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Quantum chemical computations of Raman intensities: An ambiguity of the Placzek approximation
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Coupled-perturbed (CP) computational methods, in particular those based on the density functional theory
(DFT), are indispensable in interpretations of Raman scattering on molecules. The simulations are most often
based on the Placzek approximation, ignoring the dependence of energies of the excited electronic states on
nuclear coordinates. Thus practical CP DFT computations do not exactly correspond to the more general
sum over state (SOS) formalism. We discuss this problem, investigate the SOS convergence, and formulate
a distributed origin gauge enabling us to calculate origin-independent Raman optical activity intensities. The
variations of the computed spectra caused by the energy gradient terms are investigated with practical examples.
The results show that although the contribution of the gradient parts to Raman intensities is rather small in
the far from resonance cases, their subtraction may still occasionally improve the simulated spectra. However,
the effect is much more important for Raman optical activity and in resonance conditions. The possibility to
correct the computed intensities for the gradient contribution thus opens a way for systematic improvements of
quantum-mechanical simulations of the spectra.
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I. INTRODUCTION

Shortly after the discovery of molecular Raman scattering
[1], quantum mechanics has been applied to derive formulas
explaining observed intensities [2]. In the Placzek approxi-
mation the Born-Oppenheimer (BO) concept [3] was used,
separating wave functions and energies of the ground and
excited vibrational and electronic states. Working equations
for polarizabilities that determine Raman intensities were ob-
tained directly from the Schrödinger equation, within Dirac’s
time-dependent perturbation theory [4,5].

The theory provides so called sum over state (SOS)
expressions, direct applications of which did not appear
practical. For example, the formulas require knowledge of
the excited electronic states, which are hard to get using
common quantum-chemical methodologies. In addition, a
large number of the states are needed to reproduce the desired
polarizabilities.

Instead, derivative-based perturbational methods prevailed,
originally restricted to the Hartree-Fock and Møller-Plesset
theories [6], later extended within the density functional the-
ory (DFT) [7]. A close inspection of the frequency-dependent
electric polarizability provided a way for DFT to be ap-
plicable also for excited electronic states, in the form of
time-dependent DFT [8]. The derivative approaches are com-
monly referred to as coupled-perturbed (CP) [9] or response
[10] theories. They can be easily extended to simulate po-

*Contact author: bour@uochb.cas.cz

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

larized Raman spectra and natural vibrational Raman optical
activity (ROA) of chiral molecules [5,11–13].

It was also realized that the original formulation of the
derivative theory with the time-dependent perturbation ap-
proach cannot be used in resonance. In this case, when the
Raman excitation frequency matches or is close to the tran-
sition energy of an electronic transition, the denominator in
the sum over states (SOS) expressions of molecular polariz-
abilities becomes zero. The computed intensities diverge, and
the divergence also affects the CP calculations. As a simple
remedy, complex energy formally related to the lifetime of the
excited state was introduced [14], which appeared useful also
for resonance ROA [15,16]. Depending on the system and ex-
perimental conditions, explicit involvement of the vibrational
states may be needed as well [17,18].

Below, we address another shortcoming of the derivative
approach, the coordinate dependence of energies of
the excited electronic states. In the original Placzek
approximation gradients of the electronic energies are
ignored, whereas common CP expressions contain them.
Following this ambiguity, we show that the gradients play
a significant role in the modeling of the spectra. A gradient
correction of the CP formulas offers a way for alternate, more
accurate computations of Raman intensities, particularly
important for the resonance phenomena

II. TRANSITION POLARIZABILITIES AND THE
PLACZEK APPROXIMATION

Raman intensities are determined by the complex molecu-
lar transition polarizability [11,19],

ααβ = 1

h̄

∑
e�=i

〈 f |μα|e〉〈e|μβ |i〉
ωei − ω − i�e

+ 1

h̄

∑
e

〈 f |μβ |e〉〈e|μα|i〉
ωei + ω′ + i�e

,

(1)
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where i, e, and f denote the initial, intermediate, and final
states, respectively, μα is an α component of the electric
dipole moment operator µ, ω is the excitation frequency, ωei =
ωe − ωi, ωe and ωi are angular frequencies corresponding
respectively to the intermediate (“excited”) and initial states,
ω′ is the scattered frequency, and ħ is the reduced Planck
constant. Note that ω = ω′ + ω f − ωi. The imaginary term
i�e is proportional to spectral width and accounts for finite
lifetime of the state e [11,20].

Similar expressions appear for the four other tensors
needed to calculate ROA [21],

Gαβ = 1

h̄

∑
e�=i, f

〈 f |μα|e〉〈e|mβ |i〉
ωei − ω − i�e

+ 1

h̄

∑
e

〈 f |mβ |e〉〈e|μα|i〉
ωei + ω′ + i�e

,

(2a)

Gαβ = 1

h̄
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e�=i, f

〈 f |mα|e〉〈e|μβ |i〉
ωei − ω − i�e

+ 1

h̄

∑
e

〈 f |μβ |e〉〈e|mα|i〉
ωei + ω′ + i�e

,

(2b)

Aα,βγ = 1

h̄
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e�=i, f

〈 f |μα|e〉〈e|�βγ |i〉
ωei − ω − i�e

+ 1

h̄

∑
e
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ωei + ω′ + i�e

, (2c)

Aα,βγ = 1

h̄

∑
e�=i, f

〈 f |�βγ |e〉〈e|μα|i〉
ωei − ω − i�e

+ 1

h̄

∑
e

〈 f |μα|e〉〈e|�βγ |i〉
ωei + ω′ + i�e

, (2d)

where m and � are operators of the magnetic dipole moment
and electric quadrupole moment operators, respectively. Since
the structure of the ROA tensors is analogous to Eq. (1), their
dependence on the gradient will not be discussed separately.
However, one has to bear in mind that the magnetic dipole
moment is asymmetric, 〈e|m|i〉 = −〈i|m|e〉, while 〈e|μ|i〉 =
〈i|μ|e〉 and 〈e|�|i〉 = 〈i|�|e〉. This requires minor modifica-
tions of the formulas derived for α.

Within the BO formalisms, the wave functions can be
written as products of the vibrational (v) and electronic (e)
parts, |i〉 = |ie〉|iv〉, etc. Usually, the initial and final elec-
tronic states are both equal to the electronic ground state,
|ie〉 = | fe〉 = |0〉. Following a common computational prac-
tice [14,16] we treat the spectral width as a uniform parameter,
independent of the states involved, �e = � ∀ e. We further
define the initial vibrational state |iv〉 = |n〉, intermediate
vibrational |ev〉 = |ν〉 and electronic |ee〉 = | j〉 states, final vi-
brational state | fv〉 = |m〉, μ0 j.α = 〈 j|μα|0〉, and f (ω jv, ω) =

1
ω jv−ω−i� + 1

ω jv+ω′+i� . Then for real wave functions,

ααβ = 1

h̄

∑
j �=0,v

〈m|μ0 j.α|v〉〈v|μ j0.β |n〉 f (ω jv, ω). (3)

In the core of the Placzek approach is the treatment of
the frequency difference, ω jv = ω j + ωv − ω0 − ωn, where
the frequencies correspond respectively to excited electronic
states j, vibrational states of j, electronic ground state 0, and
vibrational states of 0. We can choose the energy scale so

FIG. 1. The g and f functions, for � = 0, relative to their values
at 532 nm, for 250 nm transition.

that ω0 + ωn = 0 and suppose that the vibrational energies are
smaller than the electronic ones, ωv � ω j , so that ω jv ∼ ω j .
This makes it possible to sum over the vibrational states,∑

v |v〉〈v| = 1, in Eq. (3). The electronic transition dipole mo-
ments μo j depend on nuclear coordinates. Taking into account
only the linear term, one obtains

ααβ = 1

h̄

∑
j �=0

〈m|μ0 j,αμ j0,β |n〉 f (ω j, ω)

≈
∑
λ,ε

αSOS
λε,αβ〈m|Rλ

ε |n〉, (4)

where αSOS
λε,αβ = 1

h̄

∑
j �=0

∂ (μ0 j,αμ j0,β )
∂Rλ

ε
f (ω j, ω), and Rλ

ε is a
change of the ε coordinate of nucleus λ.

However, Placzek writes [2,5,11,12]

ααβ = 〈m|αe,αβ (R)|n〉 ≈
∑
λ,ε

αCP
λε,αβ〈m|Rλ

ε |n〉, (5)

where αe,αβ = 1
h̄

∑
j �=0 μ0 j,αμ j0,β f (ω j, ω) is the electronic

polarizability and αCP
λε,αβ = ∂αe,αβ

∂Rλ
ε

. We use the CP mark to
emphasize that this quantity is obtained from the coupled-
perturbed computations. Clearly, Eqs. (4) and (5) are not
equivalent, as the derivatives of αe generate an additional
gradient (g) term, so that

αSOS
λε,αβ = αCP

λε,αβ − α
g
λε,αβ, (6)

with α
g
λε,αβ = 1

h̄

∑
j �=0 μ0 j,αμ j0,βg(ω j, ω)( ∂ω j

∂Rλ
ε

− ∂ω0
∂Rλ

ε
), where

g(ω j, ω) = − 1
(ω j−ω−i�)2 − 1

(ω j+ω′+i�)2 .

While the term ∂ω0/∂R proportional to the gradient of
the energy in the electronic ground state is often zero as the
derivatives are usually evaluated at the equilibrium geometry,
zero gradients for the excited states are rarer. The g(ω j ,ω)
function grows more steeply than f (ω j ,ω) when ω → ω j

(Fig. 1), which makes the gradient term particularly important
in the resonance and preresonance cases.

III. ORIGIN DEPENDENCE OF RAMAN OPTICAL
ACTIVITY

The approach from above can be readily applied to the
ROA polarizabilities. Simulated ROA intensities, however,
may depend on the origin of coordinates if approximate
wave functions are used. To avoid this, the gauge-independent
atomic orbitals (GIAOs) are usually used [22,23], not
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applicable within the SOS approach. Instead, we investigate
the electronic polarizabilities more closely, introducing a dis-
tributed origin gauge (DOG) transformation.

For simplicity, we drop the “e” subscript, and set � = 0
and ω = ω′, which are frequent practical prerequisites [11].
We also realize that Ge,αβ = −Ge,βα and Ae,α,βγ = Ae,α,βγ ,
so that we are left with three tensors,

ααβ = 2

h̄

∑
e�=0

ωe〈0|μα|e〉〈e|μβ |0〉
ω2

e − ω2
, (7a)

Gαβ = 2ω

h̄

∑
e�=0

〈0|μα|e〉〈e|mβ |0〉
ω2

e − ω2
, (7b)

Aα,βγ = 2

h̄

∑
e�=0

ωe〈0|μα|e〉〈e|�βγ |0〉
ω2

e − ω2
. (7c)

Let us recall the dipole, magnetic dipole, and quadrupole
operators, μβ = ∑

i qiriβ , mβ = 1
2

∑
i

qi

mi
εβγ δriγ piδ , and

�βγ = 1
2

∑
i qi(3riγ riδ − δγ δr2

i ) [5,11], since alternate
definitions exist in literature. We use the GAUSSIAN

program [24] that calculates the quadrupole elements
using a mixed length-velocity formalism, exploring the
identity 〈e|rαrβ |0〉 = −h̄

meωe0
〈e|rα∇β + rβ∇α|0〉. Let us shift the

coordinates by T. Then α is not changed, whereas the other
two tensors become

Gαβ (T) = Gαβ (0) + iω

2
εβγ δTγ αv

αδ, (8a)

Aα,βγ (T) = Aα,βγ (0) + 3

2

(
Tγ αv

αβ + Tβαv
αγ

) − δβγ Tεα
v
αε,

(8b)

where the velocity form of α is αv
αδ =

2
∑

e�=0

〈0|μα |e〉〈0| ∑i
qi
mi

∇iδ |e〉
ω2

e −ω2 . In Eqs. (8a) and (8b) “(0)”
indicates the values before the shift. Using the dipole-velocity
transformation, 〈0|pδ|e〉 = −iωe0m〈e|rδ|0〉, we obtain
αv

αδ = ααδ , but this is not generally true for approximate
wave functions. For example, while ααδ = αδα , αv

αδ is not
symmetric.

ROA intensity of isotropic samples depends on tensor
invariants. For commonly used backscattering and scattered
circular polarization (SCP), it is proportional to [5]

IROA = k(3ααβGβα − αααGββ + εαβγ ααδAβ,γ δ ), (9)

where k is a constant; for brevity we do not indicate a partic-
ular transition or derivative, and use the Einstein summation
convention. When the velocity form αv is used, the first and
last terms in Eq. (9) are origin independent since the ex-
tra terms arising due to the shift vanish [αv

αβεβγ δTγ αv
αδ = 0

and εαβγ αv
αδ ( 3

2 (Tδα
v
βγ + Tγ αv

βδ ) − δγ δTεα
v
βε ) = 0]. The sec-

ond term is origin independent only with the symmetric α,
when εβγ δTγ αβδ = 0.

To minimize the origin dependence, we transform polar-
izability derivatives computed in the common origin gauge
(COM) to a distributed origin gauge (DOG), and use them
in Eq. (9). For derivatives with respect to nucleus λ and
coordinate ε,

Gλε,αβ (DOG) = Gλε,αβ (COM) + iω

2
εβεδRλ

ε
αλε,αδ,

(10a)

Aλε,α,βγ (DOG) = Aλε,α,βγ (COM)

+ 3

2

(
Rλ

β
αλε,αγ + Rλ
γ 
αλε,αβ

)
− δβγ Rλ

ε
αλε,αε, (10b)

where 
αλε,αδ = αλε,αδ − αv
λε,αδ . After a coordinate shift T

the tensors change to

Gλε,αβ (DOG, T ) = Gλε,αβ (DOG, 0) + iω

2
εβεδTεαλε,αδ,

(11a)

Aλε,α,βγ (DOG, T ) = Aλε,α,βγ (DOG, 0)

+ 3

2
(Tβαλε,αγ + Tγ αλε,αβ )

−δβγ Tεαλε,αε. (11b)

For applied computations, one has to realize that the GAUS-
SIAN program computes derivatives of transition gradients, not
of the transition dipole moment in the velocity representation.
The latter needed for αv can be obtained from the former

as ∂0|μv
δ |e

∂Rλ
ε

= h̄
ωe0

∂0| ∑i
qi
mi

∇iδ |e
∂Rλ

ε
. The dependence on ωe0 requires

that one uses the different gradient parts of αv for G and A.
Specifically, we use

α
vg
λε,αδ =

∑
e�=0

〈0|μα|e〉〈0|μv
δ |e〉

[
1

(ωe − ω)2 − 1

(ωe + ω)2

]
ωe

ω

×
(

∂ωe

∂Rλ
ε

− ∂ω0

∂Rλ
ε

)
in Eq. (10a) and

α
vg
λε,αδ =

∑
e�=0

〈0|μα|e〉〈0|μv
δ |e〉

[
1

(ωe − ω)2 + 1

(ωe + ω)2

]

×
(

∂ωe

∂Rλ
ε

− ∂ω0

∂Rλ
ε

)
in Eq. (10b).

IV. IMPLEMENTATION

To investigate the impact of the gradient terms, we cor-
rected CP polarizabilities using Eq. (6). Alternatively, one
could also consider the possibility to calculate αSOS directly
using Eq. (4). There are, however, three serious obstacles for
this way. First, the SOS computational scheme is notoriously
slow and computationally demanding [25]. Second, the dipole
derivatives needed in Eq. (4) are ill defined for degenerate
states (cf. below). Finally, plain SOS ROA intensities would
suffer from the origin dependence [5,26]. Using formula (6)
instead of (4) has also the advantage that only some of the
excited states need to be calculated, since the lowest-energy
ones contribute most.

For the first model system, we chose hydrogen perox-
ide (H2O2), where all the excited electronic states within
time-dependent DFT (TDDFT) can be comfortably com-
puted. Their number is approximately the number of oc-
cupied orbitals times the number of virtual orbitals [27].
“Real-life” molecules include α-pinene and camphor as typ-
ical far from resonance systems serving for calibration of
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the Raman and ROA techniques [28–30], and (S,S)-N,N-
ethylenediaminedisuccinic iron and cobalt complexes (FeIII

EDDS, CoIII EDDS), where the preresonance effects can be
demonstrated. Experimental CoIII EDDS Raman and ROA
spectra were reported lately [17]; chemical synthesis and
measurement details for FeIII EDDS are described in the
Supplemental Material [31]. The spectra were measured on a
Zebr spectrometer [34] operating in a backscattering scattered
circular polarization (SCP) mode and using 532-nm laser
excitation. α-pinene was used as neat liquid, camphor was
measured as a solution in methanol, and water solutions of
the complexes were used.

The GAUSSIAN program [24] was used to compute equi-
librium geometries, harmonic molecular force fields, CP
polarizability derivatives, excited electronic states, transition
electric/magnetic dipoles and quadrupoles, their derivatives,
and gradients of the ground and excited state energies,
applying the common B3LYP [35] functional, standard 6-
311++G** basis set, and CPCM [36,37] solvent model with
parameters for toluene (for α-pinene), methanol (camphor),
and water (the complexes). For the complexes, the geometry
and harmonic force field were calculated with the double-
hybrid PBEQIDH [38] functional instead, as B3LYP was
found slightly less accurate [17]. The SOS expressions for the
tensor derivatives were computed using ours scripts (“Pold-
erdip” and minor programs), including 800, 400, and 200
electronic excited states for α-pinene, camphor, and EDDS
complexes, respectively. Convergence tests suggest that they
recover most of the gradient correction [31].

Raman and ROA intensities for each normal mode i were
obtained from the polarizability derivatives as [5,11]

IRaman = K
3∑

α=1

3∑
β=1

(
αi

αααi
ββ + 7αi

αβαi
αβ

)
, (12)

IROA = 8K
3∑

β=1

3∑
α=1

(
3αi

αβG′i
αβ − αi

ααG′i
ββ

+
3∑

ε=1

3∑
γ=1

εαβγ αi
αεAi

βγ ε

)
, (13)

where G′ = −Im(G), K is a constant, and the sub-
script i denotes derivatives with respect to this normal mode
coordinate. These were obtained, for example, as αi

αβ =∑
λ

∑
ε αλε,αβSi,λε, where S is the Cartesian-normal mode

transformation matrix. Smooth spectra were generated from
the intensities as

S(ω) =
∑

i

Ii

[
1 − exp

(
− ωi

kT

)]−1
[

4

(
ω − ωi




)2

+ 1

]−1

,

(14)
where ωi is the vibrational frequency, k is the Boltzmann con-
stant, T is the temperature, and 
 = 10 cm−1. For comparison
with the experiment, calculated spectra were normalized to
integrated experimental Raman areas.

FIG. 2. Calculated (for H2O2, B3LYP/6-311++G**, λ = 250
nm, � = 0) isotropic polarizability as dependent on the number of
states ordered by their energy (left) and contribution (right). The
solid line marks the exact CP value. The dashed line marks 90%, and
achieved for 149 states on the left and 78 states after the reordering.

V. RESULTS AND DISCUSSION

A. SOS convergence, gradient parts of the derivatives

For H2O2, convergence and other properties of the polar-
izabilities calculated by the SOS method can be conveniently
demonstrated. With the 6-311++G** basis set the TDDFT
method generates in total 343 electronic excited states. The
dependence of the isotropic polarizability on the number of
states taken is plotted in Fig. 2. The convergence is relatively
slow, which corresponds to previous experience [25,39]. If the
states are ordered according to their energy (left in the figure),
149 states recover 90% of the polarizability. When they are
ordered according to their contributions to the polarizability,
only 78 states are needed for the same result. Of course, to
order them all states need to be calculated anyway. However,
we point out the possibility of the preselection to potentially
speed up computations of the polarizability derivatives. The
SOS computation with all states included fully recovers the
CP value, which shows that within TDDFT the CP and SOS
methods are equivalent.

In Fig. 3 the convergence is investigated also for the G and
A tensors, and the derivatives of α, G, and A. Interestingly,
the isotropic part of G converges faster those of α and A;
in addition, its convergence is not monotonic since the Gαα

elements can be both positive and negative. The derivatives
converge faster than the tensors themselves, however, the de-
pendencies are not smooth, with jumps caused by singularities
stemming from the degenerate states. For molecules larger
than the peroxide these instabilities practically prevent direct
SOS computations of the tensor derivatives. On the other
hand, the gradient parts of the tensors (red in the figure) do
not suffer from these singularities, and converge smoothly
and quickly. Interestingly, for the G tensor the gradient part
is larger than the total. However, note that the invariant is not
a simple sum of the gradient and the SOS parts.

The relative contributions of the SOS and gradient parts
of H2O2 α-derivative elements calculated for two excitation
wavelengths are plotted in Fig. 4. The gradient part is very
significant for the 250-nm excitation, close to the lowest-
energy electronic transition at 224 nm. The gradient part often
dominates; outstanding is the fourth element where the dipole
derivative part is negative. The gradient parts are on average
smaller for the 532-nm excitation, although they occasionally
contribute by more than 50% also here.
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FIG. 3. H2O2, calculated dependencies of the polarizability [left;
ααα , Gαα , 2Aα,αβ (Aβ,γ γ + 2Aγ ,βγ ) + Aα,ββ (Aα,γ γ + 2Aγ ,αγ ) +
2Aα,βγ (Aα,βγ + Aβ,αγ + Aγ ,αβ )] and polarizability derivative (right;∑

ε,λ,α α2
λε,αα ,

∑
ε,λ,α G2

λε,αα ,
∑

ε,λ,α A2
λε,ααα) invariants on the number

of the electronic states. Gradient parts of the derivatives are plotted
in red.

B. Degeneracy problem in computations
of the transition moments

To better understand the singularities observed for the ten-
sor derivatives in Fig. 3, let us consider a simplified system
with only two (nearly) degenerate excited electronic states A
and B. These are eigenfunctions of a Hamiltonian H, H |A〉 =
ωA|A〉 and H |B〉 = ωB|B〉. In their contributions to the polar-
izability we neglect the nonresonance parts, do not explicitly
write the indices, and set ħ = 1, so that

α = 〈0|μ|A〉〈A|μ|0〉
ωA − ω

+ 〈0|μ|B〉〈B|μ|0〉
ωB − ω

. (15)

Setting ωA ∼ ωB ∼ ω̄ and abbreviating μA = 〈0|μ|A〉, this
becomes α = (μ2

A + μ2
B)/(ω̄ − ω).

A derivative can be though of as a limit, for example

∂μA

∂x
= limd→0

μA(x0 + d ) − μA(x0)

d
, (16)

where x0 is the equilibrium geometry. After the x0 → x0 + d
geometry change the Hamiltonian changes to H + V and new

532 nm

α derivative element

250 nm

C
on

tr
ib

ut
io

n 
/ %

-100

0

100

200 Gradient
Dipole derivatives

Gradient
Dipole derivatives

FIG. 4. H2O2, relative contributions of the SOS and gradient
parts to α-derivative elements at 250- and 532-nm excitations,
B3LYP/6–311++G** calculation.

FIG. 5. Calculated dependence (B3LYP/6-311++G**) of ener-
gies and dipole moments of degenerate transitions (number 8 and 9)
of H2O2 on the deviation of a hydrogen from its equilibrium position.
We can see a singularity at the equilibrium geometry, preventing
reliable estimation of the transition dipole moment derivatives.

states can be approximately considered as a mix of A and B,
obeying the Schrödinger equation,

(H + V )(cA|A〉 + cB|B〉) = ω′(cA|A〉 + cB|B〉), (17)

which can be written in a matrix form,(
ω̄ − ω′ v

v ω̄ − ω′

)(
cA

cB

)
= 0, (18)

where v = 〈A|V |B〉 = 〈B|V |A〉 and we supposed that
〈A|V |A〉 � ω̄ and 〈B|V |B〉 � ω̄. The new energies,
wave functions, and transition dipole moments are
respectively ω′± = ω ± |v|, |±〉 = (|A〉 ± |B〉)/

√
2, and

μA(x0 + d ) = [μA(x0) + μB(x0)]/
√

2. However, now the
derivative in Eq. (16) is ill-defined since it becomes

∂μA

∂x
= limd→0

[μA(x0) + μB(x0)]/
√

2 − μA(x0)

d
→ ±∞.

(19)
This is a general problem; for example, we observed

similar difficulties in differentiations with degenerate wave
functions in Ref. [40]. An example of actual dependence of
the transition dipole moments in H2O2 on a nuclear coordinate
as calculated by the GAUSSIAN program [24] is in Fig. 5.

C. Gradient-corrected Raman and ROA spectra

Although the direct computation of the polarizability
derivatives using the SOS formulas is hindered by the degen-
eracies and other problems, the correction of the CP results for
the gradient part appears viable. For the larger molecules, we
can see the effects of the gradient term on Raman and ROA
spectra of α-pinene, camphor, and the complex in Fig. 6. The
CP results are compared to those when the gradient part was
subtracted [Eq. (6)], and to the experiment.

For α-pinene and camphor, the differences caused by the
gradient are rather minor; the most apparent one is the large
(∼80%) drop of the Raman intensity of the C = C stretching
band of α-pinene (∼1657 cm−1). Experimentally, this band is
weaker than the neighboring 1437-cm−1 CH3 umbrella band,
so the correction goes to the right direction, but is too big.
A clearer improvement is achieved in the CH bending region
of ∼1200–1350 cm−1. In the figure we marked some bands
where the gradient subtraction was profitable by green stars,
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FIG. 6. Raman and ROA spectra of (a) (1S)-(-)-α-pinene, (b) (1R)-(+)-camphor, (c),(d) (S,S)-N,N-ethylenediaminedisuccinic iron/cobalt
complexes (FeIII EDDS/CoIII EDDS), calculated by the plain coupled perturbed B3LYP/6-311++G**/CPCM calculation (CP, thick black),
with polarizability tensors where the gradient part was subtracted (CPg, red, CPg-CP, thin black, is the difference spectrum), and experiment

(blue). The magenta spectra numbers indicate similarities (s = ∫
ScalSexpdv/

√∫
S2

caldv
∫

S2
expdv) to the experiment, red (green) stars indicate

examples of relative intensity deteriorations (improvements) of CPg against CP; 532 nm excitation was used in the calculations and the
experiment.

while a red star indicates a worse result compared to the
experiment. As another criterion, the similarity indices (s) are
indicated, too. In terms of the similarities, the gradient sub-
traction improved the calculated Raman spectra of α-pinene
(0.68 → 0.73) and made worse those of camphor (0.78 →
0.75).

For ROA spectra, the effect of the gradient subtraction on
the relative intensities is bigger than for Raman. Especially
above 1000 cm−1, there are many bands profiting from it,
although on average the “corrected” spectrum seems to be
worse for α-pinene (0.54 → 0.49) and only slightly better
(0.63 → 0.64) for camphor.

The energies of the electronic transitions in the FeIII EDDS
complex are much closer to the excitation laser line (cf. the

UV spectra in the Supplemental Material [31]), which makes
the effect of the gradient subtraction much more significant.
Compared to the pure CP spectrum, the “CPg” Raman pattern
is much improved, especially within 1200–1500 cm−1, and
the similarity rises (0.59 → 0.65). One has to admit that com-
pared to α-pinene and camphor, neither the CP nor CPg give
a particularly satisfactory representation to the experiment.
Analysis of the reasons goes beyond the scope of the present
study as it may be related to the high multiplicity (M = 6) of
the complex, internal DFT error, approximate solvent model,
and many resonance or preresonance phenomena [17].

For ROA large differences between the CP and CPg in-
tensities are apparent as well; some ROA bands even change
sign after the gradient subtraction. Quite often, the gradient
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correction goes to the desired trend, such as giving the right
ROA sign, but the final intensity is too large or weak, i.e.,
the correction is “overdone.” A minor improvement in terms
of overall similarity to experiment (0.70 → 0.72) is thus
achieved.

Finally, for the Co EDDS complex, the largest effects of
the gradient correction are observed. The correction leads to
negligible statistical improvement (similarity increase 0.71 →
0.72) for Raman, although the relative intensities of many
bands are becoming more realistic. For ROA, however, the
similarity increases significantly (−0.54 → 0.35), and the
simulated spectrum becomes more realistic, in particular
above 800 cm−1. For low wave numbers, explicit consider-
ation of vibrational states may be needed, as discussed in
Ref. [17].

Overall, we can see that the correction is extremely im-
portant to consider in resonance; however, band-to-band
reproduction of Raman and ROA spectra in this case becomes
extremely challenging. The gradient issue thus appears as
one of many aspects in the process of developing suitable
computational methodology.

Technically, the correction itself [Eq. (6)] can be realized
relatively easily as analytical computations of excited state
gradients [41] have been implemented in common quantum
chemical software [24,42]. The possibility to compute the
gradients is already explored in many other contexts of Raman
[43] and one-electron [44] spectroscopies.

VI. CONCLUSIONS

We have found that the dependence of the electronic en-
ergies on nuclear coordinates neglected in the Placzek’s and
CP approaches has a considerable effect on the Raman and
Raman optical activity intensities. Significant intensity vari-
ations could be observed already for the far from resonance
cases, and proper treatment of the gradients seem to be of even
greater significance in the resonance Raman spectroscopy.
For Raman optical activity, we developed a distribute-origin
transformation enabling one to avoid the origin dependence
of the results. The data show that the gradient part cannot
be ignored in precise computation of the intensities. It can be
relatively easily computed, and converges smoothly with the
number of electronic states included. It becomes particularly
important in the dynamically evolving fields of resonance Ra-
man scattering, plasmonic, and surface-enhanced phenomena.
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