Vibrational and Electronic Circular Dichroism Monitoring of Copper(II) Coordination with a Chiral Ligand

TAO WU,1 XIAO-PENG ZHANG,1 CHENG-HUI LI,1,4 PETR BOUŘ,2,6 YI-ZHI LI1 AND XIAO-ZENG YOU1,7

1State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
2Institute of Organic Chemistry and Biochemistry, Praha 6, Czech Republic

ABSTRACT Novel copper(II) coordination compounds with chiral macrocyclic imine ligands derived from R-/S-camphor were asymmetrically synthesized and characterized with the aid of chiroptical spectroscopies. Crystal structures of both enantiomers were determined by single crystal X-ray diffraction analysis. Circular dichroism (CD) spectra were analyzed using a simplified exciton model as well as quantum chemical computations. The absolute configuration of the copper(II) coordination compounds determined from CD was found consistent with the crystal data. The copper(II) complexes were further investigated by vibrational CD (VCD) measurement combined with density functional theory calculation. The complex formation was evidenced by spectral shifts of the characteristic bands in the CD and VCD spectra. Chirality 24:451–458, 2012. © 2012 Wiley Periodicals, Inc.

KEY WORDS: circular dichroism; vibrational circular dichroism; chiral coordination compounds; coordination process; density functional theory calculations

INTRODUCTION

Chiroptical techniques based on the different interaction of chiral molecules with left and right circularly polarized light, such as optical rotatory dispersion, Raman optical activity, circularly polarized luminescence, and circular dichroism (CD), can be conveniently used to monitor the structure of both organic and inorganic compounds. In particular, the CD spectroscopy,1 which arises from the difference in absorption of left and right circularly polarized light, has become popular for regular chemical analysis. Commercial CD instruments are available for both the electronic CD (or just CD) and the vibrational CD (VCD); the former explores the ultraviolet-visible (UV–vis) region comprising electronic transitions, whereas the latter operates in the infrared (IR) region (especially in the mid-infrared region) and sees vibrational transitions.2 CD spectroscopy is used as a powerful tool in stereochemical analysis for chiral organic molecules, supramolecular systems, and coordination complexes.3–12

The chirality of metal coordination compounds attracted chemists’ attention because of its role in asymmetric catalysis, chiral recognition, optically active molecular materials, and life sciences.13–15 VCD spectra of transition metal compounds exhibit some particular properties. For example, Nafie et al. discussed the role of low-lying excited electronic states in the enhancement of VCD in transition-metal coordination compounds.16,17 Sato et al. emphasized the effect of d electron configurations of central transition-metal ions of tris(β-diketonato) coordination compounds on the VCD.18,19

Nevertheless, detailed comparisons of the CD and VCD spectra of metal complex with free ligand and theory are rather rare. In a previous study, we designed and asymmetrically synthesized a novel chiral macrocyclic imine ligands derived from R-/S-camphor and their nickel(II) coordination compounds;20 however, the poor solubility of the nickel(II) coordination compounds inhibited the VCD measurement in solution. Moreover, it is generally believed that VCD for open-shell systems is less predictable than that of closed-shell systems, at least within the density functional theory (DFT) framework.21,22 Therefore, the paramagnetic copper(II) coordination model compounds (Scheme 1) were asymmetrically synthesized and characterized instead. The copper(II) coordination compounds are well soluble in deuterated chloroform, which facilitated detailed VCD exploration in both mid-infrared region and C-H stretching region. The absolute configuration of both enantiomers was determined by single crystal X-ray crystallography and confirmed by electronic CD and VCD. Comparison of the spectra of metal coordination compounds with those of the free ligands indicated complex formation. The results thus show that the chiral spectroscopic techniques can be conveniently used to monitor the coordination process.

EXPERIMENTAL

General Procedures

Elemental analyses for C, H, N, and S were performed on a Perkin-Elmer 240C analyzer (Norwalk, Connecticut, USA). Electro spray ionization mass spectra (ESIMS) were recorded on a Finnigan MATSQQ 710 mass spectrometer in the range of 120–1000 amu. 1H-NMR spectra were obtained on a DRX 500 NMR spectrometer. Chemical shifts are referenced to TMS. Spin–spin coupling constants are given in hertz. Electronic absorption spectra were measured on UV-3600 spectrophotometer. CD spectra were recorded in the region of 1800–800 cm−1 were recorded on an IFS-66/S Fourier transform infrared spectrometer. Additional Supporting Information may be found in the online version of this article.

Contract grant sponsor: National Natural Science Foundation of China; Contract grant number: 21021062.15001063.
Contract grant sponsor: China Ministry of Science and Technology; Contract grant number: 2007CB925100.2011CB920870.
Contract grant sponsor: Grant Agency of the Czech Republic; Contract grant number: P208/11/0105.

1Correspondence to: Cheng-Hui Li and Xiao-Zeng You, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, 210093 Nanjing, China. E-mail: youxz@nju.edu.cn; Petr Bouř Institute of Organic Chemistry and Biochemistry Praha 6, Czech Republic. E-mail: bou@uuochb.cas.cz

© 2012 Wiley Periodicals, Inc.

Published online 28 April 2012 in Wiley Online Library (wileyonlinelibrary.com).
IR spectrometer equipped with a PMA 37 VCD/IR/RAS module (Bruker, Germany) using standard procedures. The photo elastic modulator (PEM) was set to 1600 cm⁻¹, the spectral resolution was 4 cm⁻¹, and the zero filling factor was 4. A demountable cuvette A145 with KBr windows with 0.10 mm Teflon spacer was used. IR and VCD spectra in the region of 4000–2000 cm⁻¹ were investigated with a Tensor 27 Fourier transform IR spectrometer equipped with a PMA 50 VCD/IR/RAS module (Bruker, Germany) using standard procedures. The PEM was set to 3000 cm⁻¹, the spectral resolution was 8 cm⁻¹, and the zero filling factor was 2. A demountable cuvette A145 with infrasil windows with 0.10 mm Teflon spacer was used. All solution samples were dissolved in deuterated chloroform to the same concentration of 0.174 mol l⁻¹.

Scheme 1. Asymmetric synthesis of chiral macrocyclic imines copper(II) coordination compounds 2 (a derived from R-camphor, b derived from S-camphor).

SHELLX-97 with anisotropic displacement parameters for all nonhydrogen atoms in all structures. Hydrogen atoms bonded to the carbon atoms were placed in calculated positions and refined as riding mode, with C–H = 0.95 Å (methane) or 0.99 Å (methyl) and Uiso (H) = 1.2(Ueq(Carbons)) or Uiso (H) = 1.5(Ueq(Carbons)). The water hydrogen atoms were located in the difference Fourier maps and refined with an O–H distance restraint (0.85(1) Å) and Uiso (O) = 1.5(Ueq(O)). All computations were carried out using the SHELLX-97 program package. CCDC 819554 (2a) and 819555 (2b) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Computational Section

The calculations were carried out with Gaussian09 programs. The geometries of 2a and 2b were fully optimized without any symmetry constraints. The crystal structures were used as the starting geometries. The effect of the solvent was modeled by the CPCM dielectric model. Time dependent DFT (TD-DFT) calculations using the B3LYP functional were performed to obtain the UV–Vis and CD spectra of 2a. The LANLDZ basis set and effective core potential (ECP) for Cu(II) and 6-31G* basis set for other atoms were adopted in the TD-DFT calculations. The calculations of IR and VCD spectra of 2a and 2b were also carried out under B3LYP combined with the LANLDZ basis set/ECP for Cu(II) and 6-31G* for other atoms.

RESULTS AND DISCUSSION

Synthesis and Product Characterization

The macrocyclic imines and their copper coordination compounds were prepared using optically pure enantiomers of camphor. The copper coordination compounds 2a and 2b were characterized by elemental analyses, ESIMS, and NMR. Both the copper coordination compounds are resistant to air and moisture. The crystal structures of 2a and 2b have been determined by single crystal X-ray crystallography. Details of the crystal parameters, data collection, and refinements for 2a and 2b are summarized in Table 1. Selected bond lengths and angles for 2a and 2b are summarized in the supplementary material (Table S1).

Crystal Structure and Absolute Configuration

The geometric structures of the copper coordination compounds are similar to that of the nickel coordination compounds. The copper coordination compounds were prepared using optically pure enantiomers of camphor. The copper coordination compounds 2a and 2b were characterized by elemental analyses, ESIMS, and NMR. Both the copper coordination compounds are resistant to air and moisture. The crystal structures of 2a and 2b have been determined by single crystal X-ray crystallography. Details of the crystal parameters, data collection, and refinements for 2a and 2b are summarized in Table 1. Selected bond lengths and angles for 2a and 2b are summarized in the supplementary material (Table S1).

X-Ray Crystallography

Single crystal X-ray diffraction measurements for coordination compounds 2a and 2b were carried out on a Bruker SMART APEX CCD on the basis of diffractionmeter operating at room temperature. Intensities were collected with graphite monochromatized Mo Kα radiation (λ = 0.71073 Å) operating at 50 kV and 30 mA, using ω/2θ scan mode. The data reduction was made with the Bruker SAINT package. Absorption corrections were performed using the SADABS program. The structures were solved by direct methods and refined on F² by full-matrix least-squares using Chirality DOI 10.1002/chir
of the central heterocyclic ring. The camphor imines have retained their E configuration after coordination to the metal. The enantiomeric structures are almost exact mirror images of each other (Fig. 1). According to the "skew-line system," the absolute configuration of copper coordination compound 2a is Δ while 2b is Λ.

UV-Visible Spectra, Circular Dichroism Spectra, and the Exciton Chirality Model

The UV–vis and CD spectra of the free ligands and copper coordination compounds enantiomers are shown in Figure 2. The ligand 1a shows an absorption band at \(\lambda_{\text{max}} = 238 \) nm with tailing to 300 nm. The copper complex 2a shows three main peaks with the maxima around 203 (\(\epsilon = 1.7 \times 10^5 \)), 273 (\(\epsilon = 5.1 \times 10^3 \)), and 370 (\(\epsilon = 2.29 \times 10^3 \)) nm, respectively. In addition, a broad weak band with a maximum at about 617 (\(\epsilon = 0.2–0.3 \times 10^2 \)) nm is detectable. The electronic spectra of 1b and 2b are essentially the same for both enantiomers. The CD spectrum of 1a shows positive Cotton effects at 225 nm and negative Cotton effects at 255 nm, whereas the CD spectrum of 2a exhibits positive Cotton effects at \(\lambda_{\text{max}} \approx 249 \) and 641 nm and negative Cotton effects at 213, 373, and 533 nm. The CD spectrum of 2b is nearly a mirror image of that of 2a. TD-DFT calculations based on the optimized structure of 2a (selected optimized structural parameters are listed in Table S1) gave quite good simulation of UV–vis and CD spectra as shown in Figure 3. The experimental absorption bands could thus be assigned according to the calculations (Table S2 and Figs. S2 and S3).

The band around 627 nm is associated with the electron transition from the weak σ-antibonding 3d orbital to the strongly σ-antibonding 3d orbital. The higher energy band at 370 and 273 nm corresponds to ligand–metal charge transfer, where the electronic transitions come from the imine ligand π orbitals and nonbonding nitrogen orbitals to the strongly antibonding 3d orbital. The highest energy band around 203 nm can be assigned to the π–π* transition between imine ligands, which is evidenced by the similar absorption band observed for the free ligands (Fig. 2).

In the CD spectrum of 2a, a positive–negative CD couplet within 651–556 nm was observed, which can be designated to the d–d transition. The split of the d–d transition in the CD spectrum is due to the asymmetric coordination environment of the Cu(II) ion. The CD signal of the d–d transition of 2a is significantly higher compared with its nickel analogue. The high CD intensity of the d–d transitions can be ascribed to metal–ligand (antibonding) orbital interactions that result in (out-of-phase) mixing of ligand π and/or σ orbitals with the d orbitals. The band at 373 nm (negative Cotton effect) can be assigned as the ligand–metal charge transfer band at 370 nm. The intense negative band at 213 nm is primarily a π–π* transition. As expected, compound 2b displays Cotton effects of the opposite sign at the same wavelengths.

The absolute configuration of 2a and 2b can be determined from the CD spectra according to the exciton coupling model. The CD spectrum of 2a shows good bisignate Cotton effects in the d–d transition regime with positive peaks at lower energy and negative peaks at higher energy, which is assigned as positive chirality. In contrast, compound 2b shows opposite exciton couplet corresponding to negative chirality. The CD exciton couplet in positive chirality is associated with the Δ configuration, whereas the CD exciton couplet in negative chirality is associated with the Λ configuration. Therefore, the absolute configuration of 2a is Δ, whereas that of 2b is Λ, which is in agreement with the absolute configuration determined by "skew-line system" via X-ray single crystal structure measurement. Our system thus represents a good example where the CD bisignate signal of d–d transition is observed and might be used to the determination of the absolute configuration for metal coordination compounds.

Infrared and Vibrational Circular Dichroism Spectra

Figure 4 shows the IR and VCD spectra of copper coordination compounds enantiomers in CDCl₃ solutions in the mid-infrared region, whereas Figure 5 shows the IR and VCD spectra of the corresponding copper complexes.
spectra of copper coordination compounds enantiomers in CDCl₃ solutions in the C-H stretching regions. As expected, the IR spectra of both enantiomers are almost the same, while the VCD spectra are nearly mirror images.

In the IR spectra, the strongest peaks in the mid-infrared region come from the imine double bond (1675 cm⁻¹) and sulfonamide (1297, 1266, and 1009 cm⁻¹) stretch vibrations, whereas the weaker peaks originate in the camphor skeleton and two ethyl-diamino group (1500–1300 cm⁻¹) stretch vibrations. Several overlapped peaks in the C-H stretching region can be assigned to C-H stretching of camphor and two ethyl-diamino groups.

To monitor the complexation process of ligand to copper(II) ion, the IR and VCD spectra of the imine ligands with the same concentration as their copper(II) coordination compound in CDCl₃ were obtained (Figs. S4 and S5). Comparison of IR and VCD spectra between free ligand 1a and copper coordination

![Figure 2](image2.png)
Fig. 2. Experimental ultraviolet–visible and circular dichroism spectra of copper(II) coordination compound 2a (solid line) and 2b (dot line) (left); and free ligands 1a (solid line) and 1b (dot line) in methanol solution (right).

![Figure 3](image3.png)
Fig. 3. Calculated ultraviolet–visible and circular dichroism spectra of coordination compound 2a in methanol solution. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

![Figure 4](image4.png)
Fig. 4. Infrared (top) and vibrational circular dichroism (bottom) spectra in the mid-infrared region of copper coordination compounds 2a and 2b in CDCl₃ solution.

![Figure 5](image5.png)
Fig. 5. Infrared (top) and vibrational circular dichroism (bottom) spectra in the C—H stretching region of copper coordination compounds 2a and 2b in CDCl₃ solution.
compound 2a is shown in Figures 6 (mid-infrared region) and 7 (C-H stretching region).

As shown in Figure 6, principal bands of the coordination compound are blue shifted compared with the free ligand. The CN double bond stretching is visible as two absorption bands for 1a: a weak peak around 1731 cm\(^{-1}\) and a stronger peak around 1677 cm\(^{-1}\), which are shifted to 1675 and 1642 cm\(^{-1}\) for 2a, respectively. The corresponding VCD signal of the ligand shows only one significant negative signal around 1677 cm\(^{-1}\) for 1a, which turns to a bisignate signal (1655 cm\(^{-1}\) negative, 1640 cm\(^{-1}\) positive) for 2a. The strong absorptions of the ligand at 1331 and 1149 cm\(^{-1}\) characteristic for the antisymmetric and symmetric stretching vibrations of sulfonamide group\(^{37}\) exhibit as a strong bisignate signal (1332 cm\(^{-1}\) negative, 1322 cm\(^{-1}\) positive) and a strong positive peak at 1152 cm\(^{-1}\) in the VCD spectrum. The VCD spectrum is thus more sensitive to the complexation than absorption. Upon coordination to Cu(II), the two sulfonamide stretching bands are shifted to lower wavenumbers; the antisymmetric stretching vibrations show as two nearly equal intensity peaks at 1297 and 1266 cm\(^{-1}\), whereas the symmetric stretching vibrations show as one higher intensity peak at 1123 cm\(^{-1}\) and the other lower intensity peak at 1092 cm\(^{-1}\) (on the basis of DFT calculation).

The IR and VCD spectra of the ligand 1a and copper coordination compound 2a in the C-H stretching region also exhibit some differences. The difference in IR spectra is quite small because of overlapping. A broad peak is present at 2956 for 1a and 2961 cm\(^{-1}\) for 2a, typical for C-H stretching of camphor molecule.\(^{38-41}\)

In the VCD spectra, the antisymmetric stretching of the methyl (CH\(_3\)) groups is observed at 2988 cm\(^{-1}\) for 1a and 2993 cm\(^{-1}\) for 2a as a negative signal. The stretching of the CH\(_2\)CH\(_2\)-C-H part of the ring\(^{42,43}\) for 1a appears as a triplet (+, −, +) at about 2970, 2952, and 2931 cm\(^{-1}\), respectively, followed by a broad (+)-VCD feature at around 2908 cm\(^{-1}\) assigned to the CH\(_2\) C-H stretching of the ethylamine group. For 2a, these peaks are shifted to 2972, 2955, 2909, and 2849 cm\(^{-1}\), respectively.

The simulated and experimental IR and VCD spectra in the mid-IR and C-H stretching regions are compared in Figures 8 and S6, respectively. Selected experimental and calculated IR peaks with their assignments are listed in Table 2. Both the IR and VCD spectra are reproduced reasonably well by the present set of parameters, although there are some discrepancies. In the mid-IR region (Fig. 8), the strongest absorptions of the free ligand are contributed from the CN stretching (1757 and 1749 cm\(^{-1}\)) and the antisymmetric
TABLE 2. Comparison of the selected experimental infrared spectral features for 2a to the calculated transitions (see Fig. 8)

<table>
<thead>
<tr>
<th>Exp.</th>
<th>Calc.</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1675</td>
<td>1748</td>
<td>C-N stretching</td>
</tr>
<tr>
<td>1642</td>
<td>1713</td>
<td>C-N stretching</td>
</tr>
<tr>
<td>1482</td>
<td>1556</td>
<td>C-H deformation of camphor skeleton</td>
</tr>
<tr>
<td>1470</td>
<td>1526</td>
<td></td>
</tr>
<tr>
<td>1455</td>
<td>1490</td>
<td></td>
</tr>
<tr>
<td>1415</td>
<td>1454</td>
<td></td>
</tr>
<tr>
<td>1393</td>
<td>1437</td>
<td></td>
</tr>
<tr>
<td>1376</td>
<td>1408</td>
<td>C-H deformation of NCH₂CH₂N</td>
</tr>
<tr>
<td>1362</td>
<td>1400, 1390</td>
<td></td>
</tr>
<tr>
<td>1297</td>
<td>1253</td>
<td>Antisymmetric stretching of —SO₂—</td>
</tr>
<tr>
<td>1123</td>
<td>1094</td>
<td>Symmetric stretching of —SO₂—</td>
</tr>
<tr>
<td>1092</td>
<td>1065</td>
<td></td>
</tr>
<tr>
<td>1009</td>
<td>973</td>
<td>S-N stretching</td>
</tr>
</tbody>
</table>

(1273 and 1269 cm⁻¹) and symmetric stretching vibrations (1118 and 1103 cm⁻¹) of the sulfonamide group. When coordinated with Cu(II), these absorption bands are all shifted to short wavenumbers, which is in accordance with experimental results. The intense bands at 1529 and 1557 cm⁻¹ of the free ligand could be assigned to the N—H deformation according to the calculation. These bands were somewhat weaker in the measured spectra, probably because of an influence of the intramolecular hydrogen bonding between SO₂N—H and C—N. Also in Figure 7, very weak (~3100 cm⁻¹) N—H stretching vibrations are apparent both in IR and VCD spectra in the C-H stretching region. However, attempts to optimize the structure of the free ligand with intramolecular hydrogen bonding were not successful.

The N—H deformation vibrations disappeared in both the simulated and experimental IR spectrum of copper(II) coordination compound, indicating that the two hydrogen atoms were fully replaced by a copper(II) ion. In the simulated VCD spectra, the C=N stretching of the free ligand exhibits a weak negative Cotton effect, whereas the antisymmetric and symmetric stretching vibrations of the sulfonamide group show sharp bisignate signal. All these predicted features are in good agreement with the measurements. In the C—H stretching region (Fig. S6), the frequency agreement between the simulation and the experiment is not as good as that in the mid-IR region. However, the C—H stretching of —CH₂CH₂— of the ethylamine group can be clearly identified in the lowest wavenumber region. In the free ligand, this band is close to the CH stretching of camphor backbone. When coordinated to copper(II) ion, the frequency shifts (to ~2849 cm⁻¹ in experiment). The computation of the C—H stretching region within the harmonic approximation may not be accurate because of possible anharmonic effects including Fermi resonances. However, in our case, main IR and VCD intensity features appeared to be reproduced reasonably well. The IR and VCD experimental and calculated intensities of free ligand and complex are quite similar, which reflects the rigid structure of the macrocyclic ligand. The coordination process influences mainly the stretching motion of groups (C=N, —SO₂NH—) around the copper(II) ion center, more visible in the lower wavenumber (<2000 cm⁻¹) region.

There is a general belief that VCD is less predictable for open-shell systems. However, the calculation of VCD spectra of Λ- and Δ-[Ru(acac)₃] has been successfully performed by Sato et al. Our results also show that the magnetic field perturbation theory for VCD calculation can be extended to open-shell systems.

The anisotropy ratio (g-factor), also called dissymmetry factor, is CD signal normalized by the corresponding isotropic absorption. We can thus compare experiment and theory using

\[g = \Delta \varepsilon / \varepsilon = 4R/D \]

where \(\Delta \varepsilon \) and \(\varepsilon \) are the experimental molar CD and molar absorption coefficient and \(R \) and \(D \) are the rotational and dipole strengths of the corresponding calculated transition.

The VCD g-factor is usually in the range of 10⁻⁴ to 10⁻⁵ if there are no enhancement effects. In a study of the [Co(en)₃]³⁺ transition metal complex, the intensity increased about 10 times, most probably due to a presence of low-lying excited electronic states. Table 3 lists the g-factors of the selected transitions measured in this study. The observed VCD signals of imine double bonds stretch vibrations (1675 and 1642 cm⁻¹) are much stronger compared with those obtained by the DFT simulation. On the other hand, the calculated g-factor of the antisymmetrical stretch vibrations of sulfonamide is bigger than the measured one. We attribute the other discrepancies between the theory and experiment at least partially to the same effect as for the cobalt coordination compound, that is, to an interference of electronic states, although some can be caused by a limited basis set used for the calculation. The g-factors of the symmetric stretch vibrations of sulfonamide are not compared because the VCD signal to noise ratio is small because of strong IR absorption. The experimental and calculated g-factors of S—N stretching are in a very good agreement.

CONCLUSIONS

We have synthesized open-shell systems of copper coordination compounds enantiomers derived from both camphor enantiomers as a model for CD complex studies both in the UV-vis and IR region. Their absolute configurations were

TABLE 3. Selected vibrational circular dichroism bands of the experimental and calculated frequencies and anisotropy g-factor for 2a (see Fig. 8)

<table>
<thead>
<tr>
<th>Exp.</th>
<th>Frequency</th>
<th>Anisotropy</th>
<th>Calc.</th>
<th>Frequency</th>
<th>Anisotropy</th>
</tr>
</thead>
<tbody>
<tr>
<td>C=N stretching</td>
<td>1675</td>
<td>3.84 × 10⁻⁵</td>
<td>1748</td>
<td>2.73 × 10⁻⁶</td>
<td></td>
</tr>
<tr>
<td>C-N stretching</td>
<td>1642</td>
<td>1.66 × 10⁻⁵</td>
<td>1713</td>
<td>6.58 × 10⁻⁶</td>
<td></td>
</tr>
<tr>
<td>Antisymmetric stretching of —SO₂—</td>
<td>1297</td>
<td>1.13 × 10⁻⁵</td>
<td>1253</td>
<td>9.98 × 10⁻⁶</td>
<td></td>
</tr>
<tr>
<td>S—N stretching</td>
<td>1009</td>
<td>2.05 × 10⁻⁵</td>
<td>973</td>
<td>1.95 × 10⁻⁵</td>
<td></td>
</tr>
</tbody>
</table>
determined by X-ray crystallography and by comparison of the CD and VCD experimental spectra to the calculation. The TD-DFT calculations reproduced the UV–vis and CD spectra quite well, which enabled a reliable assignment of the CD and absorption bands and also the determination of the absolute configuration. The configurations could be determined from the CD bisignate signal of the d–d transition also according to the simplified exciton model.

The VCD spectroscopy both in the mid-infrared and C–H stretching regions provided the same configuration as CD. Most spectral peaks could be assigned to local vibrational motions in the coordination compound and the free ligand. IR frequency shifts of the imine and sulphonamide group vibrations in the free ligands and coordination complexes accompanied the complex formation. These could be faithfully modeled. Similar spectral changes were exhibited for VCD, although the agreement between the simulated and experimental shapes was worse than for IR. A slight discrepancy between the calculated and observed g-factors was partially explained by the electronic VCD enhancement. Thus, the spectroscopic methods if combined with the computations can be used to characterize the structure and coordination properties of chiral ligands and their copper coordination compounds. The presented results also manifest that in particular the VCD spectroscopy is an excellent chiroptical technique to monitor the coordination process. For chiral ligand, the spectroscopy can probe the process of chiral recognition. For future applications, an accuracy increase of the computations and experiment is desirable.

ACKNOWLEDGMENTS

The authors would like to thank Prof. Marie Urbanová and Dr. Ondrej Julínek of the Institute of Chemical Technology, Prague, for their help on VCD measurement. The authors would also like to thank the China Scholarship Council and the Ministry of Education of the People’s Republic of China for the financial support.

LITERATURE CITED

Chirality DOI 10.1002/chir

44. Sato H, Mori Y, Fukuda Y, Yamagishi A. Syntheses and vibrational circular dichroism spectra of the complete series of [Ru((−)- or (+)-tfac)3(acac)3](n) (n = 0–3, tfac = 3-trifluoroacetylcamphorato and acac = acetylacetonato). Inorg Chem 2009;48:4354–4361.

