
17810 J. Phys. Chem. 1995,99, 17810-17813 

Ab Initio Calculation of the Vibrational Magnetic Dipole Moment 
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To theoretically explain the vibrational magnetic dipole moment of a molecule with degenerate vibrational 
levels, it is necessary to go beyond the Born-Oppenheimer approximation. To obtain a nonzero electronic 
contribution to the vibrational g factor, electronic excited states must be included. Moreover, the usual 
perturbation expression for the vibrational magnetic moment becomes zero for degenerate vibrational states, 
unless higher order perturbation terms are included. For ab initio computation of these magnetic moments 
two simplified models have been tested by calculating the molecular g factors for the C2H2, HCN, OCS, and 
NH3 molecules and comparing them to experimental values. 

Introduction 

If the Born-Oppenheimer (B-0) approximation is used for 
calculation of the molecular ground state magnetic properties, 
the electronic contributions to the magnetic dipole moment 
vanish for real electronic wave functions.' However, the 
electronic contribution to the vibrational and rotational magnetic 
moment is of the same order as the nuclear part, which has 
been confirmed by numerous experiments including vibrational 
circular dichroism (VCD) measurements which depend on 
magnetic transition moments,2 molecular Zeeman effect studies 
which yield rotational gyromagnetic  ratio^,^ or vibrational 
magnetic moments4 and, finally, by rotationally resolved 
magnetic VCD (RR MVCD) that allows measurement of both 
the rotational and vibrational magnetic  moment^.^ 

For calculation of the rotational magnetic moment, a pertur- 
bational formula was allowing one to calculate the 
g factor from the paramagnetic part of the electronic susceptibil- 
ity, which is available as an option in ab initio quantum chemical 
programs.8 

Similarly, the magnetic field perturbation theory (MFP)9 
allows a relatively simple calculation of the vibrational magnetic 
transition moment, since it is based on a perturbation of the 
electronic ground state. Recently, a common formalism was 
found, based on the MFP model, that allows one to express 
formally both the rotational and vibrational magnetic moments 
in terms of derivatives of the electronic ground state wave 
function with respect to the magnetic field.' Although originally 
developed for the harmonic approximation, this formalism can 
be used for a general vibrational wavefunction.I0 

For molecules with degenerate vibrational levels, the pure 
vibrational angular momenta in excited states and their associ- 
ated magnetic moments can be observed, as shown for OCS," 
HCN," C2H2,5 and NH3.4 For such a case, however, the first- 
order perturbational formula (see ref 1, eq 21) again gives no 
contribution from the electronic part. An expression for the 
electronic contribution has been derived for symmetric top 
molecules.'* An alternative view of the electronic contribution 
has been proposed using a parametrized vibrational-electronic 
coupling scheme recently calculationally implemented on a 
semiempirical level for a calculation of vibrational magnetic 
moments in high symmetry (mostly aromatic) p01yatomics.I~ 
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In this paper, we will discuss a nonadiabatic expression for 
potential evaluation of the electronic vibrational magnetic 
moment. In addition, we propose a dipole derivatives-based 
model that provides a means for practical calculation of these 
magnetic moments. Calculated results using it are compared 
to those from the rotational model for linear molecules, put forth 
in ref 12. 

Theory 

sum of the nuclear and electronic contributions: 
The magnetic dipole moment operator can be written as a 

where ZAe and Mi, are the charge and mass of a nucleus A, while 
( - e )  and m,l are the charge and mass of the electron. The radius 
vectors of the nuclei (A) and electrons ( i )  are denoted by r.' and 
ri, respectively. The conjugate momenta are similarly denoted 
as p' and pi. N is the number of atoms, and Ne is the number 
of electrons. 

The nuclear part can be obtained directly. Undergoing 
vibrational motion in a normal mode, 1, the nuclei move along 
the normal mode coordinates, QI, causing a deviation A& from 
their equilibrium positions r.'x0, so that, for the a-coordinate 

where S is the normal-mode transformation matrix into Cartesian 
coordinates (denoted by Greek letters). Similarly, the nuclear 
momenta, $, can be obtained from the normal mode momenta, 
PI,  as p i  = M&S$Pl. Combining these with eq 1, the 
nuclear magnetic moment is given by 

i = l  L py I 

For an observable vibrational magnetic moment, however, only 
the second expression in this equation survives, since (vlPllv) 
= 0 for any vibrational state v. Indeed, at least two normal 
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mode motions must be combined to yield a nonzero molecular 
angular momentum. 

The electronic part of the magnetic moment is given by the 
matrix element 

where v(+) is the vibrational wave function and VG' is a 
perturbed (non-B-0) electronic ground-state wave function. The 
perturbation arises from the motion of nuclei and can be obtained 
from the kinetic energy matrix element using electronic wave 
functions (VK'IT~VK,');' for B-0 electronic wave functions, 
~VK) ,  ($JKITI~K') = T&,K,. Such a nonadiabatic treatment 
would address the problem of interest but, in our hands, is not 
computationally realizable at present. According to our previous 
experience, we expect to obtain results of low accuracy, if a 
second-order perturbational calculation is performed using an 
incomplete basis set. The vibronic coupling based formalism 
of Pawlikow~ki'~ approaches this problem using a diabatic basis 
for a limited set of states and an unitary transformation to reduce 
off-diagonal terms in the perturbation. Here, as an alternative 
approach, we develop below a computationally inexpensive 
model that can be used for approximate calculations of 
vibrational magnetic moments. 

Polarization Model. Eventually, it will be convenient to 
obtain the electronic contribution to the magnetic moment as a 
sum over nuclei. Let us write the electric dipole moment change 
as 

where P is the atomic polar t e n ~ o r , ~  which can be calculated 
with a high precision by most quantum chemistry programs; 
6Ba is a Kronecker delta, and A& is a new parameter to 
represent a classical effective electron path correlated to the 
nuclear motion. Note that if a cloud of electrons of the charge 
Zn followed the nuclear shift exactly, i.e., A& = A$, then 
Ap = 0. Using the definition of normal modes, we reexpress 
our electron path parameter as 

Correspondingly, its conjugate momentum can be expressed in 
terms of its time derivatives, A e ,  as 

Finally, the electron contribution to the magnetic moment can 
be written in terms of an effective electron cloud angular 
momentum summed over the clouds, rather than over individual 
electrons: 

with A$ and # given by eqs Sa and 5b, respectively. Note 
that due to the parametrization being dependent on the overall 
atomic polar tensor, the electron clouds do not have to be 
localized in space and that, in terms of our definition (eq 4), 
the sum over clouds is equivalent to a sum over nuclei. 

Degenerate Vibrational States. To apply this to the special 
case of the singly excited degenerate vibrational state, consider 
vibrational wavefunctions for the two dimensional isotropic 
harmonic oscillator: 

Here the c axis is the molecular axis of highest symmetry, l a  
and l b  correspond to the single quantum excitation of the 
vibrational modes polarized along the symmetry equivalent a 
and b axes. The nuclear (n) and electronic (e) magnetic 
moments are then 

where mde,a,a,b = -mn/e,a,b,a. Substituting eqs 2 and 6 for the 
nuclear and electronic magnetic moments, respectively, we get 

The vibrational angular momentum is approximately equal 
x 3, and the to the nuclear contribution, 1 = 1, + le e 

matrix element would be 

where 

N 

The vibrational quantum number corresponds to a proper 
molecular rotation for linear molecules only. Generally, its 
contribution to the measurable molecular angular momentum 
is defined by the Coriolis coupling parameter! In accordance 
with earlier definitions, we define the vibrational g factor 
independently of the coupling parameter, as 

where p~ is the nuclear magneton. 
Rotational Model. As has been pointed out,"%'2 for a linear 

molecule the vibrational g value is equal to the rotational g value 
for the molecular axis, if the molecule is slightly distorted 
according to the degenerate vibrational mode. As an alternate 
derivation, one needs to realize that in the first approximation 
the magnetic and angular momenta associated with the bending 
modes are proportional to the square of the deviation from the 
axis, and hence their ratio, the g value, is independent of the 
actual deviation to first order. The g,, factor ( z  is the molecular 
axis) can then be obtained as 
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TABLE 1: Ab Initio Calculations of the Vibrational g Factor 
~~ 

molecule/mode calculation polarization model gv(g, + g,) rotational model g& + g,) experiment 

C2H?/VVg0 HF/4-3 1 G 0.405(0.961 - 0.559) 0.747(0.961 - 0.213) 0.48(25)c 
HF/6-3 1 G* * 0.358(0.961 - 0.602) 0.565(0.961 - 0.395) 
HF/spd 0.384(0.961 - 0.577) 0.440(0.961 - 0.521) 
MP2/6-3 1G** 0.356(0.961 - 0.605) 

HCN HF/6-31GE 0.35(0.88 - 0.52) 0.38(6)d 
HF/spd 0.33(0.86 - 0.53) 0.51(0.86 - 0.35) 
MP2/6-3 1 GE 0.34(0.87 - 0.53) 
QCISDICEP 0.34(0.86 - 0.53) 

ocs HF/6-3 1 GE 0.030(0.504 - 0.474) 0.06 1 (2)d 
HFIspd 0.033(0.504 - 0.471) 0.161(0.504 - 0.343) 
QCISD/CEPb 0.020(0.504 - 0.483) 

N H ~ / V ~  HF/6-3 I GE 0.86(1.38 - 0.52) 0.95(05)e 
MP2/6-3 1 GE 0.57( 1.12 - 0.55) 
MP2Ispd 0.63(1.12 - 0.49) 
QCISD/CEP 0.59(1.12 - 0.52) 

N H ~ I v ~  HF/6-31GE -0.30(0.05 - 0.35) 
MP2/6 - 3 1 GE -0.42(-0.23 - 0.18) 
MP2Ispd -0.39(-0.14 - 0.24) 
QCISD/CEP -0.32(-0.16 - 0.17) 

Experimental geometry was used. Experimental geometry;’ for other calculations the energy minimum geometry was used. Reference 5a. 
Reference 1 1. e Reference 4. 

where Mp is the proton mass, c is the velocity of light, Zzz is the 
moment of inertia, and x ~ ; , ~ ~ ~ ~  is the electronic part of the 
paramagnetic susceptibility.’ 

Results and Discussion 

The dipole derivatives (atomic polar tensor) were estimated 
at the HF level and again using the MP2 and QCISD methods 
which include part of the correlation energy. The susceptibility 
evaluation needed in the rotational model was calculated at the 
HF level only. Basis sets used include the extended 6-31G basis 
set (two sets of polarization functions added) and the spd basis 
which includes the 8s6p basis on heavy atoms and 6s basis on 
hydrogens plus polarization functions, both as defined in the 
Cadpac program package.8 In addition, the QCISD calculations 
used the CEP basis, a triple split-valence basis set with 
polarization functions, as supplied in the Gaussian p a ~ k a g e . ’ ~  
The QCISD second derivatives were calculated by numerical 
differentiation of the gradients, using the Gaussian 92 program. 
The Cadpacs and Gaussian 9215 programs were used for the ab 
initio calculations of the gv values yielding results with different 
basis sets, as summarized in Table 1. 

For C2H2 we see a much weaker basis set dependence of the 
calculated g factor for the polarization model than for the 
rotational model. This might have been expected, since a much 
larger basis set is needed for a reliable calculation of the 
susceptibility, which is required in the latter method, because 
in that case the gradient of the electronic wave function is 
explicitly included in the calculation. All the calculations agree 
with the experimental g factor within its error limits, which, 
however, are quite large. 

For HCN, the polarization model yields a reasonable estimate 
of the experimental g value, exact within its more reasonable 
experimental error bars, while the rotational model overestimates 
the g factor by about 30%. 

For OCS, the agreement of the calculations with experiment 
is less satisfying, in terms of the relative error. Clearly, being 
small, the calculated g value is exceptionally sensitive to the 
accuracy of the estimation of the electronic contribution. The 
polarization model yields a more realistic value for the g factor, 
but one underestimated by about 50%, than does the rotational 
model calculation via magnetic susceptibility whose values is 
much too high. 

Errors of 20-30% characterize the computed g values for 
the v4 mode of ammonia which are all lower than the 

experimental value. Here the sources of errors cannot be clearly 
separated and include the anharmonic effects as well as errors 
in calculated geometries and normal modes. Clearly, the 
calculated value is 2-3 times larger than those calculated for 
the HCN or C2H2 molecules, in accordance with experimental 
data. For the ammonia v4 mode, the Zeeman energy splitting 
is also strongly influenced by the Coriolis coupling term, in 
addition to the g value. The Coriolis coupling parameter was 
calculated to be 0.25 from the MPYspd and QCISD calculations, 
which is a very good representation of the experimental value 
of 0.24.4 

Quite an interesting result was obtained for the v3 N-H 
stretching mode of ammonia, where both the nuclear and 
electronic g factors are calculated to be negative. In undergoing 
this motion, the NH3 nuclear angular momentum points in the 
opposite direction from the nuclear magnetic moment. Measur- 
able magnetic and angular momenta are small for this mode, 
the Coriolis coupling constant was calculated as 0.035 for the 
MP2 and QCISD calculations. Unfortunately, an experimental 
value of gv is not available. 

While the polarization model is clearly able to estimate the 
approximate magnitudes and signs of the vibrational g factors 
of the molecules studied here, there is an intrinsic limit to its 
accuracy, given by the approximations described above. Using 
post-HF procedures does not improve the results significantly, 
as shown for the HCN, OCS, and NH3 molecules, and further 
work will be needed to improve the accuracy in order to 
completely account for the experimental magnetic moments. 

Conclusions 
A rigorous analytical calculation of the vibrational magnetic 

moment would have to include a sum over excited electronic 
states to go beyond the B-0  approximation as a correction for 
the adiabatic electronic contribution, which is zero. We have 
found that the polarization model, based on the electric dipolar 
derivatives, works reasonably well for the systems studied. Also, 
the rotational model can be used for calculation of the g value 
for linear molecules, although its implementation requires a use 
of a relatively large basis set to get reasonable results. 
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coordinates (aZBa/aRy), is responsible for the electronic contribu- 
tion to the purely vibrational magnetic moment. 
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Appendix 

can be obtained as 
The perturbational operator form of the B-0 Hamiltonian 

where Ra is a mass-weighted nuclear displacement ([Rar7‘l = 
i/hsa) and a Taylor expression of the electronic wave functions 
about the equilibrium geometry was used in the form I/JK’ = 

be kept to obtain the correct electronic contribution to the 
vibrational magnetic moment. Computationally, this would be 
a difficult procedure due to the inclusion of the sums over 
excited electronic states. 

As an altemative point of view, we can consider the 
coordinate dependence of the electronic part of the atomic axial 
tensor, Ipa = -&G,aI&i,p>, where XG,a = [(a/aBa)I/JKlB=O, and 
B is the magnetic field strength. Considering Pa and Ra as 
independent variables (as we should in Hamilton’s formalism), 
we obtain 

l y ~  + &&,aRa + (1 /2 )&@~,&~Rg.  All terms in eq A1 must 

In this form, we can see that the second (“anharmonic”) 
derivative of the magnetic moment according to the nuclear 


