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Vibrational energies of HCONH2 and DCONH2 molecules are calculated and compared to experiment. 
Rotational constants of formamide and water molecules are calculated for several vibrational states. The 
anharmonic force fields are calculated ab initio on HF and MP2 levels and using local and nonlocal density 
functional theory. Possible applications of DFT anharmonic force field in a prediction of vibrational properties 
are discussed. Dipolar derivatives are calculated to second order on the HF level. The phase integral quantum 
concept is introduced as a tool for an efficient diagonalization of the vibrational Hamiltonian. 

Introduction 

Formamide, similar to the water molecule, belongs to a 
relatively small group of model molecules that are biologically 
important or serve as models for biological systems but that 
are small enough to be investigated by thorough calculations. 
Today extensive interest in these systems suggests that only a 
fraction of their basic properties is completely understood and 
explored. The formamide dimer, for example, serves as a model 
for the peptide amide group as well as for the base-base 
interactions in nucleic acids.' 

We attempt to calculate vibrational energies of formamide 
molecule behind the harmonic approximation. A pure harmonic 
treatment is not possible, because of the well-known anharmo- 
nicity of the lowest-frequency, out-of-plane nitrogen vibrationG2 
In the past, IR and Raman vibrational spectra of formamide 
and its isomers were measured and the fundamental vibrational 
modes were Also extensive theoretical studies of 
this molecule were pe r f~ rmed .~ .~  But calculated results do not 
fully explain experimentally observed frequencies and intensi- 
ties. The energies and absorption intensities of the transitions 
below loo0 cm-' are extremely sensitive to molecular environ- 
ment. The intensities of combinational and hot bands are 
comparable with intensities of fundamental transitions, which 
makes the assignment difficult. Often a nonplanar equilibrium 
geometry is found, if calculated within the harmonic approxima- 
tion.6 In ref 7 an attempt is made to introduce an anharmonic 
potential for two degrees of freedom of formamide, calculated 
frequencies are, however, higher by more than 100% than 
expected for the lowest frequency modes. Thus we feel a strong 
need to describe basic vibrational properties of this molecule 
consistently including the anharmonic effects. 

Previously, we used a combined variational and perturbational 
calculation of the vibrational energies of trans-dideuterioox- 
irane.8 The oxirane molecular force field is dominated by the 
harmonic terms. For the formamide, however, the perturbational 
theory cannot be used. Providing that a complete molecular 
force field is known, the problem would be solved if a 
Hamiltonian could be diagonalized in a sufficiently large 
harmonic basis. In fact, any basis set, including plane waves, 
is applicable. Utilization of Fourier-transformed wave functions 
in the discrete variable representationg leads to accurate predic- 
tion of vibrational energies of smaller systems.I0 Here, with 
respect to the computer limitations, we propose a reduction of 
the harmonic basis based on the idea of phase integrals. 

~~~ 
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Phase Integrals. For an effectively one-dimensional, linear 
motion, a condition for phase (Planck(-Bohr)-Somenfeld) 
integrals can be derived" by an expansion of the wave function 
phase according to the powers of the Planck constant h: f p d r  
= (v + 'lz)h, v = 0, 1, ..., 00. If p2 = 2m(E - V(r)), allowed 
energy levels E can be obtained for any potential V. Vibrational 
energies of diatomic molecules and other suitable systems are 
often calculated by this procedure.I2 

The phase integrals can be written for each of the 3N-6 
modes in normal coordinate~'~ Qi as 

where h = h/(23r), the potential is defined according to the 
diagonal expansion coefficients 

V(QJ = ofQ;/2 -t CiiiQi3/6 + DiiiiQ;/24 (2) 

and the integral limits are given by the condition V(a) = V(b) 
= E. Thus, if there were no coupling among normal modes, 
allowed vibrational energies could be determined exactly from 
eq 1. 

Nevertheless the off-diagonal anharmonic terms in the 
potential contribute to energies to the same extent as the diagonal 
part. To solve the Schrodinger equation, a new harmonic basis 
can be introduced, partially corrected for the diagonal anhar- 
monic terms. Let us define new normal mode frequencies w [  
according to the condition hw[ = E'PI( 1) - E p l ( O ) ,  where E$l(O) 

and Eipl( l )  are the ground and first excited states of each 
oscillator with the potential V(Q& Note that for a harmonic 
potential wi) = w;. See Figure 1 for a graphical representation 
for the amino wagging mode (an MP2 calculated potential). The 
physical meaning of the choice of the new basis is simple: a 
system with the potential 1 (see Figure 1) is better described 
by a harmonic wave function of potential 3 rather than of 
potential 2. The energy levels Eip1(j) are obtained exactly by a 
numerical solution of eq 1. For the nitrogen out-of-plane motion 
a natural harmonic basis may not exist, if w is close to zero or 
negative. 

To implement the basis set substitution, a new Hamiltonian 
was constructed with the diagonal potential: 

V(Q:) = W:~Q:*/~ + CiiiQ/3/6 -k DiiiiQ:4/24 + V: (3) 

where Vi) = (OF - wi) 2)Qi' 2/2. Although the potentials 2 and 
3 are equal, the latter is more suitable for calculation of the 
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' O o 0  1. I '  TABLE 1: Fundamental Vibrational Modes of DCONHf 
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Figure 1. Basis set replacement (example for the amino wagging of 
HCONH?). V = V(Q), the diagonal part of the potential; Q, normal- 
mode coordinate. (A) Calculated potential (1) and its harmonic part 
(2). (B) Harmonic potential, from which the harmonic basis is derived 
(3). 

fundamental vibrational energies in an incomplete harmonic 
basis derived from wf'. For practical reasons, the computation 
was done in the dimensionless coordinate~'~ qi = OJ~I'~Q~.  An 
implementation of molecular symmetry can further reduce the 
size of the Hamiltonian block to be diagonalized. 

Eigen-Problem for Vibrational Hamiltonian. Similarly as 
in the case of the electronic configuration interaction method,I5 
leaving the harmonic approximation leads to a diagonalization 
of a large matrix. In most cases, the matrix is sparse with off- 
diagonal elements much smaller than diagonals. States that 
cover measured IR spectrum are desired, typically lowest 
energies up to about 4000 cm-I. On the contrary, usually only 
the ground state is required for the electronic problem. When 
the matrix can be stored in a computer memory, straightforward 
and fast diagonalization methods can be applied,I6 particularly 
the diagonalization paths using the Sturm sequence property 
showed to be suitable for the vibrational problem.8 For a larger 
matrix only few vectors (columns) can be kept in memory. 
Known numerical recipes'5$'7.'8 lead to a consecutive search for 
eigenvectors, by iterative procedures based on a matrix-vector 
multiplication rather than on a matrix transformation. The 
conjugate gradient methods,I5 working well for the electronic 
case, gives rather poor convergence for higher excited vibra- 
tional states. It also does not lead to a complete diagonalization 
of the matrix, if desired. We have achieved better results with 
[he modified Mitin's gradient vector algorithm.18 According 
to our experience, rather confusing explanation of the algorithm 
is given in the original paper. A modification suitable for the 
vibrational problem with a variable dimension of the iterative 
subspace is described in the Appendix. 

Computational Method 

The geometry of the HCONH2 molecule was optimized by 
energy minimization, using the Cadpac 5 ab initio quantum 
programs,I9 on the MP2 level with the 631GE basis set.20 The 
energy second and first dipolar derivatives were calculated by 
a one-point numerical differentiation with a step of 0.001 bohr 
(0.00053 A). Because of computer limits, lower levels of 
calculations were used for higher derivatives. The third and 
fourth energy derivatives were calculated by a two-point 
numerical differentiation,s with a step of 0.003 bohr, on the 
MP2/DZP2' level. Second dipolar derivatives were calculated 
on the HF/631GE level and the polarizability derivatives on 
the HF/DZP level, using a one-point fromula with the step of 
0.005 bohr. The results were independent on the step used for 
the numerical differentiation at least at the region 0.0005-0.01 
bohr. Test calculations in smaller bases were done. 

harm anharmonic dipolar strengths 
mode W M ~  WPER wyar w p f  W P I ~  uexpC DH DHA DAA DexpC 

la 136 -75 657 239 221 28gd 6313 13e3 14e3 
2 554 520 574 545 536 591 76 72 87 w 
3a 625 462 815 605 599 563 73 459 463 s 
4a 873 855 948 898 890 ?890 4 6 5 

5 966 939 1001 966 957 955 28 12 12 m 
6 1130 1087 1162 1111 1154 1142 2 7 10 w 
7 1264 1215 1241 1260 1257 1241 280 280 287 s 
8 1625 1584 1596 1605 1617 1582 78 30 10 m 
9 1762 1712 1814 1771 1763 1740 990 916 796 s 

10 2227 2126 2241 2209 2199 2135 132 75 85 m 
11 3613 3486 3920 3477 3439 3438 55 26 17 m 
12 3766 3615 3920 3686 3601 3563 60 16 7 m 

a v = 0.01, 523 functions. v = 0.005, 895 functions). Reference 
2. Dipolar strengths in D2: H, the harmonic limit; HA, first dipole 
derivatives were used only; AA, second dipole derivatives included. 

For HCONH2. a, an out-of-plane mode. Frequencies in cm-': PER, 
perturbational calculation; var, variational calculation ( v  = 0.01, 628 
basis functions); PI, variational in the phase integral basis. 

For the density functional theory (DFT) calculations, the 
DelT program22 was adapted. Analytical second energy 
derivatives are not implemented in DeFT, so second and higher 
derivatives had to be calculated numerically. The program has 
basis sets optimized for density functional  calculation^.^^ Bases 
of 72 orbital and 171 auxiliary basis functions was used for 
formamide. The geometry was optimized and the numerical 
differentiation done with the step of 0.005 A. Here a smaller 
step may lead to wrong results, because of the limited numerical 
accuracy-a numerical integration of electron density is per- 
formed over a grid of points in space. It appeared useful to 
check translational and rotational invariance as well as the 
symmetric properties of obtained cubic and quartic force field 
tensors. The local (spin) density approximation (LSDA, LDA) 
is based on the Vosko-Wilk-Nusair f ~ n c t i o n a l , ~ ~  while the 
nonlocal correction uses a combination of BeckeZ5 and PerdewZ6 
functionals. 

For calculation of the vibrational energy levels and spectral 
intensities the S4 program8 was used. The basis set was selected 
from all of the 6188 states less than 6 times excited, according 
to their interaction parameters v(s) = I(ilVls)/(EL - &)I, where 
li) is ground or a monoexcited state. 

Results and Discussion 

DCONH2. For this isomer, we want to illustrate the 
advantage of the harmonic basis based on the phase integrals. 
The utilization of a Cartesian force field allows an easy isotopic 
substitution without repeating the numerical differentiation 
according to normal modes. 

In Table 1 frequencies and dipolar strengths of fundamental 
modes are listed. The harmonic frequencies mostly differ by 
less than 5% from experimental values. The difference exceeds 
100 cm-' for the highest energy (hydrogen stretching) modes. 
Calculated harmonic frequency of the first mode (out-of-plane 
nitrogen wagging) is by about 50% lower than experimental 
(supposed to be close to the HCONH2 amino wagging). 

A straightforward perturbational calculation of the anharmonic 
terms is not conceivable, because the harmonic term is the minor 
part of the amino-wagging potential. Rather a calculation based 
on the phase integral harmonic basis was performed. Second- 
order perturbational calculation (WPER in Table 1) gives poor 
results for six lowest energy modes. Higher frequencies 
compare better to experiment, for example for the eighth mode 
W ~ E R  = 1584 cm-l, experimentally 1582 cm-I. The carbonyl 
stretching is underestimated by 28 cm-I. The perturbational 
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TABLE 2: Frequencies of Fundamental Transitions of HCONHf 
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harmonic anharmonic 
mode WMP? W D F T ~  W D ~ ~  u p 1  WPER WMPZ OJMP~'  OJDFT' OJDFT~ O D ~ ' , ~  ~ ~ e x p e  lcA2 

la  136 237 187 649 -62 22 1 216 233 236 252 289 73 
2 5 60 524 532 582 526 543 538 488 498 536 581 85 
3a 637 612 633 743 492 617 616 595 603 580 603 81 
4a 1042 969 985 1083 1010 1042 1041 969 960 1012 1046 88 
5 1049 988 1011 1079 1010 1012 1007 982 987 1016 1021 75 
6 1279 1217 1231 1277 1235 1269 1267 1210 1234 1253 1258 80 
7 1421 1334 1315 1431 1385 1422 1419 1345 1325 1389 1390 52 
8 1630 1512 1555 1629 1567 1577 1596 1532 1525 1587 1577 43 
9 1780 1727 1740 1778 1743 1780 1779 1734 1790 1769 1754 86 
10 3011 2895 2861 2898 2894 2879 2876 2854 2750 2732 2883 62 
11 3614 3512 3480 3546 3472 3452 3424 3213 3313 344 1 3439 29 
12 3767 3661 3629 3841 3611 3634 3629 3458 3483 3600 3564 27 

LDA. Nonlocal DFT. Bigger harmonic basis of 1737 states used MP2 normal modes used. e Reference 2. See Table 1 for other symbols. 
f c,, is the diagonal coefficient for the expansion into harmonic basis (MP2 calculation). 

calculation has the advantage that a great number of basis 
functions can be included (6188), but the results may be affected 
by Fermi resonances and are, in principle, unreliable. For states 
with a dominant contribution of the anharmonic part, a 
perturbational calculation fails completely, as documented by 
the negative frequency of the first mode. 

A simple variational calculation (avar, with the coupling 
parameter v = 0.01, 628 basis functions) gives vibrational energy 
of the first mode by about 130% higher than experiment and 
most of other frequencies are worse than the harmonic limit, 
almost 500 cm-' off for N-H stretching modes. 

On the contrary, the basis set based on the diagonal phase 
integrals (frequencies u p f a  in Table 1) leads to a substantial 
improvement. Even the singular first mode frequency is only 
by 17% below the expected experimental value. For the highest 
frequency out-off-phase N-H stretching, the error becomes 3%, 
half of the error of the harmonic limit. For this calculation the 
same interaction parameter v = 0.01 was used (523 basis 
functions). 

To explore the convergence of energies with respect to the 
size of the basis, the calculation was repeated for the interaction 
parameter v = 0.005 (895 basis functions, W ~ I ~  in Table 1). 
Frequency changes of a few cm-' are observed, mostly toward 
experimental values. Nevertheless, a substantial part of the 
anharmonic correction could be calculated already in the smaller 
basis. Such a convergence was not seen in the variational 
calculation based on the natural harmonic basis. 

The harmonic dipolar strengths (DH in Table 1) may be a 
sufficient approximation for fundamental modes, with respect 
to available experimental data. It would cause difficulties to 
integrate the complicated rotational-vibrational pattem in the 
gaseous spectra to obtain experimental intensities, because of 
band-overlapping and vast Coriolis interactions. Data from 
solutions or frozen matrices cannot be used, since formamide 
spectra are extraordinary sensitive on molecular environment. 
Dipolar strength doubles for the first mode and rises 6 times 
for the third mode, if the anharmonicity is included. Changes 
on the order of 50% can be seen also for the hydrogeddeuterium 
stretching modes, where also higher dipolar derivatives start to 
contribute substantially, similar to for the case of the oxirane 
molecule.8 

HCONH2. On the case of HCONH2 we want to demonstrate 
the performance of the density functional theory. Within the 
harmonic approximation, several applications of DFT to HCONH2 
were already explored: including the hydrogen bonding.23 A 
DFT calculation of the anharmonic terms for any molecule is 
not known to us. 

Calculated energies are listed in Table 2. For modes 1-9 
the MP2 and DFT (both the LDA and with the nonlocal 
functional) energies harmonic energies are in a good agreement. 
The DFT frequencies for the modes 10-12 are by the order of 
100 cm-' lower than the MP2 harmonic limit, which may appear 
like a shift to experimental frequencies. There is little qualitative 
difference between the LDA and nonlocal DFT results. 

For calculation of the anharmonic energies, harmonic basis 
based on the phase integrals was used. The first diagonal 
excitation energies are listed in Table 2 as wpl. Since up1 is 
equal to the harmonic limit for a pure harmonic potential, 
substantial anharmonic parts in the diagonal part of potentials 
of the first and third modes can be expected, as follows from 
the comparison of WPI and WMP2. For other modes WPI differs 
from the harmonic limit by few percent, by 74 cm-' for the 
highest energy mode, for example, while the carbonyl stretching 
(ninth mode) can be apparently well described by a harmonic 
diagonal potential. 

The second-order perturbational calculation, based on the 
phase integral basis, gives good estimates of frequencies 6- 12 
(WPER). It fails for the lower frequency modes, similar to for 
DCONH2. 

Finally, a variational calculation based on the substituted basis 
(v = 0.005, 937 basis functions, anharmonic WMp2 in the Table 
2)  gives the best values of vibrational energies, including the 
lowest energy modes. To test the effect of limited basis set, 
calculation with 1737 harmonic states was done (WMPf). An 
excellent convergence is observed, with energies varied by few 
cm-'; for modes 8 and 11 greater differences of about 20 cm-' 
emerge. 

For all modes the diagonal and off-diagonal anharmonic 
energy contributions can be estimated: For the first mode, for 
example, the diagonal term in the potential is very big, WPI = 
649 cm-' is by 380% higher than the MP2 harmonic limit, see 
also the magnitude of the dl 1 1  1 coefficient in Table 3. But the 
coupling to other modes lowers the transitional frequency to 
about 220 cm-I, mainly due to the cubic force constants; see 
Table 3. A good starting choice of the basis indicates the high 
value of the diagonal expansion coefficient of the wave function, 
Ic11I2 = 73%. Clearly, previous efforts to rely on only the 
diagonal part of the potential had to neglecting the 
coupling. For the N-H stretching modes the diagonal anhar- 
monicity contributes by about 2% to harmonic energy and IcI2 
= 28% indicates strong coupling to other vibrations. 

The fourth- and fifth-mode frequencies are switched for the 
MP2 calculation, if compared to the harmonic limit and to the 
earlier assignment.2 They have a weak IR signal, and the energy 
separation is only 25 cm-I. 
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TABLE 3: Selecteda Anharmonic Force Constants for 
HCONH2 

Boui and BednArovB 

ij(k) HFl431G HF/631G** MP2 DFTLDA DFT/nonlocal 
Cubic cUkb 

1 1  8 1515 1717 1617 1465 1340 
1 1  11 5733 6337 6606 6015 5706 
1 1  12 2899 3067 3200 2741 2746 
1 3  12 2463 2612 2736 2434 2402 
3 3  11 1028 1063 1109 988 98 1 

1010 10 2030 2009 2061 1878 1871 
11 11 11 1637 1642 1685 1526 1522 
11 12 12 1624 1629 1666 1507 1504 
12 12 12 542 542 552 499 510 

1 1  43533 53036 56085 51204 46489 
1 3  4733 5137 5475 4749 4577 

111  -3415 -3520 -3589 -3368 -3266 
112  -4004 -4108 -4185 -3978 -3944 

10 10 1197 1158 1154 1050 1035 
11 11 685 679 674 593 569 
1212 733 72 1 715 619 614 

a Constants bigger than 1000 cm-' (in dimensionless MP21631GE 
normal coordinates) and diagonal for hydrogen stretchings. Sign of 
cubic constants depends on the phase of normal modes. 

Quartic d,, 

The DFT frequencies are mostly underestimated, apparently 
due to the low harmonic values (second derivatives). This 
handicap of DFT is almost totally corrected, when the MP2/ 
631GE normal modes (harmonic force constants) are combined 
with the DFT third and fourth energy derivatives, see frequencies 
o ~ ~ b , d  in Table 2. Frequencies number 1, 5 ,  6, 7, 9, 11, and 
12 are even closer to experiment than sole MP2 results. For 
five modes the difference between calculated and experimental 
frequencies is less than 10 cm-I. 

Calculation within the harmonic approximation may lead to 
wrong suggestions about molecular symmetry and geometry. 
Some ab initio approximations for HCONH2 give an imaginary 
frequency for the amino wagging, predicting a nonplanar 
equilibrium geometry.6 An HF/63 1G** calculation, for ex- 
ample, yields wl = 476 cm-', an MP2/DZP calculation w1 = 
-129 cm-' (we keep the usage to express imaginary frequencies 
as negative), while the 631GE basis leads again to a positive 
value of o 1 = 136 cm-I . The DFT calculation gives the energy 
by about 38% higher, 187 cm-'. This inconsistency can be 
easily overcome behind the harmonic approximation. The 
excitation energies derived from the diagonal phase integral are 
744, 630, 649, and 617 cm-l for the HF/631G**, MP2/DZP, 
MP2/631GE, and DFT force fields, respectively. Here the usual 
characteristics of molecular force fields are conserved: the DFT 
gives usually most flat, shallow potentials, while the HF forces 
are overestimated. 

Selected higher energy derivatives (related to dimensionless 
MP2/631GE normal coordinates) are given in Table 3. The 
constants vary by less than about 10% if calculated by HF, MP2, 
or DFT methods. The performances of LDA a nonlocal DFT 
are comparable, if the MP2 calculation is considered superior. 

Spectral intensities are listed in Table 4. They approximately 
match experimental spectrum, although a qualitative comparison 
with the gaseous spectrum may be misleading. The dipolar 
strength for the first mode is surprisingly high, and the difference 
between the MP2 and DFT values rather big. We consider the 
MP2 values more realistic, since the mode is associated with a 
significant change of electronic structure on nitrogen (sp2 - 
sp3) and large changes of dipole moment may be expected. For 
Raman intensities f i s t  polarizability derivatives were calculated 
only. Small vapor presure of formamide prevents a Raman 
measurement in the gas phase,27 although spectra in the 
condensed phase were studied, see ref 28 and references therein. 

TABLE 4: Spectral Intensities for HCONHf 
dipolar strength Raman 

DhtnH DomH DHAIAA DexDb I eH e 
1 6296 764 13012113534 2 7 0.75 0.15 
2 76 98 72/87 m 222 184 0.39 0.35 
3 74 65 521/525 m 11 13 0.75 0.75 
4 21 11 617 w 97 99 0.75 0.75 
5 21 20 6/24 w 509 588 0.25 0.24 
6 347 520 341/316 s 431 376 0.09 0.15 
7 13 19 3317 w 431 133 0.26 0.69 
8 111 93 43/16 m 241 133 0.47 0.40 
9 933 1134 8851775 vs 688 652 0.37 0.37 

10 115 26 76/81 s 4033 2774 0.26 0.26 
11 55 15 25/17 m 2996 1011 0.08 0.14 
12 59 9 23/10 m 1060 581 0.71 0.36 

D2, for values behind slash first dipole 
derivatives used only. H: harmonic approximation. Raman intensity 
in atomic units, 4 the depolarization ratio. Reference 2. 

TABLE 5: HCONHt Combinational Vibrational Transitions 

Dipolar strengths in 

state" mMP2.H ODFT,A WMF-LA O e x o b  DMPZ 
12 
l13I 
32 

122' 
l23I 
1 I5' 
1'6l 

128' 

1 3  

14 

272 
772 

1273 
409 
832 
905 

1185 
1415 
545 

1766 

813 
1093 
1324 
1465 
1533 
1653 
1991 
2218 
2329 
2576 

830 
1142 
1403 
1534 
1609 
1721 
1836 
2108 
2420 
2682 

658 
1159 
1340 
1570 
1620 
1738 
1844 
2133 
2349 
2746 

4212669 
661352 

615 
411 1 

4411 8 
941 105 

14/20 
919 

2/49 
1170 

a Highest contribution in the expansion into the harmonic basis (MP2 
calcd), symbols and units same as in previous Tables. Reference 2 
(Figure 2). 

We want to point out a big influence of anharmonic forces on 
intensities and also polarization ratios of the hydrogen stretching 
modes. 

Combinational transitions that should be visible in the 
absorption spectrum are listed in Table 5. The assignment is, 
however, more speculative than for fundamental transitions. 
Also, the convergence of eigenvectors is slower than that of 
energies. The DFT and MP2 calculations differ by the order 
of 100 cm-I . An extensive rotational-vibrational coupliIig for 
combinational and hot transitions can be expected. 

Calculated absorption spectra are compared to the experiment 
in Figure 2. Spectra were simulated with the bandwidth of 10 
cm-'. Calculated frequency of the 0 - l2 transition 830 cm-' 
is closer to the 770 cm-' band than previously assigned 658 
cm-'. The calculated frequency of the hot transition 1' - l2 
(not shown in Figure 2) is 614 cm-I. The calculations presented 
here are primarily optimized for fundamental transitions, and 
we feel that future work will be needed in the assignment of 
combinational modes. The nomenclature based on the harmonic 
basis may be misleading for higher excited states. Nevertheless 
good overall agreement between calculated and experimental 
frequencies is observed. 

The contribution of second dipolar derivatives, as shown in 
Tables 4 and 5 and in Figure 2, is large for many transitions 
and can bring additional error to the intensities derived from 
first derivatives, calculated on a higher level of approximation. 
The intensity pattem of fundamental transitions is better 
described by first derivatives only. On the other side, second 
derivatives dominate in intensities of the combinational transi- 
tions. 

Rotational Constants. Geometry changes caused by an 
anharmonic forces are usually too small for a direct comparison 
with experimental values.8 Molecular rotational constants can 
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TABLE 7: Ground-State Geometry of HCONH2 

3000 2000 i 000 0 

Figure 2. IR spectra of HCONH2. (A) harmonic (MP21631GE) 
approximation, (B) anharmonic force field, (C) anharmonic force field 
i- second dipolar derivatives included, (D) experiment, redrawn from 
ref 2 (measured in a multiple-reflection cell, optical path set at 17.25 
m, 20 "C, resolution 1 cm-I). Arbitrary units on y axis, one scale for 
A-C. 

TABLE 6: Rotational Constants for Nitrogen Wagging 
Excited State* 

calculationb 
const ro ( r )  H A,MP2 A,DFT expc 

AIO) 2.4332 2.4044 2.3781 2.2931 2.3012 2.4256 
BIO) 0.3507 0.3480 0.3500 0.3467 0.3435 0.3537 
All) (0) (-0.0195) (-0.0869) (-0.0934) (-0.0635) (-0.0327) 
BI 1) (0) (0.0017) (-0.001 1) (0.0002) (0.0005) (-0.0003) 
A/2) (0) (0.0081) (-0.1738) (-0.0986) (-0.0730) (-0.0450) 
B/2) (0) (0.0010) (-0.0021) (-0.0005) (-0.0001) (0.0000) 
Ai3) (0) (0.0288) (-0.2607) (-0.0629) (-0.0366) (-0.0732) 
Bl3) (0) (0.0027) (-0.0032) (-0,0010) (0.0007) (-0.0003) 
errotd (%) 1.8 1.6 1 .o 

Constants in cm-I, B is an effective (averaged) rotational constant. 
ro, potential-well geometry (MP21631GE); (r) ,  constants calculated 

from average nuclear positions, H, harmonic limit; A, anharmonic 
values. In brackets the difference with respect to the ground state is 
given. Reference 2. Average error for a linear fit. 
be, on the contrary, measured directly from a rotationally 
resolved spectra and serve as an indicator of geometry changes 
in various vibrational states. A second order expansion of the 
constants was used for calculation, A(Q) = Ao + AiQi + AijQiQj. 

For the first, out-of-plane nitrogen wagging mode, the 
rotational constant A was found to decrease from the ground 
state with a higher excitation, until the three-times excited 
mode.* An effective B constant changes by less than 0.0003 
cm-' for these four vibrational states. As can be seen in Table 
6, both the MP2 and DFT calculations are in accord with this 
observation. For the three-times excited state, however, the 
change of constant A is already unfierestimated. The density 
functional theory results are closer to experiment, except the 
change of A constant for the 13) state and the absolute value of 
the effective constant. Calculation on the harmonic level (H) 
reflects qualitatively changes of rotational constants, but the 
numbers are overestimated in most cases. Change of A for the 
13) state is higher by 260% than the experimental value, for 
example. Sole equilibrium (ro) or potential minimum ( ( r ) )  
coordinates cannot be used to estimate correctly rotational 
constants in various vibrational states, as apparent from Table 
6. 

The DFT theory gives comparable bond lengths with the MP2 
calculation (Table 7). Within given experimental accuracy it 
is difficult to separate the anharmonic contribution and the error 
of an electronic ab initio level. 

The water molecule was chosen, to further explore applica- 
tions of a DFT anharmonic molecular force field. Here, a 

~ 

harmonic anharmonic 

d(& MP2 DFT MP2 DFT exp30 
CN 1.361 1.368 1.373 1.379 1.368 6 0.003 
CO 1.222 1.227 1.224 1.230 1.212 * 0.003 

NH 1.010 1.017 1.005 1.013 1.027 f 0 . 0 0 6  
CH 1.105 1.115 1.116 1.126 1.125 f 0 . 0 1 2  

NHH 1.007 1.014 0.991 1.001 1.027 *0.006 

TABLE 8: DFT Frequencies and Rotational Constants of 
Water 

rotational constants (cm-I) frequencies [cm- I] 

mode exp MP2 DFTIharm ref29 MP2A/harm DFTAharm 

0 0 0  0 9.29 9.1219.40 
14.50 14.32114.71 
27.79 26.90127.74 

14.70 14.47114.97 
30.70 29.52129.46 

15 .OO 14.62/ 1 5.24 
35.80 32.27131.19 

14.47 14.21114.93 
26.50 26.36128.12 

14.04114.64 
25.431276 1 

2' 1575 1565 152711601 9.12 9.0519.29 

22 3151 3107 301913202 9.00 8.9819.18 

1' 3651 3679 353713687 9.20 8.9919.54 

3' 3756 3792 363713805 8.8019.35 

error (see Table 7) 1.312.5 

8.9419.2 1 
13.91114.31 
26.78127.58 

8.8719.1 1 
14.00114.56 
29.62129.34 

8.8 ll9.00 
14.1 1114.81 
32.6413 1.10 

8.8019.35 
13.78114.53 
26.24127.97 

8.8019.35 
13.63114.24 
25.23127.45 
0.U1.99 

complete set of 56 less than 6 times excited states of the 
3-dimensional oscillator was used in the vibrational Hamiltonian. 
The results are summarized in Table 8. Nonlocal DFT 
calulations yield strongly underestimated harmonic frequencies 
and, consequently, underestimated transitional frequencies. On 
the contrary, rotational constants compare well with the orbital 
(MP2/63 1 1G**) computation. For example, the experimental 
constant C = 27.79 cm-' for the ground state decreases by 1.29 
cm-' for the 1' state. Both MP2 and DFT calculations give a 
decrease of 0.54 cm-I, while the harmonic values increase. MP2 
rotational constants are closer to experimental absolute values, 
while the DFT results better describe changes under vibrations, 
see the error of the linear fit. 

Conclusions 

The harmonic basis set derived from phase integrals is more 
convenient and more universal for calculation of vibrational 
energies than a basis based on sole second energy derivatives. 

The density functional theory yields anharmonic force 
constants comparable to values from an orbital calculations. The 
DFT is particularly suitable for calculation of changes of 
molecular geometry under vibrations, as was shown for 
rotational constants of water and formamide molecules. 

Calculated frequencies and intensities for the formamide 
molecule are in a good overall agreement with the experiment, 
including the hydrogen out-of-plane wagging mode and lower 
combinational transitions. 
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Appendix 

The 
eigenvalue problem A. X = AX for a real symmetric matrix A 
of dimension N is solved by a modified Mitin's algorithmI8 
based on minimization of Rayleigh functional. The eigenvectors 
are built subsequently according to their ascending eigenvalues. 

Algorithm for Diagonalization of Large Matrixes. 
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1. Select initial dimension of the iterative subspace M for 
t h e l t h e i g e n v a l u e , 2 ~ M ~ N - l f l ; M = 2 f o r 1 = N -  1 
and M = 1 for 1 = N. 

2. Estimate the lth eigenvector XI = E' as a unit vector, E' 
= (N)-Il2 (1, 1 ,  ...., 1)' and the starting eigenvalue A/ (AI = 0, 
I /  = 11.1 for 1 > 1). 

3. Orthogonalize XI to previous eigenvectors E', i = 1,2,  ..., 
1 - 1 and normalize. 
4. Form gradient vectors Xi, i = 2, 3, ..., M ,  as 

Bouf and BednArovB 

where 1 is the unit matrix. Orthogonalize each Xi to {Xk, k = 
1, 2, ..., i - l} and to the eigenvectors {EI, j = 1, 2, ..., 1 - l} 
and normalize. 

5. Check convergence on gradient, gradient = norm of X2 
before normalization. If gradient < gradlimit change 1 to 1 + 
1 and go to 1 (if next eigenvector is desired). 

6. Form vectors A*X, and the subspace M x M matrix F = 
XLA-X. 

7. Diagonalize F and take the lowest eigenvalue &: F*YF = 
&YF. Order the eigenvalues (AF = 11 I Az I ... I A M ) .  

8. Take new approximation of the eigenvalue A, = I F  and of 
the eigenvector E' = CzlYFiXi. 

9. Check if the subspace is not redundant: if for some 
M'(Yp((A for all p = M' + 1, ..., M ,  then M = M'. 

10. Go to 4. 
By the value of M the speed of calculation and computer 

memory requirements can be tuned. The algorithm becomes a 
direct diagonalization for M = Nand is equivalent to a conjugate 
gradient method for M = 3. The algorithm can be used for the 
generalized problem A-X = AB-X, if the form Xi = (A - 
A/B).Xi.l is used in 4 and F-YF = &9YF is solved in 6, with S 
= Xt.B.X. By a nonzero value of A greater numerical stability 
was observed than for A = 0. 

Values used for the 1737 x 1737 vibrational matrix of 
HCONHz are as follows: 

Average magnitude of matrix element a = 5 cm-' 
Average magnitude of diagonal element d = 6551 cm-I 
gradlimit = sqrt(O.OOOOOOO1dN) 
Starting value of M = 50 

A = 0.001. 
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