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Clusters of a solute and a few solvent molecules obtained

from molecular dynamics (MD) are a powerful tool to study

solvation effects by advanced quantum chemical (QC)

methods. For spectroscopic properties strongly dependent on

the solvation, however, a large number of clusters are needed

for a good convergence. In this work, a parallel variable

selection (PVS) method is proposed that in some cases

efficiently reduces the number of clusters needed for the

averaging. The mass, charge, or atomic density MD

distributions are used as a secondary variable to preselect the

most probable cluster geometries used for averaging of solute

spectral properties. When applied to nuclear magnetic

resonance chemical shift of a model alcohol, the method

allowed one to significantly reduce the total computational

time, by a factor of 10. Even larger savings were achieved for

the modeling of Raman and Raman optical activity spectra of

(S)-lactamide molecule dissolved in water. The results thus

suggest that the PVS method can be generally used for

simulations of spectroscopic properties of solvated molecules

and makes multiscale MD/QC computations more affordable.

VC 2012 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23143

Introduction

Molecular dynamics (MD) provides exciting possibility to

involve explicit solvent molecules in their realistic interactions

and spatial distribution around a solute. If coupled with

advanced quantum chemical (QC) computations, molecular

properties including dynamical behavior can be obtained

more realistically than using vacuum approximation or contin-

uum solvent models. For example, vibrational properties or

energy of biologically relevant systems can be modeled this

way.[1,2] Similarly, modeling of solvent effects and nuclear mag-

netic resonance (NMR) spectroscopic properties for biologically

relevant compounds required the MD solute–solvent cluster

approach.[3,4] Typically, the explicit solvent is necessary for

computations of the electronic excitations.[5,6] Simulation of a

solvated electron and electrochemical properties probably

belong to the most advanced application requiring the full

explicit solvent–solute cluster models.[7–9]

In the past, we successfully used the MD cluster averaging

for predictions of NMR parameters,[10,11] vibrational circular

dichroism,[12] Raman optical activity (ROA),[13] or electronic ex-

citation spectra.[14] In all these cases, the cluster approach was

superior to other models.

Nevertheless, there are several obstacles hampering the

cluster computations. For some properties depending on a

wider molecular environment, such as NMR shielding, a peri-

odic box may even be a better option.[10,15] For vibrational

spectra simulation, proper optimization scheme had to be cho-

sen for meaningful results.[16]

Perhaps, the most omnipresent obstacle in the MD cluster

averaging is the slow convergence of the solute spectroscopic

properties and consequent sharp increase of the total compu-

tational time. A combination of explicit and implicit solvent

representation sometimes allows one to significantly reduce

the size of the clusters, for example, by the point-charge or

similar simplified solvent representations.[9,17] or by combina-

tion with advanced polarizable continuum models.[18–22] To

our best knowledge, however, available procedures do not aim

to reduce the number of the clusters itself. Fortunately, as

shown later, a rational preselection of the clusters is possible,

and it can reduce the overall computational effort significantly.

Strictly speaking, to represent the equilibrium Boltzmann

distribution of solute molecules provided by a MD simulation,

a large number of geometry snapshots must be taken without

a preselection bias.[23] However, the knowledge of the full dis-

tribution is not necessary, if only an average value is calcu-

lated. Still, the convergence of computed properties is deter-

mined by a random noise and scales very slowly with the

number of snapshots, �N�1/2.[24,25] For a Raman spectra simu-

lation, for example, the cluster computation led to a 105

increase of computational time if compared to a continuum

solvent model.[13] Therefore, instead of a plain Boltzmann aver-

aging, for such cases, we propose a more efficient selection of

the clusters based on a solvent density distribution as a paral-

lel variable.

The parallel variable selection (PVS) idea is outlined in Figure 1.

An average of a property X, which may depend on the density q,
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can be most efficiently obtained by averaging the MD snapshots

that also provide q close to the average. In other words, we use q
to avoid extreme cases. As X, NMR chemical shifts and Raman and

Raman activity spectral intensities are calculated in this study.

It is true that the proper Boltzmann averaging including all

the snapshots must be used for the density construction.

However, this process involving simple manipulation of MD

snapshots only is immeasurably faster than a direct computa-

tion of spectral properties by ab initio methods.

Methods

Model spectroscopic problems

As model systems, we used (R)-2,2,2-trifluoro-1-phenyl-ethanol
(TPE) dissolved in (R)-1-phenylethanamine and the (S)-lacta-
mide molecule dissolved in water (Fig. 2). For the first system,
we were interested in the explicit solvent effect on NMR
chemical shifts. Full outcome of these results not connected
with the PVS method will be published elsewhere. The lacta-
mide has already been taken as a model compound to investi-

gate implicit and explicit solvent effects on Raman and ROA
spectra of biologically relevant systems.[13]

The TPE molecule was placed to a cubical box (of 35.04 Å a
side) filled by the (R)-1-phenylethanamine solvent. Program
Amber[26] and the GAFF[27] force field were used for the simu-
lations. After 1 ns equilibration a free MD propagation within
the NVT ensemble was performed at 300 K using the 1 fs inte-
gration time step. Ten thousand snapshot geometries were
generated separated by 1 ps, comprising thus 10 ns of
propagation.

For the lactamide, 1000 clusters of conformer I (as defined
in Ref. [13]) were selected during the Car–Parrinello MD
(CPMD).[28] We chose CPMD, as it provided better spectral
results than classical MD; however, there is no indication that
the PVS selection would work differently for various dynamics
types. Full simulation details were described earlier.[13] Briefly,
periodic boxes (10.051 � 10.051 � 10.051 Å3) containing 30
water molecules and the solute were let to propagate at 300
K, using the CPMD software,[29] 0.09676 fs integration time
step, NVT ensemble, BLYP[30] functional, and Vanderbilt ultra-
soft pseudopotentials.[31] The trajectories were saved every
50th step.

For both systems, solute–solvent clusters comprising the
first solvation shells were selected from the snapshot geome-
tries, according to the maximal distance between the solute
and solvent atoms (9.0 and 3.5 Å for TPE and lactamide,
respectively, cf. Fig. 2, top). The clusters were partially opti-
mized to damp the unrealistic MD deviations for the high-fre-
quency modes.[16] For TPE, five minimization steps were per-
formed within Amber. For lactamide, the constraint normal
mode optimization method[32,33] interfaced to Gaussian was
used, with the frequency limit[16] xmax ¼ 300 cm�1, whereas
B3LYP[30] functional, 6-311þþG** basis set, and the conductor-
like continuum solvent model (CPCM)[34] solvent model were

Figure 1. The PVS scheme: clusters close to the average (green) in one

variable (q) also provide about average values of another one (X).

Figure 2. Model systems: TPE (left, also in an MD cluster with (R)-1-phenylethanamine molecules) and the (S)-lactamide molecule (right, with its CPMD

cluster containing water molecules).
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used for the remaining aqueous environment. The partial opti-
mization does not affect the performance of the PVS method
followed in this study but provides averaged results faster and
closer to experiment.

QC computations

Program Gaussian09[35] was used for the computations of
NMR shielding (TPE) and Raman and ROA spectra (lactamide)
on the selected cluster geometries. The BPW91[36] theory was
used for NMR, as the general gradient approximation (GGA)
functional provides reasonably fast shielding tensors, with the
3-21G GIAO[37] basis set. The model systems well illustrate the
excessive amount of computer time needed for converged
results. For example, about 20,000 h in total were needed for
the 10,000 shielding computations (recalculated to 2 GHz 64
bit Intel cpu). The ROA spectra were calculated at the B3LYP/6-
311þþG**/CPCM level of approximation, which took about
30,000 cpu h for the 1000 clusters.

To document effect of the solvent for NMR chemical shift,
isotropic atomic shieldings in the TPE molecule were also cal-
culated at the B3LYP/aug-cc-pVTZ level in vacuum and using
the CPCM[34] dielectric solvent correction. As 1-phenylethan-
amine (relative permittivity er ¼ 4.40, http://www.springerma-
terials.com) is not supplied by Gaussian, we modeled it with
butylamine (er ¼ 4.62). Conformer distribution obtained from
MD was used instead of that based on the density functional
theory (DFT) energies, as this procedure provided more faithful
ROA spectra of TPE. These results were compared with the MD
cluster model, comprising corrected vacuum results, that is,
dMD ¼ dB3LYP/aug-cc-pVTZ,single molecule þ dBPW91/3-21G,cluster �
dBPW91/3-21G,single molecule. For the MD clusters, the lower BPW91/
3-21G level had to be used to average a large amount (10,000)
of MD snapshots.

Except for TPE, similar MD trajectories and NMR data were
analyzed for two other small molecules (1-phenylethanol and
1-phenylamine) in various solvents.[38] In total, 12 MD trajecto-
ries comprising each 10 million steps were included. As the
performance of the PVS approach was quite similar in all
cases, in this study we report only the TPE data.

Average solvent density construction

The solvent density calculated on a Cartesian grid was used as
the parallel variable. First, the individual clusters selected from
the MD/CPMD dynamics were rotated to achieve approxi-
mately the same positions of three selected solute atoms
(CPheA

aC(HO)AC for TPE and C¼¼OA
aC(HO)AC for lactamide),

by a minimization of the sum of the square distances. Then,
the solvent mass, charge (atomic numbers), and atomic den-
sities were constructed on an equidistant 0.25 Å grid sur-
rounding the solute.

To achieve a smoother distribution, each atom occurring in
a cell (c) contributed also to some of the 26 neighboring cells
(e.g., i, j, and k, see Fig. 3). The density contribution was calcu-
lated as qi ¼ w � vi=v2i (for i ¼ 1–26, w determines the atomic

position and vi is the position of cell i with respect to the cen-

ter of cell c). Contribution to the cell c itself was obtained as

qc ¼
P26

i¼1;qi>0 ð1� qiÞ=N, where negative qi values were

ignored, and the number of the positive contributions

N ¼
P26

i¼1;qi>0 1. We should note, however, that the smoothing

finally did not have a decisive effect on the results.

The probability contribution in the 27 cells was renormalized
to one (atomic density), atomic charge (nuclear charge den-
sity), or atomic mass (mass density). As another possibility, we
used the density of the carbon atoms only. As shown later, the
results were much dependent neither on the choice of the
density type.

The cluster preselection

For each cluster selected from the trajectory, the smoothed
density (qc) was constructed and compared with the average
density qave ¼

PM
c¼1 qc=M, where M is the total number of

clusters. Density farther than 7 Å from the solute was not con-

sidered to eliminate the influence of the periodic boundary

conditions. Trial computations showed that reasonable varia-

tions (61 Å, so that most of the first hydration shell is

included) of this limit do not significantly influence the results.

Examples of the average density distribution are plotted in Fig-

ure 4. We can see that the density clearly accumulates radially

in the first solvation sphere; an angular structure is more appa-

rent for the polar lactamide than for TPE.

A dimensionless difference was calculated as

Dq ¼
P

i ðqc;i � qave;iÞ qave;i ð
P

i qc;iqc;iÞ
�1=2 ð

P
i qave;iqave;iÞ

�1=2,

where the sums run over all the grid points. Then, the clusters

were sorted, starting with those exhibiting the smallest Dq
values.

In this way, we could compare NMR or ROA spectral proper-
ties obtained from a limited number of the preselected clus-
ters with those obtained from the same amount of unsorted
MD clusters. As a measure of agreement, all chemical shift dif-
ferences with respect to the value averaged from the total of
the 10,000 clusters were calculated for TPE. Similarly, for lacta-
mide, the errors of the Raman and ROA lactamide spectra
obtained from N clusters (SN, N � M) were related to the
exact average (SM), using a dimensionless quantity

d ¼
R xmax

xmin
SNðxÞ � SMðxÞj jdx=

R xmax

xmin
SMðxÞj jdx, xmin ¼ 200

Figure 3. Construction of the density on the Cartesian grid, for an atom of

a position vector w. The probability is distributed to the central (c) and the

neighboring cells i, j, and k. For example, an atom in the middle (m) con-

tributes by equal probability to c, i, j, and k, see text for the detailed

formula.
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cm�1 and xmax ¼ 2000 cm�1, which proved as a good objec-

tive criterion of Raman and ROA spectral agreements in previ-

ous studies.[39–41]

Results and Discussion

PVS convergence acceleration of NMR shielding

For selected atoms, average isotropic shielding as dependent

on the number of the clusters taken for the averaging is plot-

ted in Figure 5. For all cases, the plain MD cluster averaging

provides the slowest convergence, with large oscillation

(�60.1 ppm) even when majority of the geometries has been

averaged. To exclude influence of possible correlation of MD

geometries, the MD clusters were also averaged in the

reversed order, which, however, provided very similar depend-

encies. On the contrary, the averaging based on the PVS

method with the charge density provides comparatively fast

and smooth convergence; typically, an error smaller than 0.1

ppm is achieved when less then one 10th (1000) of the clus-

ters is averaged (Fig. 5, the red line). For a larger number of

averaged clusters (>1000), variations of shieldings obtained

using PVS are at least 10 times smaller than for the direct

averaging. The slowest convergence is exhibited by the C1

and F atoms, as opposed to C2 and H1, for both the direct

and the PVS methods.

In Figure 6, we compare the plain averaging and PVS based

on the mass, charge, carbon, and atomic densities for the C2

atom. Clearly, all PVS variants provide faster convergence than

the plain averages. The atomic density seems to provide

slightly worse convergence than mass and charge, but the dif-

ferences are minor in comparison to the overall improvement

against the direct averaging. The behavior is similar for the

subset of 1000 geometries (left part of Fig. 6) and in the full

10,000 geometry ensemble (right). Note, however, that the av-

erage value of the shielding for N ¼ 1000 (r ¼ �74.00 ppm)

Figure 4. Mass density of the solvation shell of solvated TPE (left, a cross section, from a MD/Amber calculation) and (S)-lactamide (right, CPMD/BLYP).

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 5. Isotropic shielding as a function of number of averaged clusters (for selected TPE atoms defined in Fig. 2). MD snapshots were averaged directly

(in the forward and reversed orders) and using the PVS preselection based on the charge density. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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differs from that for N ¼ 10,000 (r ¼ �74.15 ppm). The overall

quality of the simulation thus primarily depends on the total

length of the MD simulation. The PVS procedure makes more

effective only the extraction of the results, via reducing the

number of ab initio computations.

Raman and ROA spectra

For the lactamide model system, the benefit of the PVS

method is even more apparent than for the NMR computa-

tions. In Figure 7, the normalized errors of the ROA and Raman

spectra are plotted as dependent on the number of the aver-

aged clusters. All the density models provide very similar con-

vergence, which is much faster than for the plain averaging.

About 10� fewer clusters are needed for PVS to provide the

same accuracy as the plain averaging.

In terms of detailed intensities, the spectral error for 50

CPMD snapshot averages can be judged from Figure 8, where

the ROA and Raman spectra are plotted as obtained by the

direct and PVS averaging and compared with the exact aver-

age. Although the direct 50 geometry average provides most

of the exact spectral features, significant deviations appear in

relative intensities. For Raman, the intensity is overestimated

by up to 50% around 700, 1130, and 1300 cm�1. The relative

intensity error is even large for ROA; around 1300 cm�1, even

incorrect sign is obtained by the incomplete direct averaging.

On the other hand, PVS provides spectral shapes quite close

to the exact average.

Although the PVS method provided excellent results for the

test data, it should be noted that it is an empirical method

and might not be applicable in some singular cases, for exam-

ple when snapshots that are far off from the average density

contribute to the target property, and the property depend-

ence on the coordinates is strong (anharmonic). Yet, we

believe that for most applications the PVS tool can signifi-

cantly enhance the spectral modeling.

Conclusions

In the model MD and CPMD simulations, we constructed aver-

age solvent densities, implemented the automatic preselection

Figure 6. The C2 shielding averaging for 1000 (left) and 10,000 (right, cf. Fig. 5) MD clusters and various PVS densities. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Figure 7. ROA (top) and Raman (bottom) (S)-lactamide spectral conver-

gence (d), using plain average of the CPMD clusters, and PVS with mass,

charge, and atomic density. Note the logarithmic x-scale. [Color figure can

be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 8. ROA (top) and Raman (bottom) spectra of solvated (S)-lactamide

obtained from averaging 50 cluster or PVS (atomic density) preselected

geometries and the exact 1000 CPMD geometry average. [Color figure can

be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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of the clusters, and analyzed large amount of ab initio data.

The results suggest that the PVS method can be efficiently

used to reduce the total computational time needed for the

averaging in combined quantum mechanical/molecular

mechanics (QM/MM) studies. The examples were chosen to

demonstrate typical computations with explicit solvent in the

NMR and Raman spectroscopies. For all cases, the PVS selec-

tion proved to be significantly more efficient in comparison

with the usual plain averaging. It led to about 90% savings of

computer time in computations of solute spectroscopic prop-

erties. The atomic density as the parallel secondary variable at

some cases provided a minor improvement over the carbon,

mass, or charge densities. For the Raman and ROA spectra, a

slightly faster convergence was achieved than for the NMR pa-

rameters. The PVS algorithm thus appears as a powerful tool

in multiscale simulations of molecular spectroscopic

properties.

Keywords: molecular dynamics � density functional theory �
nuclear magnetic resonance � spectroscopy � clusters � solvent
modeling
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