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ABSTRACT: Transition-metal complexes provide rich features in vibra-
tional circular dichroism (VCD) spectra, including significant intensity
enhancements, and become thus useful in structural and functional studies
of molecules. Quite often, however, the vibrational spectral bands are mixed
with the electronic ones, and interpretation of such experiments is difficult.
In the present study, we elaborate on the theory needed to calculate the
VCD intensities beyond the Born−Oppenheimer (BO) approximation.
Within a perturbation approach, the coupling between the electronic and
vibrational states is estimated using the harmonic approximation and
simplified wave functions obtainable from common density functional
theory (DFT) computations. Explicit expressions, including Slater determinants and derivatives of molecular orbitals, are given. On a
model diamine complex, the implementation is tested and factors affecting spectral intensities and frequencies are investigated. For
two larger molecules, the results are in a qualitative agreement with previous experimental data. Typically, the electronic−vibrational
interaction Hamiltonian coupling elements are rather small (∼0 to 10 cm−1), which provides negligible contributions to vibrational
frequencies and absorption intensities. However, significant changes in VCD spectra are induced due to the large transition magnetic
dipole moment associated with the d−d metal transitions. The possibility to model the spectra beyond the BO limit opens the way
to further applications of chiral spectroscopy and transition-metal complexes.

1. INTRODUCTION
As pointed out already by Born and Oppenheimer (BO),1

electronic and nuclear motions in molecules are rather
independent, and coupling of the electronic and vibrational
states is limited.2 Still, it can occur and be used in many
spectroscopic studies, such as those including low-lying
electronic states.3 The vibrational circular dichroism (VCD)
technique seems to be particularly suitable to monitor such
situations. VCD measures differential absorption of left and
right circularly polarized light and is more sensitive to
molecular structure than unpolarized absorption (IR).4,5 It is
also more sensitive to the interference of the electronic and
vibrational transitions.6 Sometimes, the “beyond BO” (BBO)
effects even provide enhancement of the VCD signal. This
boosts the sensitivity of the technique and significantly widens
its application range.
Typical systems where BBO effects were observed contain

metals with d−d or f−f transitions. The splitting of degenerate
energy levels in the metal due to the coordinated ligands
provides low-lying electronic states that can resonate with the
vibrational ones. Many examples of such VCD experiments are
given in ref 3. Quite often, they include transition-metal
complexes of Co(II, III) or Ni(II). The metal ion is sometimes
thought of as the smallest imaginable probe reflecting the
environment. Also, various chiral ligands were explored, such
as sparteine,6,7 bisureate,8 and a range of salicyldiminate
anions.9,10 Apart from the low-lying electronic states, these

complexes often have in common the frequent presence of
unpaired electrons. For example, Domingos et al. demon-
strated that complexes of paramagnetic Co2+ with amino acid
and oligopeptides exhibited the VCD enhancement, while the
diamagnetic Co3+ close-shell counterparts did not.11

Experimental VCD signs, absolute and relative intensities
may differ from the theory.6,9−11 Although not all “atypical”
spectral features can be attributed to the BBO coupling,
disagreement between experimental and theoretical VCD
patterns computed in the standard way may indicate this effect.
Strictly speaking, computation of the atomic axial tensor

(AAT) needed for VCD intensities in some sense always goes
beyond the BO concept. The standard procedure, used also
here, is based on Stephens’ magnetic field perturbation (MFP)
theory and derivatives of electronic ground state BO wave
function.12 However, derivations of the MFP formulae or other
computational approaches do take into account BBO
effects.12−14 In the present study, however, we focus on a
different aspect, mixing of the vibrational and electronic states.
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Within a perturbation concept and the vibronic coupling
theory, this mixing and its consequences for VCD modeling
have been elaborated by Nafie.3,15 Here, we follow a similar
philosophy consisting of (1) the Herzberg−Teller expansion of
the electronic wave function with respect to nuclear
coordinates, (2) incorporation of the BBO interaction terms
in molecular Hamiltonian, and (3) using the general
expressions for the dipole and rotational strengths. Unlike in
ref 3, we (1) explicitly investigate resultant terms (integrals)
for a wave function based on the Slater determinants, (2)
derive the needed integrals in the basis of atomic/molecular
orbitals (MOs), and (3) estimate involved variables and final
effects on the spectra for molecular examples. Such an
implementation of the BBO treatment in quantum-chemical
codes is not known to us. The combination of the Slater
Kohn−Sham (KS) determinant wave function with perturba-
tion expansions allows one to overcome the complexity of the
general expressions, containing in principle multidimensional
integrals. BBO corrections to VCD intensities can then be
relatively easily implemented within the formalism of the
density functional theory (DFT).16

Below, we briefly review the BO concept and introduce the
necessary notation. In Sections 2.1 and 2.2, the BBO wave
function in the BO basis is introduced within the usual
quantum-chemical formalism.3,17 In Section 2.3, the perturba-
tion elements are expressed in a BO electronic wave function
expanded to the second order with respect to nuclear
coordinates and further elaborated for a wave function
composed of singly excited DFT (KS) determinants in Section
2.4. Mathematical details are additionally provided in the
Supporting Information (SI). In the rest of the theoretical
section, the usual expressions for absorption and VCD
intensities within the harmonic approximation are intro-
duced.3,18 Rather than using a perturbation approach from
ref 3, the spectral intensities are estimated using full
diagonalization of the BBO Hamiltonian expressed in the
basis of BO wave functions, to avoid eventual problems with
degenerate energy levels. The implementation, stability of the
results with respect to basis set size, functional, etc. are
discussed for a model diamine molecule. Finally, the predicted
BBO effects in VCD spectra of two larger cobalt complexes are
compared with previous experiments. It appears that the
approach allows if not for accurate reproduction, then at least
for a qualitative estimation of the BBO effects in VCD
spectroscopy.

2. THEORY
2.1. Born−Oppenheimer Approximation. The general

molecular Hamiltonian can be written as

= +H R P p r H R p r T( , , , ) ( , , )e N (1)

where R and P represent nuclear positions and momenta,
respectively. Similarly, r and p stand for the electronic positions
and momenta, He(R, p, r) = Te + V(R, r) is the electronic
Hamiltonian, TN/Te is the nuclear/electronic kinetic energy,
and V̂(R, r) is the Coulomb electron-nuclear potential.
Within the BO approximation,1 the wave function is

considered as a product of electronic eJ(R, r) and vibrational
vjJ(R) parts, ψjJ = eJ(R, r)vjJ(R). Capital letters are reserved for
electronic states and small ones for vibrational ones; the J in νjJ
means that the vibrational wave function depends on the
electronic state as well. The wave functions obey so-called
nuclear and electronic Schrödinger equations

ε

ε

=

=

H e R r R e R r

H v R R v R

( , ) ( ) ( , )

( ) ( ) ( )

J J J

J iJ iJ iJ

e

N (2)

where HNJ = TN + εJ(R) is the nuclear (vibrational)
Hamiltonian.

2.2. General Wave Function. Functions ψjJ, however, do
not obey the Schrödinger equation

Ψ = ΨH Ee e e (3)

where Ψe is the exact wave function. There are immense
difficulties associated with the rigorous “ab initio” description
of molecules beyond the BO approach.19 However, for many
practical computations, Ψe may be expanded into the BO basis

∑ ψΨ = c
jJ

jJ jJe
e

(4)

and the remaining BBO “correction” is usually treated as a
perturbation.15 The Schrödinger eq 3 then adopts a matrix
form, Hc = Ec, with Hamiltonian elements HkK,jJ = ⟨ψkK|H|ψjJ⟩.
The matrices c and E collect the expansion coefficients ckK

e and
energies Ee. From eqs 1 and 2, we get

ε

= ⟨ | + | ⟩

=⟨ | | ⟩
+ ⟨ | | ⟩

=⟨ | + | ⟩⟨ | ⟩
+ ⟨ |[ ]| ⟩
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e

N
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N

Therefore,

ε δ δ= + ⟨ | | ⟩H v V vkK jJ jJ JK jk kK KJ jJ, (5)

∑
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(6)

where the interaction elements VKJ(R, P) are responsible for
the BBO (often referred to as nonadiabatic or non-BO)
effects.17

2.3. Working Expressions. For smaller deformations, we
expand the electronic wave function eJ to the second order with
respect to deviations of nuclei from their equilibrium positions,
ΔRn = Rn − Rn0

∑ ∑Δ = + Δ + Δ Δe R J J R J R R( )
1
2J

n
n n

n m
nm n m

, (7)

For more compact notation, we defined J = eJ(0), =
∂
∂Jn

e

R 0

J

n
,

and =
∂

∂ ∂Jnm
e

R R
0

J

n m

2

. This form can be used to express the

i n t e g r a l s i n e q 6 , f o r e x a m p l e ,
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= ⟨ + ∑ Δ + ∑ Δ Δ | ⟩
∂

∂
e K K R K R R JK

e

R n n n n m nm n m nn
1
2 ,

J

n

2

2 ,

etc. After some algebra (cf. SI), we obtain

∑ ∑ν ν ν≅ + Δ +V R PKJ
m

R m m
m

P m m0 , ,
(8)

where ν = ∑ ℏ ⟨ | ⟩
n

K J

M0 2
n n

n

2

, ν = ∑ [⟨ | ⟩ + ⟨ | ⟩]ℏ K J K JR m n M n nm nm n, 2 n

2

,

and ν = − ⟨ | ⟩ℏ K JP m M m,
i

m
. Higher orders, up to the third power

of the nuclear coordinates, can be found in Appendix I (SI).
2.4. Electronic Wave Function. The wave function is

approximated by a sum of Slater determinants Δj,
= ∑ Δe C(0)J j j

J
j, obtained from the time-dependent density

functional theory (TDDFT).20,21 The determinants contain
only single excitations, which further facilitates the computa-
tion. In the past, this approximation of the wave function
provided reasonably realistic molecular properties, such as
magnetic circular dichroism spectra.22 It leads to explicit
expressions for VKJ based and derivatives of the coefficients Cj

J

and determinants Δj (cf. Appendices II and III, SI, for details).
Similar approach suitable for multiconfiguration or config-
uration interaction (CI) procedures can be found elsewhere.23

Elaborating the terms in eq 8, we get
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As shown in the SI, the overlap integrals with the Slater
determinants reduce to one-electron integrals of molecular

orbitals or their derivatives. For example, Δ =∂Δ
∂ 0k R

k

n

because of the normalization of the wave function (⟨Δk|Δk⟩

= 1), Δ =∂Δ
∂

∂
∂cj R

d
R

k

n k
when Δk differs from Δj by single

molecular orbital c replaced by d, etc. Of course, for the second
derivatives and more complicated cases, the expression
becomes more complex and automatic derivation and
programming were used to avoid formal errors.

2.5. Vibrational Wave Function. We use the vertical
approximation,24 where the vibrational function is the same for
all electronic states and equal to the harmonic oscillator wave
function. Then, the matrix elements ⟨vkK|VKJ|vjJ⟩ in eq 5 can be
obtained analytically using the vibrational normal mode
coordinates QN and the Cartesiannormal mode trans-
formation matrix S25

∑=R S Qn
N

nN N
(10)

The S-matrix elements and harmonic vibrational frequencies
(e.g., energies εiJ in eq 2) were thus computed using the usual
diagonalization of the harmonic force field (second energy
derivatives with respect to nuclear coordinates).5

2.6. Spectral Intensities. IR and circular dichroic spectral
intensities for a transition i → f are proportional to the dipole
and rotational strength, respectively, defined as18

∑ μ μ= ⟨ | | ⟩⟨ | | ⟩
α

α αD Re i f f i
(11)

∑ μ= ⟨ | | ⟩⟨ | | ⟩
α

α αR mIm i f f i
(12)

where μα/mα is the α-component of the electric/magnetic
dipole moment. Using the wave functions from eq 4, the dipole
moment matrix elements (d = μα or mα) become

∑⟨ | | ⟩ = ⟨ | | ⟩d c c v d vi f
kK

kK jJ k KJ j
i f

(13)

The electronic transition dipole matrix element dKJ = ⟨K|d|J⟩
can be further expanded in the nuclear coordinates

∑ ∑≅ +
∂
∂

+
∂
∂

d d
d

Q
Q

d

P
P(0)KJ KJ

m

KJ

m
m

m

KJ

m
m

(14)

In the present implementation, the derivative terms in eq 14
were included only for J = K, and only transitions from the
ground state (K = 0) were considered. Similarly, as for the S-
matrix, the dipole derivatives in eq 14 were obtained from a
quantum-chemical program as specified below.

3. DENSITY FUNCTIONAL THEORY COMPUTATIONS
A model diamine molecule was used to evaluate the magnitude
and basic properties of the BBO calculus; the methodology was
then applied to larger sparteine−Co and salicyl−Co complexes
(Figure 1). For the two larger systems, previous experiments
were available in refs 6, 10. The geometries were optimized by
energy minimization, using the Gaussian program,26 B3LYP
functional,16,27 and a standard 6-311+G** basis set as defaults.
For the bigger salicyl−Co, the lowest-energy conformer
(mol01 from ref 10, providing 92% of conformer populations)
was considered only. Other functionals (B3PW91, CAM-
B3LYP) and basis sets (6-31G*, 6-31G**, 6-311+G*, 6-311+
+G**, def2-TZVP, and LANL2DZ Co pseudopotential) were
also explored in the case of the diamine (cf. Table S1 with
electronic energies). In general, the functional and basis set
variation did not lead to significantly different results. For
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sparteine−Co, the molecular environment was mimicked by
the conductor-like screening model (COSMO) with parame-
ters for water,28−30 which again did not bring qualitative
changes. Multiplicity M = 4 was chosen for all molecules as it
provided the smallest energy. Gaussian bands of 10 cm−1

bandwidths were used to plot the diamine spectra; for the
other two molecules, further details are listed in Table S2 in
the SI. Absorption (ε) and VCD (Δε) are plotted in units of
M−1·cm−1.

4. RESULTS AND DISCUSSION
4.1. Effect of the Spin. Unlike most organic molecules,

transition-metal complexes occur in various spin states,
experimental determination of which can be quite challeng-
ing.31 The multiplicity of the metal complexes can also
significantly affect their vibrational spectra.10 In an extreme
case, the wrong spin determination can cause misinterpretation
of the VCD data including the extent of the BBO effects. For
the diamine, all combinations of tested functionals and basis
sets (B3LYP and B3PW91; 6-31G**, 6-311+G**, and def2-
TZVP) provided the lowest energy for multiplicity M = 4. For
example, energies of states with M = 2 were by about 0.034
Hartree higher. The same result was obtained for sparteine−
Co and salicyl−Co complexes, which is consistent with
previous experiments, e.g., the absolute value of the total
(orbital and spin) magnetic moment of sparteine−Co was
determined as μeff = 4.12 Bohr magnetons.32

The dependence of IR and VCD diamine spectra on the spin
can be seen in Figure 2. The spectra for M = 2 and 4 are
compared as calculated at the B3LYP/6-311+G** approx-
imation level. Clearly, whereas IR intensities look nearly
identical for both multiplicities, VCD spectra significantly
differ not only in magnitude but also in signs of some peaks. As

an extreme, the VCD intensity of the 1635 cm−1 band is
enhanced about 20 times by the 2 → 4 multiplicity change.
VCD thus also appears as a sensitive technique for spin
determination.

4.2. Orbital Derivatives. The derivatives of molecular
orbitals (MOs) with respect to nuclear coordinates are needed
to evaluate the BBO potential matrix elements (eq 9,
Appendices III and IV in the SI). The first and second
derivatives were expressed in the basis of unperturbed MOs
ψi(0),

∑

∑

ψ
ψ

ψ
ψ

∂
∂

= ̃

∂
∂ ∂

= ̃

R
U

R R
U

(0)

(0)

a

n b
n b
a

b

a

n n b
nn b
a

b

,

2

,
(15)

where the coefficients Ũn,b
a were obtained both from coupled-

perturbed (CP) equations33 and by numerical differentiation,
using overlaps between equilibrium and perturbed orbitals.
Ũnn,b

a we calculated by two-point differentiation only. The CP
results are available in the Gaussian output via the IOp options.
The differentiation is more universal than the CP approach

because it enables one to evaluate the first and second diagonal
derivatives of the orbitals at the same time (eqs III.3 and III.4
in the SI). On the other hand, its accuracy is in principle
dependent on the differentiation step size and some orbitals
(in particular those with similar energies) may not change their
shapes smoothly during the differentiation. For higher-energy
orbitals, unrealistically strict criteria need to be applied for the
self-consistent energy evaluation. Therefore, orbital rotations
and phase corrections need to be applied while computing the
derivatives numerically. This was done by unifying orbital
phases at the distorted (perturbed) geometries with those at
the equilibrium geometry. Typically, the overlap integral
between the perturbed and equilibrium molecular orbital was
close to 1 or −1 and ambiguities were rare. When they
occurred, the perturbed orbitals were rotated to maximize their
overlap with the equilibrium ones.
Occasionally, even the CP derivative coefficients obtained

from Gaussian were not usable, typically for orbitals with
nearly degenerate or high energies, probably because of the
finite accuracy limits for the coupled-perturbed self-consistent
computations.34

Because of these potential problems, we implemented both
the numerical and analytical methods to compute the orbital
derivatives, whereby comparing the results occasional errors
could be corrected. In the final effect, however, both methods
were found nearly equivalent. For example, the problematic
high-energy orbitals do not much overlap with the lower-
energy ones and inaccuracy in their derivatives has little effect
on the observable quantities. The examples of typical
correlations between the analytical and numerical derivatives
are given in Figure 3a,b. The orbital derivatives exhibit larger
variations across different functionals and basis sets (Figure
3c,f), although the core and frontier orbitals have a similar
shape (Figure S1). Overall, the evaluation of the derivatives
seems to be controllable and stable for a given approximation
level.

4.3. Derivatives of the CI Coefficients. In Figure 4,
selected derivatives are calculated with the 0.005 and 0.02 Å
differentiation steps. Apparently, also the estimation of the CI
coefficient derivatives by the numerical differentiation seems to

F i gu r e 1 . Mode l mo l e cu l e s : ( a ) d i am ine (R - 1 , 2 -
diaminopropanedichlorocobalt(II)), (b) 6R,7S,9S,11S-(−)-sparteine.-
CoCl2 (“sparteine−Co”), and (c) bis[(S)-N-(1-phenylethyl) salicylal
diminato] Δ-cobalt(II) (“salicyl−Co”) complexes.

Figure 2. IR and VCD diamine spectra simulated for two
multiplicities.
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be reasonably robust and accurate. The basis set and functional
dependence are shown in Table 1. The coefficient was chosen
as the largest one in the 50→ 53(β-MO) expansion so that the
derivatives could be determined with good precision. The
largest basis sets (Def2TZVP and aug-cc-pVTZ) provide about
5% larger values than the smaller ones. Similarly, the derivative

(gradient norm) changes by 3−16% among the B3LYP,
B3PW91, and CAM-B3LYP functionals.
These differences enter the perturbation terms responsible

for the BBO corrections where they cause larger changes. This
can be seen in Table 2 for a selected off-diagonal Hamiltonian

element or in Figures S2 and S3 with the resultant spectra. To
conclude these tests, we see that the DFT methodology
provides a reasonably stable platform to estimate the BBO
terms; however, a detailed basis set and functional dependence
must be evaluated in the same way as for any other quantum-
chemical computation.

4.4. Orbital BBO Contributions. Orbitals close to the
highest occupied molecular orbital (HOMO)/lowest unoccu-
pied molecular orbital (LUMO) pair contribute most to the
effect because of their close energies and large overlaps. Core
electrons are not much affected by changes in molecular
geometry, and the contribution of high-energy virtual orbitals
to states with low electronic energies quickly diminishes. The
possibility to restrict the orbital range makes computations of
the BBO terms faster. The numerical computation of the
diffuse virtual orbital derivatives would also require tight SCF
convergence criteria and laborious checks of similar orbitals in
different differentiated geometries. For the diamine (53 α and
50 β electrons), the BBO VCD spectra in the CH stretching
region were computed with HOMO ± 10, ± 20, and ± 30
orbitals included (Figure 5). The spectrum below 3000 cm−1

was virtually unaffected by the BBO correction. The CH
stretching bands within ∼3025 to 3150 cm−1 close to the first
3292 cm−1 electronic transition (electronic energies are listed
in Table S1) exhibit minor intensity changes. The VCD shape
with HOMO ± 20 still somewhat differs from that with
HOMO ± 10, but the HOMO ± 20 and HOMO ± 30 curves
are almost indistinguishable.

4.5. Large-Molecule Applications. The BO and BBO
absorption and VCD spectra simulated for the sparteine−Co

Figure 3. Diamine MO derivatives calculated at different levels: (a)
Numerical vs analytical Ũn,b

a values, (b) numerical Ũn,b
a with different

steps, (c, d) first and second derivatives (Ũn,b
a and Ũnn,b

a ) with two basis
sets, and (e, f) first and second derivatives with two functionals, 6-
311+G** basis set. (a, b) MOs 43−63 were included, for the x-
coordinate of the Co atom, (c−f) highest occupied molecular orbital
(HOMO) ± 3 included, gradient norm |dU/dr| = (Ũx

2 + Ũy
2 + Ũz

2)1/2

and second derivative trace Tr(d2U/dr2) = (Ũxx + Ũyy + Ũzz)/3, for
the Co atom, and (a−d) B3LYP functional was used.

Figure 4. First and second CI coefficient derivatives (Co atom, x-
coordinate, HOMO ± 10 excitations) as dependent (top, B3LYP/6-
31G**) on the differentiation step.

Table 1. Basis Set and Functional Dependence of a CI
Coefficient Derivativea

B3LYP B3PW91 CAM-B3LYP

6-31G* 0.3331 0.3221 0.3011
6-31G** 0.3354 0.3243 0.3065
6-311+G** 0.3392 0.3240 0.2823
6-311++G** 0.3409 0.3249 b

Def2TZVP 0.3502 0.3347 0.3301
aug-cc-pVTZ 0.3557 0.3373 c

a[(∂C/∂x)2 + (∂C/∂y)2 + (∂C/∂z)2]1/2, for the first excited electronic
state, 50 → 53(β-MO) excitation and the Co atom. bSCF not
converged. cChange in the orbital numbering.

Table 2. Functional and Basis Set Dependence of a
Hamiltonian Interaction Elementa

B3LYP B3PW91 CAM-B3LYP

6-31G* 1.024 1.102 0.848
6-31G** 0.951 0.807 0.703
6-311+G** 0.391 0.393 0.039
6-311++G** 0.297 0.341 b

Def2TZVP 0.338 0.339 0.388
aug-CC-pVTZ 0.912 0.133 1.152

a⟨vkK|VKJ|vjJ⟩ in cm−1, k = 32 (CH and NH bending vibration), K = 0
(ground state), J = 1, j = 0. bSCF not converged.
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and salicyl−Co complexes are compared to the experimental
results in Figure 6. An encouraging agreement with the

experimental behavior appears. Clearly, the absorption spectra
simulated at the BO level are not much changed by the
correction and correspond to the observations. Also, previous
BO models on these and other systems provided a good
agreement with experimental absorption intensities.6,10 This is
given by the small magnitude of the BBO energy terms/
Hamiltonian matrix elements (e.g., Table 2) and consecutive
very limited mixing of the electronic and vibrational BO states.
On the other hand, the BBO correction causes significant

changes in the VCD spectra. Some bands are enhanced up to
10 times. This dramatic difference of behavior of IR and VCD
is explicable by the large magnetic moments and rotational
strengths of the electronic transitions involving the d electrons.
Indeed, in Table 3, we can see that the typical vibrational and
electronic dipole strengths determining the absorption
intensities are roughly comparable. Limited mixing of the
electronic and vibrational states, therefore, cannot have an
observable effect. On the other hand, rotational strengths of
the first two electronic transitions (3.0056 × 10−4 and −1.6795
× 10−4 debyes2) are relatively big, and even small
contamination of the vibrational state by an electronic one

results in a visible change of VCD intensity. A similar situation
occurs for salicyl−Co (Table S3).
The BBO correction makes the simulations closer to the

experimental data, although for sparteine−Co the simulated
intensities are smaller and for salicyl−Co they are bigger than
observed (cf. the absolute y-scales). For salicyl−Co, the wrong
sign of the signal around 1400 cm−1 is obtained. This can be
explained not only by the approximations made during the
BBO treatment but also by a high molecular flexibility,
conformer equilibria,10 and environmental factors, analysis of
which goes beyond the scope of the present work. In particular,
higher-order BBO corrections may be needed for a better
agreement, which is not currently possible with our computa-
tional means. Nevertheless, we believe that already the first-
order BBO corrections show their usefulness for interpretation
of VCD spectra of transition-metal complexes and BBO
phenomena in general.

5. CONCLUSIONS
Within the time-dependent density functional theory and
simplified wave function model, we have elaborated on the
expressions needed to correct IR and VCD intensities for
electronic−vibrational interactions going beyond the Born−
Oppenheimer approximation. Working expressions could be
obtained, including overlap integrals between perturbed Slater
determinants. The implementation was tested on a smaller
molecule where it was found reasonably accurate and stable
with respect to detailed parameters, such as the basis set and
functional type. For two larger cobalt complexes, the BBO
correction provided significant improvement of computed
VCD intensities, although further tests are still needed in the
future. In particular, the dependence on the basis set,
environment, and inclusion of various BBO terms (e.g., first
and second orbital/CI coefficient derivatives) could be
explored only partially so far. In the present stage, many
band signs and relative intensities differed in the simulated and
experimental spectra. However, the computation provided a
good theoretical basis for interpretation of the measured data.
A large magnetic moment associated with the electronic
transitions involving d electrons of the metal was identified as
the key factor for the VCD enhancement. We believe that the
possibility to reliably estimate the BBO coupling will
significantly enhance the application span of VCD spectrosco-
py, including metal−ligand probes with the enhanced signal.

Figure 5. Diamine VCD spectra simulated within the BO
approximation and the BBO results with HOMO ± 10−30 MOs
included, at the B3LYP/6-31G** level.

Figure 6. VCD (top) and absorption (bottom) spectra simulated for
the sparteine−Co and salicyl−Co complexes within the BO and BBO
approaches. The calculated harmonic frequencies were scaled to
enhance the comparison of corresponding bands; the experiments are
taken from refs 6 and 10.

Table 3. Selected Sparteine−Co Transition Energies E,
Dipole D and Rotational R Strengths, and the Kuhn
Anisotropy (Dissymmetry) Factors g = 4R/D

E (cm−1) D × 104 (debye2) R × 108 (debye2) g × 104

Vibrational
1519 40 3 0.3
1514 33 −4 −0.5
1510 96 18 0.8
1505 5 −13 −9.3
1501 10 −9 −3.5

Electronic
5377 86 30 056 1403
5857 42 −16 795 −1588
8013 73 −8382 −459
11 520 3514 9903 11
12 257 3139 −7050 −9
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