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Partial optimization of molecular geometry in normal coordinates
and use as a tool for simulation of vibrational spectra
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A normal mode coordinate-based molecular optimization algorithm was implemented and its
performance tested against other optimization techniques. In certain cases the method was found to
be computationally simpler and numerically more stable than the optimization algorithms based on
Cartesian or internal valence coordinates. The usual redundant/internal coordinate scheme provided
fastest convergence for compact covalently bonded molecules, while the normal mode method was
found to be more suitable for more weakly bonded molecular complexes. For constrained
optimizations use of the normal coordinates allows one to naturally separate the lower-energy modes
from those more typically studied with vibrational spectroscopy. Thus, it provides an appropriate
tool for simulations of IR and Raman spectra of larger molecules and complex systems when
specific conformations are desired. ©2002 American Institute of Physics.
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I. INTRODUCTION

In the theoretical modeling, molecular motion is ofte
arbitrarily restricted. For example, in order to calculate
brational spectra of biologically interesting systems, natu
structures often have to be simplified and thus accessib
advanced computations. This can cause problems since
desired conformations can significantly deviate from relax
geometries obtained within a given approximation. In oth
words, formal full energy minimization is not relevant
such cases. Traditionally, constrained optimization te
niques are applied separating out geometry parameters~e.g.,
torsion angles! that should have little influence on desire
molecular properties~e.g., mid-IR vibrational frequencies!.
In this work, a normal mode following technique is propos
as a computationally more convenient alternative to
valence-coordinate constraints.

Optimization of molecular structure by energy minim
zation has always been a focus of computational chemistr
rather restricted class of algorithms has been found rele
to ab initio quantum-mechanical computations, because
their exceptional demands on computer power. Meth
based on a quadratic approximation of the molecular po
tial energy surface appear to be most convenient,1 although
particular advantages can be found also for other approac
such as those using a conjugate gradient2,3 or the direct in-
version of the iterative subspace.4,5 For the quadratic meth
ods, the molecular Hessian, i.e., the matrix of the ene
second derivatives~force constants!, is estimated either in
each optimization step or by updating on the fly. Updating
usually preferred, because for mostab initio methods com-
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putation of the gradient takes a small fraction of the tim
needed for evaluation of a complete Hessian. Of the m
available updating schemes, the Davidon–Fletcher–Pow6

Schlegel,1 and Broyden–Fletcher–Goldfarb–Shan
~BFGS!7 algorithms have proven to be most successful
molecular studies. The assumption of a quadratic poten
enables use of the Newton–Raphson or semi-Newto
Raphson~scaled! gradient optimization scheme. However,
was realized early that this scheme must be generalized
more general molecular surfaces farther from the quadr
region. Thus, the trust radius model8 derives the step size
from Hessian eigenvalues, while the more universal ratio
function optimization~RFO!9,10 method introduces a self
consistent, self-controlled step scaling optimization.

The choice of a suitable coordinate system, normall
trivial linear transformation, is of paramount importance f
molecular optimizations. Quantum chemical programs u
ally provide gradients and Hessians in Cartesian coordina
which are not suitable for most molecular optimization
However, it was shown that for many molecules, particula
for cyclic systems, optimization in Cartesian coordinates
numerically more stable and often converges faster t
methods based on internal coordinates.11 Consequently,
methods based on mixed internal and Cartesian coordin
were proposed and proved to be a viable alternative.12,13 Pu-
lay and co-workers, however, showed that the problems
sociated with valence-type coordinate optimizations can
overcome by an introduction of carefully chosen natural
most conveniently, redundant internal coordinates.14,15

In our experience, however, redundant coordinates
not always the best choice. Optimization of large molecu
il:
6 © 2002 American Institute of Physics
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using theGAUSSIAN set of programs16 ~where the redundan
algorithm is implemented! often did not converge succes
fully, presumably because of the numerical instabilities g
erated by the large number of matrix–matrix multiplicatio
needed for back and forth Cartesian/redundant transfor
tions. A recent study suggested that the numerical stab
should be improved using an approximate Cholesky fac
ization technique.17 More complex constrained optimization
are often limited; for example, when constraints involve l
ear combinations of the internal coordinates, they canno
held fixed except by special techniques, such as Lagran
multipliers, the projector method, or the penalty-functi
approach.1

In the past, we used constrained optimization based
internal~nonredundant or redundant! coordinates, namely fo
torsion angles, in order to obtain peptide fragments with s
cifically defined conformations, but otherwise geometrica
fully relaxed so that the spectroscopically important high
frequency modes were not significantly perturbed.18,19Apart
from the difficulties described above, such procedure pro
to be unstable namely for weakly bonded molecular co
plexes with noncovalent interactions, such as DNA b
pairs or solvent–solute complexes. An automatic definit
of the redundant coordinates is not often desirable and
intervention is required for these systems, optimally invo
ing a manual inspection or redefinition of all the noncoval
geometry parameters. Furthermore, it is nota priori clear
which vibrational modes are affected by fixing specific int
nal coordinates. Thus, we propose instead a normal m
based optimization that, as shown below, more elegantly
ances the conflicting goals of fixing geometry paramet
and relaxing the vibrational degrees of freedom.

Normal mode~eigenvalue! following algorithms have
previously proven to be indispensable for transition state
calization. General algorithms allowing separation of the
brational modes have been proposed for geometry optim
tions as well as for finding energy maxima or higher-ord
saddle points.20–23This existing mathematical apparatus c
thus be readily adapted for constraining or relaxing a nor
mode coordinate. In the next sections we describe our im
mentation of the normal mode optimization method a
through several examples, compare it to the more usual
lecular optimization techniques.

II. METHOD

A. The harmonic approximation

We introduce the harmonic approximation24 in order to
define basic variables used for the normal mode optimiza
algorithm. The molecular harmonic vibrational Hamiltonia
is given by

H5 1
2~Dẋt

•M•Dẋ1Dxt
•f•Dx!, ~1!

whereM is diagonal matrix of atomic masses$mi%, Dx is the
vector of atomic displacements with respect to their equi
rium positions,Dxi5xi2xi

0, andf is the Cartesian force con
stant matrix~Hessian!. Bold letters denote vectors or matr
ces, superscriptt means transpose. Following commo
practice, the index (i51,...,3N) consists of the atom numbe
Downloaded 21 Aug 2002 to 147.231.120.167. Redistribution subject to 
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(l51,...,N) and a coordinate (a5x,y,z). As an intermediate
step, mass-weighted coordinates are defined so thaXi

5AmiDxi , f i j 5AmimjFi j , and

H5 1
2~Ẋt

•Ẋ1Xt
•F•X!. ~2!

Finally, introducing the normal mode coordinates,$qj%,

X5s•q,

and requiring

st
•s51, st

•F•s5Q, with Qi j 5v i
2d i j ,

we obtain the Hamiltonian in a diagonal form as a sum
harmonic oscillators

H5 1
2~ q̇t

•q̇1qt
•Q•q!5(

j

1
2~ q̇ j

21v j
2qj

2!. ~3!

The Cartesian displacements are thus related to the no
mode coordinates via a linear transformation

Dxi5(
j

1

Ami

si j qj5(
j

Si j qj , ~4!

i.e., with the well-knownS-matrix transformation.

B. The normal mode optimization

The usual quadratic approximation~Fig. 1! is used to
search for the energy minimum. Knowing the normal mo
gradient,g( i), and the second derivatives of the energy,Q( i),
at an optimization pointi, the step towards the minimum
energy is given by the Newton–Raphson formula modifi
according to the RFO9,10 method. In a pseudocode represe
tation, the present algorithm follows these steps.

~1! Estimation of initialf( i), yielding theS matrix.
~2! Calculation of the Cartesian gradientgc

( i) .
~3! If a previous step is available, updatef using the BFGS

Hessian update7

f~ i 11!5f~ i !2S Dg~ i !t
Dg~ i !

dx~ i !
•Dg~ i ! 1

~ f~ i !
•dx~ i !! tdx~ i !

•f~ i !

dx~ i !
•f~ i !

•dx~ i ! D , ~5!

with Cartesian displacementsdx( i )5x( i )2x( i 21) and the
gradient differencesDg( i )5gc

( i )2gc
( i 21) . Obtain new

S-matrix.

FIG. 1. Normal mode optimization. At each pointi a quadratic potential
energy surface is assumed to be same as at the final/next pointi 11. Note,
that normal mode displacementdqi has a different sign if related to the
parabolas ati and i 11.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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~4! Calculate the normal mode gradient

g~ i !5St
•gc

~ i ! . ~6!

If small, stop the optimization.
~5! Produce a new step, using the quadratic dependence

its RFO1,9–11,13extension

dq~ i 11!52
2g~ i !

Qi i 1AQi i
2 14~g~ i !!2

. ~7!

~6! Produce new Cartesian coordinates

x~ i 11!5x~ i !2S•dq~ i 11!. ~8!

~7! Incrementi, and iterate back to step 2.

C. Implementation

The normal mode optimization was implemented in
driving programQGRAD, which reads energies, gradients, a
second derivatives from anab initio output, and produces
improved coordinates. Also, the normal mode calculat
~force-field diagonalization! and the coordinate transforma
tions ~see steps 1–7 above! are controlled byQGRAD. Cur-
rently, the program is interfaced to theGAUSSIAN program
package.

The optimizations in Cartesian and internal/redund
coordinates were done withGAUSSIAN using the default
Berny25 optimization routes and the commonab initio meth-
ods specified below for each particular system.

III. RESULTS

A. Azetidine full optimization

In order to investigate the general properties of this n
mal modes-based optimization, the azetidine molecule

was chosen, since it was originally used as a test for
redundant coordinate method.14 The starting geometry wa
obtained with theTINKER26 molecular mechanics packag
and was further optimized at the HF/4-31G level. The co
vergence was determined on the basis of the mean Carte
(,;1025 a.u.) or corresponding normal mode gradient c
responding approximately to an energy error of 1027 hartree.

As follows from the dependence of energies~in logarith-
mic scale! on the step number in Fig. 2, Cartesian coor
nates provided a steady convergence but needed abou
steps for a complete optimization. The internal~nonredun-
dant! valence coordinates provided an apparent fast ene
decrease at the beginning, but the convergence stoppe
proximately at the step number 20 and the energy error k
oscillating within a small energy interval (1023 hartree
;1 kcal/mol). The redundant coordinate method conver
smoothly after 13 steps. The normal mode optimization p
vided the faster convergence at the beginning, but was
ished later, in about 18 steps. Thus, the redundant coordi
Downloaded 21 Aug 2002 to 147.231.120.167. Redistribution subject to 
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method proved to be most advantageous for azetidine
accord with its reputation,15,17 but the normal mode metho
seems to be a reasonable alternative, still much faster
the Cartesian-based optimization. We have observed
property of the normal mode method~slightly slower than
the redundant, but much faster than the Cartesian! for most
other molecules that were optimized without constraints.

Interestingly, the curves for the three converging me
ods ~Cartesian, redundant, normal! in Fig. 2 exhibit an ‘‘S’’
pattern, with the fastest energy decreases at the beginn
and at the ends of the optimization paths. This presuma
reflects the large geometry changes for the first optimiza
points as well as the approach to the quadratic potential
ergy surface at the final stages of the optimization.

B. Oligopeptide torsion angles

The conformation of peptides and proteins is essen
for their biological activity and other physical properties, a
has been the topic of numerous spectroscopic studies. In
next example the normal mode method is used to const
the geometry during the optimization. Unlike for the valen
coordinate optimizations, the peptide main chain tors
angles ~f, c! are not fixed explicitly. Rather, the low
frequency modes involving these torsions are frozen.

Similar to the methods used in Ref. 17, a tripeptide m
ecule, Ac-(Ala)3NHMe, was generated in ab-sheet-like ex-
tended conformation @(c,f)5(135°,2135°)# by the
TINKER program package. Then, constrained optimizatio
were performed at the HF/6-31G level, using the intern
redundant method with fixed~f, c!, and the normal mode
optimization with limits on the maximum frequencies of th
fixed modes. We suppose that the results can be genera
to any other computational model; the HF/6-31G level w
chosen in order to save computational time. Although cal
lated frequencies deviate from expected experimental val
generally being too high by 10%–15%, it has been est
lished that reasonable estimates of experimental frequen
can be obtained with this level if a simple scaling of com
puted numbers is allowed.27

The torsion angle changes are summarized in Table I
the C-terminal residue only, since they do not vary sign
cantly and virtually the same numbers were obtained for
other two alanine residues. Apparently, fixing of the lowe

FIG. 2. Azetidine HF/4-31G full optimization. The dependence of the
ergy error on the number of optimization steps for the four coordinate s
tems.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Downloaded 21 Au
TABLE I. The oligopeptide Ac-(Ala)3NHMe HF/6-31G constrained optimization.

Torsion angles~c,f!a Energy~a.u.! Number of steps v I(cm21)b v II(cm21)c

Starting geometry:
135.0,2135.0 2984.094 367 ~0! 1893 1759

Fixed normal modes:
With v,100 cm21 135.6,2134.0 2984.123 008 10 1814 1700

200 cm21 135.0,2135.0 2984.122 040 9 1817 1696
400 cm21 135.0,2135.0 2984.118 583 5 1820 1705
600 cm21 135.7,2135.7 2984.117 834 6 1821 1712
1000 cm21 134.4,2134.7 2984.116 379 4 1822 1709

Fixed torsions:
135.0,2135.0 2984.121 259 4 1816 1701

Unconstrained optimization:
162.6,2159.2 2984.129 142 35 1802 1689

aFor the middle alanine residue; values for other residues were similar within 1°.
bThe highest CvO stretching~amide I! frequency.
cThe N–C stretching~amide II! frequency, maximum of absorption.
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frequency normal modes effectively does fix the torsio
movement, even if the lowest limit is chosen to be 100 cm21.
Indeed, when such a restriction is removed, the molec
relaxes into quite a different conformation with (c,f)
5(162.6°,2159.2°). Optimizing with fixed normal mode
provides a molecular energy similar to that obtained with
torsion-angle-based constrained optimization. In the
three columns of Table I characteristic peptide bond frequ
cies for the amide I~CvO stretching! and amide II~C–N
stretching coupled with N–H bending! modes are listed
Clearly, compared with the original structure, both optimiz
tions provide similar improvement in these amide frequ
cies, with respect to the fully relaxed geometry. For examp
the amide II frequency decreased by 77 cm21 during the
optimization with fixed torsions, which compares well wi
the changes~79–71 cm21! within the fixed normal mode
optimizations.

C. Dinucleotide model

Refinement of the DNA geometry from that obtain
from via an x-ray structure determination is a typical ta
required to model its vibrational properties. A particul
problem that arises in this process is the preservation of
desired conformation within given computational model
the force field, while still maintaining the normal modes
interest. As an example that models this process, a ‘‘dinu
otide’’ duplex consisting of two cytosine and guanine pa
was constructed, based on standard B-DNA conforma
parameters implemented in theMSI/ACCELRYS software pack-
ages. In order to preserve the desired arrangement of
bases, two constrained optimization techniques were app
First, the normal mode scheme was used, and all nor
mode coordinates whose modes hadv,100 cm21 were held
fixed. Then, with the internal coordinate method, the dista
between the base pair planes was fixed by creating an
trary bond between cytosine and guanine nitrogen ato
each in the opposite plane, this new bond being appr
mately perpendicular to the planes. In addition, the bend
angles associated with this bond and all molecular tors
angles~involving the hydrogen bonds! were kept constant
g 2002 to 147.231.120.167. Redistribution subject to 
l

le

e
st
n-

-
-
,

e
r

e-

n

he
d.
al

e
bi-
s,
i-
g
n

All computations were performed at the BPW9128,29/
6-31G** level with defaultGAUSSIAN parameters.

As can be seen from Fig. 3, for this ‘‘duplex DNA
model, the normal mode method provided a fast smooth c
vergence within 23 cycles, while the internal coordina
method had large oscillations in the early stages, then yiel
a stabilized structure after approximately 33 steps, but fin
began to mildly oscillate in energy, not fully obeying th
default convergence criteria inGAUSSIAN. The normal mode
optimized energy was;1 kcal/mol smaller and the rms gra
dient was 50% smaller than that from the internal coordin
optimization. Both techniques approximately preserved
desired juxtaposition of the bases found in t
B-conformation of DNA, as can be judged from Fig.
where the starting- and optimized geometries are supe
posed. However, the normal mode optimization led to s
nificantly smaller changes of geometry than the internal
timization. For example, the overlap of the starting a
internally optimized geometry@case~a! in Fig. 4# produced a
root-mean-square~rms! deviation~D! of 0.12 Å for 12 atoms
in the cytosine six-member rings, while the overlap of t
starting- and normal mode optimized geometries resulted

FIG. 3. Progress of the dinucleotide model constrained optimization for
internal and normal mode optimization methods. Both minimizations sta
from the same original geometry~cf. Fig. 4!.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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D50.04 Å. The normal mode constrained optimization th
appears to be more restricted to relaxing the higher-ene
small-amplitude movements that are needed in order to
the proper minima for the higher-frequency modes.

In Fig. 5 the simulated IR absorption spectra are plott
as calculated for the starting geometry and the two optimi
geometries of this ‘‘dinucleotide.’’ The remarkable similari
of the spectra for the optimized structures and their diff
ences from the original structure spectra suggests that
both optimized cases the modes which are of the most s
troscopic interest, those lying in the region of approximat
1000–2000 cm21, are satisfactorily relaxed during the opt
mization processes. For example, the highest CvO stretch-
ing band was calculated to be at a rather unrealistic
quency at 1824 cm21 for the original structure, but moved t

FIG. 4. Superposition of the model dinucleotide starting and final ge
etries obtained by constraining the internal~a! and normal mode~b! coor-
dinates.

FIG. 5. Dinucleotide duplex IR absorption spectra, as calculated at
BPW91/6-31G** level for the starting geometry~a! and for structures ob-
tained by the constrained normal mode~b! and internal coordinate~c! opti-
mizations.
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1734 and 1731 cm21 for the normal mode and internal coo
dinate optimization, respectively. When the normal fr
quency errors of this (BPW91/6-31G** ) method are taken
into account, these compare much better with experime
data measured for such systems.30 Unfortunately, due to the
lack of experimental data for our specific model system
cannot judge which of the two methods provided more re
istic IR intensity spectral profile. Nevertheless, we can c
clude for the dinucleotide duplex that the normal mode o
timization: ~1! was found to be numerically more stable;~2!
allowed the molecule to be better relaxed~providing lower
energy!; ~3! disturbed the original geometry less, and, fina
~4! provided approximately the same vibrational spectra
the classical internal-coordinate-based optimization.

D. Water cluster constrained optimization

Constrained optimizations of systems with ill-define
internal/redundant coordinates, such as might be found
weakly interacting hydrogen-bonded systems, are prim
targets of the proposed method. For such systems the a
matic redundant/internal routine, as implemented in
GAUSSIAN package, generates non-natural linear-bending
ordinates as a substitution for the missing covalent bon
and these do not provide fast convergence. This can be
proved only partially by a user redefinition of those coor
nates, which, however, significantly complicates practi
computations on these complex systems. In this section
apply the normal mode technique for computations of p
tially relaxed geometries and vibrational frequencies o
cluster of hydrogen-bonded water molecules and comp
the results to the conventional methods.

A cluster of 10 water molecules was prepared as follo
using theTINKER program. An approximately cubic wate
droplet consisting of 214 molecules, constructed using
TINKER example according to the work of Lybrand an
colleagues,31 was minimized using theAMBER32 force field.
Then, a ‘‘randomly’’ selected part consisting of 10 molecul
was ab initio optimized at the BPW91/6-31G** level. In
order to separate the lower-frequency modes and keep
geometry ~mutual positions and orientations of the mo
ecules! as close as possible to that found in the droplet, c
strained optimizations were performed using:~1! the normal
mode method, where coordinates corresponding to mo
whose wave number was lower than 100 cm21 were fixed;
~2! the redundant coordinate method with all torsion ang
fixed; ~3! internal coordinates~following the hydrogen
bonds! with torsional and bond angles fixed;~4! internal co-
ordinate method with all torsions fixed; and~5! the same as
step 3, but covalentH–O–H bond angles were allowed t
optimize.

The dependence of the energy on the optimization st
as plotted in Fig. 6 illustrates the very different behavior
these various optimization schemes. Not only did the au
matic redundant coordinate method provide no converge
but it generated geometries with higher energies than
starting structure. The methods based on user-defined i
nal coordinates~methods 3–5 above! behaved similarly in
the early stages of the optimization; consequently, the o
successful choice, number 3, is shown in Fig. 6. It provid

-

e
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an energy minimum after 21 optimization steps. The norm
mode optimization technique converged after a significan
greater number of 288 steps, but also resulted in a m
lower value of the total energy.

The overall behavior of the five optimization paths c
be compared in detail in Table II. The normal mode optim
zation ~number 1! provided the most relaxed cluster stru
ture, with energy lower by 20–26 kcal/mol than for the stru
tures obtained with the internal coordinate optimization. T
degree of relaxation can also be judged from the numbe
negative~imaginary! vibrational frequencies, reduced by
from the 14 for the initial geometry by the normal mod
optimization. On the other hand, the internal coordinate
timizations provided about twice as many imaginary f
quencies, and these also had much higher absolute va
which presumably means that they may interfere with mo
measured in IR spectra. The constrained optimizations ba

FIG. 6. Progress of the constrained optimizations of the water cluster fo
normal mode method~modes withv,100 cm21 fixed, number 1 in Table
I!, for the automatic redundant coordinate procedure~torsion angles fixed,
number 2! and for a user-defined internal coordinate set~torsion and bond
angles fixed, number 3!.
Downloaded 21 Aug 2002 to 147.231.120.167. Redistribution subject to 
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solely on the torsion angle fixations~optimization 2 and 4!
proved to be numerically unstable for this system and did
converge to an energy minimum. Although we do not ha
immediate experimental data for comparison, we feel that
normal mode optimization is most suitable for this syste
enabling a straightforward relaxation of the cluster with co
trollable treatment of the vibrational properties.

IV. DISCUSSION

There is probably no universal method of optimizati
suitable for all molecular systems. For most common m
ecules the redundant coordinate method appears to be
most convenient. For optimizations close to the quadra
region the normal modes can be viewed as a comprom
between Cartesian and redundant coordinates, provid
faster convergence than the Cartesians and being more
merically stable than the redundant. This can be docume
for the example of the azetidine optimization shown in F
2, and is consistent with results of tests for other molecu
that we did not include in this work.

The algorithm presented here is computationally simp
than those used for the internal and redundant schem
avoiding many of the potentially numerically unstable tran
formation matrix products. The normal modes, unlike int
nal coordinates, are always exactly related to the Carte
coordinates by alinear transformation@cf. Eq. ~4!#. In spite
of the simplicity, the continuous Hessian update@Eq. ~5!# and
the efficient step controlling RFO method@Eq. ~7!# could be
used, which tremendously accelerates the converge
Moreover, using the normal mode following RFO step c
cumvents the iterative search for thel parameter needed fo
internal/redundant coordinate sets.1,7 Finally, since the nor-
mal modes are defined exclusively by the force field, mi
mal effort is required in order to define the best coordin
representation, which makes the method suitable for co
puter modeling algorithms.

We have tried several other modifications of the norm
mode algorithm presented above. For example, a fixed
mal mode–Cartesian transformation S-matrix can be defin
based on the original force field, and the~nondiagonal! nor-
mal mode Hessian can be updated instead of Eq.~5!. These,
however, lead to similar results, albeit with slightly mo
computational demands.

e

inate
TABLE II. Summary of the outcome of the constrained optimizations of the water cluster using five coord
sets.

Method Coordinates
Fixed

parameters
Number
of steps

Energy
~a.u.!

Imaginary
frequencies

Number
Lowest

(* i)

Start ~0! 2764.195 637 14 2439
1 Normal v,100 cm21 288 2764.257 355 5 2111
2 Redundant Torsions 42/crashed n/a n/a n/a
3 Internal Torsion, bond angles 21 2764.215 254 10 2463
4 Internal Torsions 6/crashed n/a n/a n/a
5 Internal Torsions, bond angles exceptH–O–H 32 2764.225 050 9 2291
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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As follows from the results presented above, wea
bonded complexes are difficult to optimize by all minimiz
tion algorithms, due to the shallow, nonquadratic interact
potential. Because of its stability and speed, the nor
mode-based optimization appears to be a better alternativ
the internal coordinates in these cases. From our poin
view, the biggest advantage of the normal mode optimiza
is that the coordinates do not have to be defined artifici
and the lower-frequency modes are separated out natu
This enables a reasonable compromise to be impleme
between a fully relaxed structure, which is desirable for
brational spectra calculation in the harmonic approximati
and for particular conformation resembling a natural tar
structure. Supposedly, the procedure also can be extende
anharmonic potentials.

One would naively think that the normal mode comp
tation requires an additional estimation of the second der
tive matrix, which would lead to a dramatic increase of t
computational time. However, for the examples we co
pared, very approximate methods~molecular mechanics
semiempirical molecular orbital methods, etc.! provided a
usable first guess for the normal modes. Thus, the in
Hessian estimation does not significantly complicate pra
cal computations. Supposedly, the normal mode spa
movement is primarily determined by the geometrical
rangement of atoms and is restricted by the number of
grees of freedom of the molecule, and thus is less sensitiv
inaccuracies in the force field.

In the current implementation, we used the usual H
sian update procedure based on the gradients. Obviously
Hessian can also be calculated for each geometry along
optimization path. This is not practical for most application
due to the enormous computational costs of the calcula
of second derivatives. Note that computation of the first
ergy derivatives~gradient! is computationally cheaper tha
for bare energies, because it does not require S
iterations.33 However, the explicit Hessian evaluation may
desirable for special cases, such as small systems or mo
lar clusters with complicated interactions that significan
change during the geometry optimization.

Finally, it should be noted that the restricted norm
mode optimization often cannot be used at all, particularly
all cases when exact valence coordinates are desired,
these must be fixed explicitly. Thus, the normal mo
method should be considered rather as a complementary
to the internal valence coordinate based optimizations. F
tunately, as shown above, both the normal mode and
sional constraints provide in many cases similar results,
fixation of the geometry parameters can be achieved by c
trolling the vibrational normal modes.

V. CONCLUSIONS

The normal mode-based quantum chemical optimiza
of molecular geometry provided smooth convergence for
systems studied. For energy minimization of fully relax
covalent structures its speed tended to be between tha
tained with the redundant/internal coordinate method and
timization based on Cartesian coordinates. However,
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weakly bonded complexes, especially those with impo
arbitrary constraints on the geometry, the normal mo
method was found to be the fastest and most reliable.
computer implementation is simple and enables a nat
separation of the low- and high-frequency molecular mo
ments.
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