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Optimization in the normal mode coordinates has been established as a useful tool for mod-
eling of vibrational spectra (J. Chem. Phys. 2002, 117, 4126). In this work the algorithm is
extended with the aid of harmonic penalty functions to allow for multiple restraints of ge-
ometry parameters, such as bond lengths, bond and dihedral angles, and for simultaneous
optimization of more molecules. Additionally, geometry optimization when atomic nuclei
are maintained on the constant electrostatic potential surface was implemented and its ap-
plications for solvent models are discussed. Model systems include small molecules, water
cluster, antiparallel β-sheet peptide containing intermolecular hydrogen bonds, periodic
α-helix and a parallel β-sheet segments. The normal mode method provided better numeri-
cal stability than the conventional redundant internal coordinates, especially for weakly
hydrogen-bonded systems, while the speed of the optimization was found similar as for the
Cartesian coordinates.
Keywords: Vibrational spectroscopy; Ab initio calculations; Geometry optimization;
Molecular modeling; Vibrational normal modes; Beta sheet, Peptides.

The search for equilibrium molecular structures is one of the principal tasks
in the computational chemistry1. As a good standard, optimization of the
molecular intrinsic (internal) or redundant intrinsic coordinates has been
established2. For special cases, however, different approaches are necessary.
For symmetric cyclic molecules, for example, only mediocre performance of
the Z-matrix internal coordinates has been observed if compared to
Cartesians3. Special attention must be taken if constraints are applied
within combined quantum/molecular dynamics methods4. Optimization in
the Cartesian coordinates is often more numerically stable, even though it
takes a longer time on average. Improvements of the step size selection
were found necessary for floppy molecules or systems with high average co-
ordination numbers5. Other popular choices include normal mode6, natu-
ral7,8, generalized natural9, force-constant weighted redundant10 and
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delocalized11 coordinates, or combinations of different types12,13. Direct
methods for the location of the lowest energy point on a potential surface
crossing were proposed14,15. Typically, methods based on internal coordi-
nates related to the Cartesian space by a non-linear transformation are
more efficient than the canonic normal modes16. However, this may be dif-
ferent for complex systems, like those containing weak hydrogen bonds,
where the normal mode coordinate optimization was shown to converge
more smoothly than the methods based on the internal coordinates17.

But rather than a search for general optimization method, this study con-
centrates on particular convergence properties of the normal mode algo-
rithm and simultaneous control of the normal mode and geometry parame-
ters. The reason for this is that the choice of the harmonic normal mode vi-
brational coordinates is essential and inevitable for simulations of infrared
spectra because they provide a direct control over the relaxation of vibra-
tional motions responsible for absorption intensities17. Additionally, by fix-
ing some normal modes, a reasonable degree of control could be achieved
also over geometrical parameters17. This enabled simulations of vibrational
circular dichroism spectra of nucleic acids18 and simplified modeling sol-
vent of solvent spectral response19,20. Similarly, the normal mode tech-
niques have to be utilized for localization of transition states and following
reaction paths21. However, direct simultaneous control over geometry and
vibrational coordinates has not been investigated yet.

Performance of the normal modes is generally comparable to Cartesian
coordinates as the two coordinate sets span the same linear vector space. In
simplest implementation they provide exactly same optimization trajecto-
ries, while they deviate for case when non-linear transformation operations
are used in the optimization cycle6. These involve, for example, the maxi-
mum step criterion or application of rational function optimization
(RFO)22,23 method involving trust radius estimation1. As shown below,
these factors can play a significant role for optimizations of strongly anhar-
monic systems, where the initial geometry deviates significantly from the
minimum, such as hydrogen-bond complexes.

The pure normal mode coordinate scheme, as introduced originally1,17,
does not enable one to fix specific internal coordinates, such as bond
lengths or angles. This handicap is removed in the present implementation,
where the method is also extended to allow for multiple coordinate restric-
tions. This may be useful, for example, for regular peptide structures, where
it is desirable to keep the torsion angles restricted to those found by X-ray
crystallography. Although the ultimate goal of molecular modeling still re-
mains to obtain consistently the true energy minimum of the studied sys-
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tems, many molecular properties are often simulated for smaller fragments
only. The fragments cannot be stabilized by longer-range “natural” inter-
actions, while an arbitrary stabilization via the constraints is often suffi-
cient for the modeling. For vibrational problems, it is obviously desirable
to maintain the mastering of the normal mode motion in addition to the
internal-coordinate control, allowing one to approach the one-dimensional
energy minima of important (typically higher-energy) modes visible in the
Raman or absorption spectra. A penalty-function approach24 is used for the
coordinate constraints, because of their simplicity and in order to achieve a
flexible degree of coupling between the normal and internal coordinates,
instead of the more common method of Langrange multipliers25 used for
the internal26 and Cartesian27 sets.

Another interesting problem is a search for the optimal geometry under
external electrostatic field. The dominance of the electrostatic forces in the
solute-solvent interactions has been recognized a long time ago28 and uti-
lized in many simplified solvent models29–31. Typically, the solvent envi-
ronment is modeled by a cavity created around the solute, while the field
comes from arbitrary charges distributed on the cavity surface. The size of
the charges is determined self-consistently, taking into account specific
boundary conditions for the external field and the molecular response.
Proper involvement of the solvent effects in quantum computations was
found essential for many molecular properties, such as solvation Gibbs en-
ergies32, optical rotations33 or vibrational frequencies34. Recently, vibra-
tional frequency shift for small polar molecules was related to the electro-
static potential at the nuclei35 and the influence was qualified on the basis
of the vibrational transition charges concept36. In an empirical model, the
electrostatic approximation dramatically decreased the computational time
needed for correct simulation of the infrared absorption of the analytically
important amide I peptide mode19. For N-methylacetamide, the amide
mode frequencies were found to be determined by the atomic electrostatic
potentials for polar solvents37,38. Thus in context with the normal mode
optimization algorithm it appears natural to include also the possibility to
control the electrostatic potential at the nuclei, and, consequently, the sol-
vent shifts of vibrational frequencies in solvent–solute systems.

The manuscript is organized as follows. In the next methodological sec-
tion, the normal mode optimization algorithm is briefly reviewed and the
implementation of the constraints described above is elaborated. In the re-
sults section, typical convergence behavior of the normal mode method is
compared with optimizations based on Cartesian coordinates for furan,
adamantane derivative, cyclohexane and a water cluster. Then, the behav-
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ior of the method is tested on examples comprising optimization of an
antiparallel β-sheet segment with fixed dihedral angles, models of periodic
protein α-helical and parallel β-sheet structures with multiple constraints,
and simultaneous optimization of two molecules. Finally, an example of
optimization within an external field under constant electrostatic potential
at the nuclei is given. Some mathematical and computational details are
kept as the supplementary material (http://cccc.uochb.cas.cz/Vol/70/No09/
20051315.html).

METHOD

The Normal Mode Coordinates

The normal mode coordinates (qi, i = 1, 3N – 6 (3N – 5 for linear molecules),
where N is the number of atoms) are related to the Cartesian atomic dis-
placements {Xλα, λ = 1...N, α = x, y, z} by

X = S·q (1)

where the S-matrix is obtained via diagonalization of the harmonic vibra-
tional Hamiltonian39,41. Within the harmonic approximation the normal
modes are independent and provide distinct spectral responses. Using the
linear transformation of coordinates given above, the search of the energy
minimum can be realized in the normal space. For example, for each opti-
mization point i, the normal mode gradient g(i) can be obtained from the
Cartesian gradient G(i):

g(i) = St·G(i). (2)

Details of the implementation have been given elsewhere17. As shown
therein, this procedure is not always the fastest optimization method, nev-
ertheless exhibits an excellent numerical stability and gives the opportunity
to directly constrain or relax the modes acting in the spectra.

Although the QGRAD program provides many possibilities how the
Hessian matrix (f) can be handled, for the examples presented in this study
a PM3 initial guess was used and continuously updated with the BFGS 40
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where with Cartesian displacements dx(i) = x(i) – x(i–1) and the gradient
differences ∆g(i) = gc

(i) – gc
(i–1). Trial calculation of the initial Hessian at

the same level as the gradient led usually to faster convergence, but this
could not be done for large systems and the acceleration was minor for the
anharmonic systems studied here. Ideally, the Hessian can be fully recalcu-
lated at each step ab initio, which, however, brings even bigger computa-
tional burden.

Constraints of Geometric Parameters

Bond lengths, angles and torsional angles are intrinsic coordinates that can
be encountered most frequently in chemistry. Their control within the nor-
mal mode algorithm can be achieved by adding penalty functions as har-
monic terms to the molecular energy (E), and by minimizing the sum:

S E b p pj j j
j

N

= + − →
=
∑ ( ) min0 2

1

P

(3)

where the index j runs over NP parameters (distances, angles, torsions), pj
and pj

0 are the actual and desired values of parameter j, respectively; bj is
an arbitrary barrier. If the energy is calculated in atomic units, distances
measured in Å, and angles in degrees, a reasonable value of the barrier is
around unity (bj ≈ 1) for bond lengths and bj ≈ 10–2 for the angles. As shown
below, however, the optimization path is relatively insensitive to parameter
variations. Expression (3) is obviously same as the harmonic energy terms
used in molecular dynamics. In order to use it for geometry constraints
within the normal mode technique, Cartesian gradient G′ and second-
energy derivatives (Hessian) F′ are modified:
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where Rλα denotes an α-coordinate (α = 1, 2, 3) of atom λ. For the normal
modes, new coordinates and frequencies can be obtained self-consistently
by diagonalizing the Hessian (5) and the rest of the algorithm remains the
same as for the unrestricted optimization17. In all presented examples the
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energy contains the penalty function – note that this part disappears for
complete convergence.

Coordinate Derivatives

For a sequence of 4 atoms, distances, angles and torsional angles may be de-
fined with the aid of vectors vi pointing along the bonds as41

p v= =( ) /v1
2 1 2
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p o o
v v

= = −
⋅

arccos( );
v v1 2
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with vector products a = v1 × v2 and b = v2 × v3. The usual sign convention
is adopted (sign = –1 for a·v3 < 0, else sign = 1), which provides positive
angles for the right-handed arrangement of the bonds42. The only non-zero
first derivatives of the bond vectors are
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with the 3 × 3 unit matrix E, while the second derivatives vanish com-
pletely. Thus it appears convenient to break down the expressions 4–5 up
to the derivatives of the vectors v1 – v4, which is derived in detail in the
supplementary material (Eqs 1S–28S).
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Constraints Involving Two or More Parameters

Similarly, by adding an additional quadratic energy term, any two geomet-
rical parameters, i and j, can be coupled. In most cases, this is meaningful
for chemically analogous coordinates of the same type, such as those in
final-sized models mimicking periodic structures. The energy term becomes

∆E b p pij i j= −( )2 (10)

and corresponds to changes in gradient
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Geometry Optimization with Constant Potential at the Nuclei

For reasons indicated in the introduction, we may wish to keep the electro-
static potential ϕj at each nucleus j (j = 1...NAT, NAT is number of atoms)
constant. For example, the potential can mimic the influence of the sol-
vent. Similarly as for the geometric parameters, a quadratic energy term is
added to the total molecular energy

∆E j j
j

N

= −
=
∑κ ϕ ϕ( )0 2

1

AT

(13)

where κ is an arbitrary constant, and ϕj and ϕ j
0 is the actual and desired

potential, respectively.
Accordingly, the gradient and second derivatives will be modified, so that
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For the case when the field is realized by an ensemble of NC point charges
{qi, i = 1...NC}, e.g. by effective charges of solvent atoms, the potential is
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i
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where rji = |Rj – ri|, Rj and ri are the nuclei and charge positions, respec-
tively. Thus the potential derivatives become
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If the dependence is solved self-consistently, we might want to consider also
the dependence of the charges on nuclei positions. However, this is not tri-
vial and for the purpose of this study we neglected the dependence setting

∂
∂

∂
∂ ∂λα λα µβ

q

R
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R R
i i= =

2

0 .

It should be emphasized that for N atoms the full number of 3N normal
modes must be included in the constant potential optimization, including
the molecular rotations and translations, in order to obtain numerically sta-
ble and meaningful results. Additionally, since these collective modes are
generally associated with non-zero vibrational frequencies in the external
electrostatic potential, no arbitrary projection of the force field43 before the
diagonalization can be applied.

The equations given above have been implemented in the home-made
program QGRAD, while the ab initio calculations were made with the
GAUSSIAN 44 program. Also with GAUSSIAN, the optimizations with redun-
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dant internal coordinates were performed for comparison with the normal
mode procedures.

RESULTS AND DISCUSSION

Cartesian versus Normal Mode Coordinates

As pointed above, the normal mode and Cartesian coordinates form both a
complete basis in the same linear vector space. The equivalence, however,
transfers into the same optimization trajectory only under specific condi-
tions, namely when the optimization algorithm based on the harmonic ex-
pansion does not contain non-linear transformations. This can be achieved
for simple systems, as shown for furan and bromochlorofluoroadamantane
molecules in Fig. 1. For both systems the PM3 Hessian was used as an initial
guess of the force field. For furan and Br–Cl–F–adamantane, PM3 and
HF/3-21G optimized geometries were used as starting points, and the
optimizations were performed at the HF/4-31G and PM3 levels, respec-
tively. The minimization was made with the QGRAD program; ab initio en-
ergies and gradients were obtained from Gaussian. As can be seen in Fig. 1,
the optimization trajectory for the Cartesian coordinates (i), as indicated by
the energy, coincides with the normal mode trajectory (ii). The deviation
between these two methods at the last points of the optimizations is given
by the final numerical precision of current implementation, if for example,
the energy is recorded to 9 decimal places (Note that 4 decimal places are
usually satisfactory for chemical accuracy). Similarly, when the updating of
the Cartesian force field along the optimization path is switched on, the
performances of the Cartesian (iii) and normal mode (iv) based optimiz-
ations are equal within the numerical accuracy, both for the furan and
adamantane derivative. As expected, the updating of the second energy de-
rivatives also accelerates the convergence, decreasing the number of optimi-
zation steps approximately by a factor of two. In fact, the implementation
of the fixed, non-updated Hessian is extremely inefficient and can be sel-
dom recommended in practice.

The rational function correction22,23 is a typical example of a non-linear
perturbation in the optimization algorithm which causes deviations be-
tween the Cartesian and normal mode paths. Indeed, if the RFO method is
applied, the two coordinate sets are not equal as can be seen in Fig. 2 for
the two test molecules. The optimizations were done under same condi-
tions as for Fig. 1, with the Hessian update, except for the Cartesian-RFO
scheme (e in Fig. 2), for which the GAUSSIAN program was used. For the

Collect. Czech. Chem. Commun. (Vol. 70) (2005)

Normal Mode Optimization 1323



Collect. Czech. Chem. Commun. (Vol. 70) (2005)

1324 Bouř:

FIG. 1
The dependence of the relative energy on the number of optimization steps for furan (top) and
Br–Cl–F-adamantane (bottom) for pure (a) Cartesian mode and (b) normal optimization meth-
ods, and when the update of the Hessian was switched on (c, d, for the Cartesian and normal
coordinates, respectively)

Furan

Br–Cl–F–Adamantane
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FIG. 2
The dependence of the energy on the number of optimization steps for furan (top) and
Br–Cl–F–adamantane (bottom) for the Cartesian (c, e) and normal mode (d, f) optimizations
with continuous updating of the Hessian, with (e, f) and without (c, d) the RFO correction

Furan

Br–Cl–F–Adamantane



RFO trajectories, we can observe a difference between the furan and
Br–Cl–F–adamantane molecules. For the former, both the normal and Car-
tesian coordinates provide approximately same trajectories, while for the
latter the RFO trajectories (e, f in Fig. 2) noticeably differ, the Cartesian
method providing somewhat faster convergence. This can be attributed to
greater rigidity of the furan system, since the lowest-frequency harmonic
vibrational mode was calculated at 507 cm–1 while the lowest wavenumber
for Br–Cl–F–adamantane is 63 cm–1.

The RFO method or its analogue, combined with the limit of the maxi-
mum step size, must be used for a vast majority of molecular optimizations,
which often involves incomplete or non-positively definite Hessian. This is,
for example, the case of the cyclohexane optimization recorded in the up-
per part of Fig. 3. For the starting geometry (with arbitrarily chosen torsion
angles within the six-membered ring of –1, –1, –14, 44, –42 and 19°), two
negative Hessian eigenvalues (corresponding to imaginary frequencies i353
and i242 cm–1) were calculated at the PM3 level, which obviously prevents
direct use of the quadratic approximation both for the normal and Carte-
sian coordinates. Even with the RFO potential approximation, the optimiz-
ations become rather tedious, requiring about 40–50 steps to converge (a, b
in Fig. 3). At later stages of the optimization, the normal mode method (b)
seems to converge faster, in contrast to Br–Cl–F–adamantane (cf. Fig 2, bot-
tom). For cyclohexane, both the normal mode and Cartesian optimizations
are significantly slower than the internal redundant coordinates included
in Fig. 3 as trace c. This corresponds to earlier observations, where the inter-
nal coordinates provide usually superior results for covalent systems7,17.

Yet the convergence properties of the different optimization schemes
change again for weakly-bonded systems, as shown for a cluster of three
water molecules in the lower part of Fig. 3. For the initial geometry, the wa-
ter molecules were arbitrarily chosen so that mass centers were about 3.4 Å
apart and approximately in a triangle. At the PM3 level, the lowest negative
Hessian eigenvalue corresponded to i29 cm–1, lower in absolute value than
for cyclohexane. Nevertheless, not only took optimization of the water sev-
eral times more steps, but also qualitative behavior of the three optimiza-
tion techniques changed. The Cartesian method as implemented in
GAUSSIAN (a) provided again slowest convergence, with apparent instabili-
ties at the end of the optimization. But the normal mode method (b in
Fig. 3) converged much faster after about 100 steps and even earlier than
the redundant scheme (trace c). In this particular case, the redundant
method provided a local energy minimum different from those obtained by
the Cartesian and normal mode methods. The redundant coordinates had
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FIG. 3
The energy convergence for cyclohexane (top) and a water cluster (bottom), obtained with the
Cartesian (a), normal mode (b) and internal (c) coordinates. Hessian updating and RFO poten-
tial smoothing were applied

Water cluster

Cyclohexane



to be also redefined three times during the optimization run and the com-
putation manually restarted. Thus, in accordance with previous observa-
tion, the normal mode method seems to be especially suitable for weak, e.g.
hydrogen-bond complexes; in addition, its stability provides the ability to
control the vibrational modes.

Antiparallel β-Sheet Segment

A six-amide segment (see Fig. 4 for geometry) based on L-alanine polymer
was chosen as a typical example of systems that can be encountered in mo-
lecular biology modeling. By controlling the torsional angles of the carbon-
yl group (τ, τ′ in the figure), one can model the overall twist of the β-sheet,
and its secondary and tertiary structure45,46. Although the system is quite
stable in vacuum47, unlike those of other protein forms49, the computa-
tional task of obtaining the equilibrium geometry is quite difficult. For il-
lustration of the coordinate dependence, the RHF/6-31G level of approxi-
mation was chosen. The HF method provides smooth analytical gradients,
unlike the DFT methods using integrations grids, for example, which might
bias the coordinate dependence.

The starting geometry was derived from a planar sheet with τ ≈ τ′ ≈ 0°,
while the constraints of τ = τ′ = 20° were imposed during the energy
minimization, with b = 0.01 (Eq. (3)). Such a restricted optimization can be
done both with the normal mode as well as with the internal coordi-
nate-based algorithms. As can be seen from the dependence of the total en-
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FIG. 4
The antiparallel β-sheet peptide used in the constrained optimization. The starting values of
the arbitrary torsional angles τ ≅ τ′ ≅ 0° were restrained to τ = τ′ = 20°. The hydrogen bonds be-
tween the two Ac-(L-)-Ala-(L-)-Ala-NH-Me peptide chains are indicated by the green dashed line



ergy on the number of the optimization steps in Fig. 5, the redundant inter-
nal method exhibits numerical instabilities. Moreover, it never converges
completely, oscillating (ca. ±0.01 hartree) after about 200 steps around an
average value of the energy. A non-redundant set of intrinsic coordinates
(note that many choices of the Z-matrix are possible) converges reasonably
well at initial stages of the optimization. However, the convergence stops
around the 80th step and starts to oscillate (ca. ±0.0002 hartree). On the
other hand, the normal mode optimization provides a smooth conver-
gence. Even for the latter method, however, the number of optimization
steps is rather enormous compared with usual covalent-bond systems.
About 75 steps are needed to achieve an energy error smaller than 10–3, 188
steps for ∆E < 10–5 and 227 steps for ∆E < 10–6. Complete convergence (∆E <
10–8) was obtained after about 288 steps. The convergence thus accelerates
(at least in the logarithmic scale) at final stages of the optimization when
the potential energy surface becomes more quadratic, while the difficulties
in initial stages reflect the shallow anharmonic potential of the inter-
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FIG. 5
The convergence of the total energy during the constrained optimization of the antiparallel
β-sheet segment displayed in Fig. 4: comparison of the normal mode, internal and redundant
(Gaussian 03/version B02)44 methods. Note that the starting total energy in normal modes is
higher since it contains the arbitrary harmonic terms of Eq. (3)

Anti-parallel Beta-Sheet Segment



molecular interactions. Similar problems were observed also for hydrogen-
bonded water complexes17. Nevertheless, we can conclude that the normal
mode method does provide a numerically stable means for the treatment of
these systems.

One may wish to know the influence of the penalty barrier (cf. Eq. (3))
on the quality of the convergence. For most cases it seems to be quite mi-
nor and can vary within an interval of several orders, as can be documented
in Fig. 6 where the initial stages of the antiparallel β-sheet optimization are
shown for three values of b (0.01, 0.001 and 0.0001). For the two highest
values, the constrained angles quickly achieve the desired limit, which is
controlled by the maximal allowed displacement rather than by the param-
eter itself. For the smallest value, the constraints are approached more
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FIG. 6
Initial optimization phases of the antiparallel β-sheet for three values of the penalty parameter
(b, Eq. (3)): the dependence of the constrained torsion angles (defined in Fig. 4) and the total
energy on the number of optimization steps



slowly; nevertheless, because of the immense number of steps required for
complete optimization, it has a small influence on the total number of
steps and final outcome. When the starting geometry parameters deviate
significantly from the desired values, or for complicated multiparameter fit
(see below), it seems reasonable to use rather small magnitudes of the barri-
ers in order to avoid covalent bond splitting and atom overlapping.

It should be noted, both for the normal mode and for the redundant co-
ordinate methods, that the speed of the convergence depends on other de-
tails of the implementation, which are quite numerous and may be opti-
mized for each system separately. Here, comparable “default” parameters
were chosen, including a low-level estimation of the Hessian and its contin-
uous update during the minimization using Cartesian gradients and a maxi-
mum step of about 0.1 Å.

Parallel β-Sheet and α-Helical Peptides

Parallel β-sheets can be found in nature quite often, although less fre-
quently than the antiparallel sheets, while α-helix is perhaps the most no-
toriously known protein secondary structure48. The octaamides (see Fig. 7
for the starting geometry) mimicking these structures were thus chosen as
important examples of periodic systems. The periodicity conditions cannot
be imposed conventionally in the redundant coordinates. Using the normal
mode algorithm, all {ϕ,ψ} dihedral angles may be required to be the same
even if their values are not specified. Obviously, under this constraint, all
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FIG. 7
The α-helical (left) and parallel β-sheet (right) L-alanine-based octaamide peptides. Inter- and
intramolecular hydrogen bonds are indicated by the dashed green lines



other coordinates will not follow the infinite periodicity; nevertheless, the
{ϕ,ψ} angles are the most relevant for the modeling of physical or physio-
logical protein properties. Starting values of the angles were set uniformly
to –57 and –47° for all the 7 amino acid residues in the α-helix. Initial ge-
ometry of the β-sheet was slightly distorted from the planar (periodic) con-
formation and the angles were more dispersed, with ϕ ∈ (–160,–82) and ψ ∈
(75,165). Since the α-helical structure is not stable in vacuum49, the
COSMO 30 continuum solvent model was applied to both forms, using the
same HF/6-31G level of approximation as for the previous example. The
value of b = 10–5 was used in Eq. (10).

For the parallel β-sheet model, we can follow the initial convergence in
Fig. 8. Clearly, the energy smoothly decreases during the optimization run,
while small oscillations are apparent for some angle values. Nevertheless,
the angles convincingly converge to common values, i.e. to ϕ = –113° and
ψ = 116°. These reasonably well agree with the standard values of –119 and
113° tabulated for the planar parallel β-sheet48.

Similar and somewhat faster (within fewer number of optimization steps)
convergence of the total energy and the torsion angles can be observed also
for the α-helix in Fig. 9. Here, the main chain angles optimized to ϕ = –65°
and ψ = –38°, i.e. they rather significantly deviate from the canonical values
of (–47,–57°) for this structure. Although the α-helical hydrogen-bonding
pattern did not change, the optimized values approached rather those tabu-
lated for standard 310-helix (–60,–30)48. This may be accounted for by inad-
equacies of the model, mainly by the insufficient length of the peptide (it is
known that shorter peptide sequences do not form stable α-helices) as well
as by the continuous approximation of the solvent, unable to simulate the
strong hydrogen-bond solvent–solute stabilization interactions49. In this
case the speed of the convergence was more influenced by the magnitude
of the penalty barriers; particularly for high values the convergence speed
sharply decreases (details are given in the supporting section). At the initial
stages of the optimization the angle values oscillates which suggest that the
algorithm does not follow the lowest-energy path too faithfully. However,
at the harmonic limit this seems inevitable, and control computations with
independent molecular dynamics software provided similar dependence of
analogous optimization tasks.

Simultaneous Optimization of More Molecules

Optimization of two or more molecules with coupled parameters ranks
among more complex computational tasks. Nevertheless, molecular proper-

Collect. Czech. Chem. Commun. (Vol. 70) (2005)

1332 Bouř:



Collect. Czech. Chem. Commun. (Vol. 70) (2005)

Normal Mode Optimization 1333

FIG. 8
The dependence of the main chain peptide torsion angles (ϕ,ψ) and the total energy on the
number of optimization steps for the parallel β-sheet peptide (Fig. 7 right). The angles ϕ and ψ
were constrained so that each converged to the same value, but this value was not specified
and no other constraints were imposed. The HF/6-31G/COSMO level of approximation was
used. Only initial phase of the optimization is shown. The values converged to (ϕ = –113°, ψ =
116°), although numerical instabilities were observed at later stages due to the inaccurate gra-
dients provided by the solvent COSMO model



ties of bigger systems are often predicted based on computations of smaller
fragments49–52. The selected example thus simulates situation, where low-
frequency normal mode motions are fixed (so that the structure base on a
natural system does not collapse) and, at the same time connecting molecu-
lar parts fit together, i.e. coordinates of overlapping atoms are dependent.
Particularly, a tetraamide model system displayed in Fig. 10 on the left was
chosen, mimicking a twisted antiparallel (-sheet systems often found in
natural proteins53,54. The initial peptide main-chain torsion angles (ϕ,ψ)
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FIG. 9
The dependence of the main chain peptide torsion angles (ϕ,ψ) and the total energy on the
number of optimization steps for the α-helical peptide (Fig. 7 left). The angles ϕ and ψ were
constrained to maintain the same value; no other constraints were required. The HF/6-31G/
COSMO level of approximation was used. Only initial phase of the optimization (converged fi-
nally for ϕ = –65° and ψ = –38°) is shown



were chosen as (–110,120) and (–64,153) for the two strands, respectively.
Then the fragments were subjected to restricted optimization, with the
methodology described above. The QGRAD program17 was used for normal
mode-based optimization, while the energies and gradients were obtained
with GAUSSIAN 44, at the PM3 level of approximation. In the optimization
routine, the two fragments were treated as a super-molecule, parameters
(energy, gradient, Hessian) were obtained from the two fragments; thus,
technically, the procedures described above could be used.

On the left hand side of Fig. 11, the energy and geometric parameter
changes during the optimization run can be seen, with constraints involv-
ing normal modes (modes with wavenumbers within –300 and 300 cm–1

were fixed) and the distance (1–2), bond angles (1–2–3, 2–3–4) and torsion
angles (1–2–3–4) defined in Fig. 10. The convergence is rather slow; never-
theless this can be expected for system involving shallow anharmonic po-
tentials of hydrogen bond. More disturbing, however, may seem the appar-
ent lack of convergence of the geometry parameters. For example, the bond
angle 2–3–4 changes from the initial value of ≈66.5 to ≈64.1°, but the differ-
ence for the two fragments (≈0.1°) does not seem to vanish even at later
stages of the minimization. This behavior can be explained by the con-
straints imposed on the normal modes since these block the zero- and low-
frequency motion needed for complete relaxation. Indeed, when the nor-
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FIG. 10
The model tetraamide (a) and its decomposition into two fragments (b, c). During optimiza-
tion of the fragments, the torsion angles 1–2–3–4 in the fragments were required to optimize
to the same value; similarly for the distance 2–3 and bond angles 1–2–3 and 2–3–4



mal mode constraints are removed, as on the right hand side of Fig. 11, the
geometry parameters converge to same values in both fragments. In the lat-
ter case, however, the convergence is even slower, as more extensive relax-
ation is allowed.

Minimization with Constant Potential at Nuclei

Although this advanced optimization task may find application for rather
bigger molecules in solutions37, it is illustrated for the CO and H2O mole-
cules. For larger systems, where the geometry relaxation caused by the field
is very limited, the minimization would be much less spectacular, as it is re-
alized mostly by rotations and translations. The external electrostatic field
was modeled by two charges (0.5 e at (–2,2.5) Å and –0.5 e at (2,–2.5) Å in
the xy-plane). The starting geometries were [C(–0.793,0.166),O(–0.116,–0.435)]
for CO and [H(0.793,0.166),O(–0.116,–0.435),H(–0.676,0.269)] for the wa-
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FIG. 11
Convergence of the total energy and the geometry parameters for the two molecules opti-
mized simultaneously. The two molecules (“fragments”) and the coupled geometry parameters
are defined in Fig. 10. On the left-hand side of the figure, normal modes within the interval of
wavenumbers (–300,300 cm–1) were kept fixed while for the optimization shown on the
right-hand side no normal mode restriction was applied. For both optimization runs, the pen-
alty function was applied to the coupled distances (2–3), bond (1–2–3 and 2–3–4) and tor-
sional (1–2–3–4) angles



ter molecule. These original parameters were relatively far from the equilib-
rium positions of nuclei and the molecules had to relax significantly. The
BPW91/6-31G** DFT level was chosen for the optimization. As indicated
above, due to the constant field condition, the rotational motions (in this
case the rotation around the y-axis) significantly contributed to the system
relaxation and could not be neglected. This can be seen in Fig. 12, where
the starting and optimized geometries are overlapped. In order to optimize
the higher-frequency molecular vibrations only, normal modes with fre-
quencies below 300 cm–1 were frozen. If these predominantly translational
modes were also allowed to relax, the CO molecule additionally shifted sig-
nificantly (by ≈1.5 Å) to the region with a lower gradient of the electrostatic
potential. In the final stages of the optimization where gradient becomes
small, numerical instability was observed during the Hessian updating pro-
cess; this could be circumvented by switching off the updating of the sec-
ond derivatives in QGRAD.

CONCLUSIONS

Regarding the convergence speed the normal modes are in principle equiva-
lent to Cartesian coordinates. For simple optimization tasks, not involving
non-linear transformations, they exhibit exactly same optimization paths.
Even when non-linear factors, like the RFO transformation, are involved,
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FIG. 12
Optimization of the CO and H2O molecules under constant potential at the nuclei. By the
transparent and black lines the starting and the optimized geometries are indicated, respec-
tively. The electrostatic potentials were 0.061 and –0.026 (atomic units) for CO, and –0.033,
–0.026 and 0.063 a.u. for the H, O, H atoms of H2O. The color of the isopotential regions is
chosen so that approximately the span of (–0.1,0.1 a.u.) of the potential is covered. Addi-
tionally, the dispersive normal mode motions with vibrational frequencies below 300 cm–1

were frozen during the optimizations



the two coordinate sets behave similarly for most systems. For flexible mol-
ecules and hydrogen-bonded clusters more significant differences were ob-
served, in favor of the normal mode method. The use of the normal modes,
however, is necessary in order to model the vibrational spectra. In this
study the normal mode optimization scheme was expanded, so that multi-
ple geometry parameters and electrostatic field at nuclei could be con-
trolled, in addition to the vibrational motions. Furthermore, constraints in-
volving multiple molecules were found possible. It was shown that these
advanced optimizations can be utilized for practical simulations of vibra-
tional spectra of model biopolymer compounds. The presented examples
indicate a good numerical behavior of the method, although all the energy
minimizations become rather lengthy for systems with anharmonic and
shallow intermolecular potentials.

This work was supported by the Grant Agency of the Academy of Sciences of the Czech Republic
(A4055104).
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