the harmonic/PT2 method provided

much bigger energy errors than the VSCF/PT2 computations for

the benchmarks. For the �-pinene, the generalized PT2 formula

leads to further improvement of the energies and provides virtu-

ally identical results for both harmonic and VSCF functions. For

the high-frequency C-H stretching modes the behavior slightly

differ as the combination of the VSCF and perturbational tech-

nologies is beneficial only with the degeneracy correction.

Conclusions

We have implemented and extended some of the computational

methods suitable for calculating molecular vibrational energies

of semi-rigid molecules beyond the harmonic approximation. On

the model examples the performance was analyzed with empha-

sis on the numerical stability. The results indicated that the algo-

rithms behave differently under different circumstances and

should not be applied universally. For example, the VSCF pro-

cedure was found to be the most stable with respect to the minor

potential variations and also provided the anharmonic part of the

vibrational energies only with a relatively minor computational

effort. However, the combination of the VSCF with the standard

perturbational calculus was found beneficial only for nearly har-

monic problems, such as the benchmark potential or mid ir

vibrations of �-pinene. For small systems the eVSCF variant

provided somewhat better frequencies for the excited states than

the gVSCF. The usual second-order perturbational formula

seems to be almost unusable for everyday use due to the random

degeneracies. Thus, however, could be improved significantly by

the modification based on the two-state degenerate model. The

conventional VCI results are often hampered by incompleteness

of the basis set for bigger molecules, yet a relatively tiny frac-

Table 4. Errors of Fundamental Frequencies (cm�1) of �-pinene Obtained with the Becke3LYP/6-31G**

Force Field.

Method

C��H stretching Mid ir Entire region

�AVE j�jAVE j�jMAX �AVE j�jAVE j�jMAX �AVE j�jAVE j�jMAX

Harmonic 153 153 174 29 30 76 55 55 174

gVSCF 15 98 89 23 21 60 21 27 89

eVSCF �12 33 81 21 21 49 14 23 81

Harmonic/PT2a 10 (3) 34 (17) 116 (40) �9 (�4) 16 (10) 220 (46) �2 (�4) 37 (11) 605 (47)

gVSCF/PT2a 16 (�4) 37 (15) 140 (37) �2 (�3) 11 (9) 47 (45) 2 (�3) 17 (10) 140 (45)

eVSCF/PT2a 43 (�8) 98 (18) 605 (47) �14 (�3) 21 (9) 423 (44) �5 (�2) 19 (12) 220 (46)

VCIb 127 128 213 83 83 113 92 92 213

Frequencies were compared to experiment in Refs. 30 (mid ir region) and 31 (matrix experiment, C��H stretching region).
aIn parentheses, values obtained with the generalized formula 7b are given.
b4000 states included, with � < 0.02.
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tion of the basis states subjected to VCI may be already benefi-

cial and improves the agreement with the experiment.
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