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’ INTRODUCTION

Computations of solution properties with clusters containing
explicit solvent molecules became popular because of the super-
ior results to vacuum or simpler polarizable continuum models
(PCM),1�4 availability of accurate molecular dynamics (MD)
force fields,5 feasible ab initio dynamical schemes,6�8 and the steady
increase of computer power. For example, we found that the explicit
solvent model is needed to accurately simulate NMR parameters of
solvated molecules,4,9 and polarized continuummodels (PCM) are
often inadequate to describe hydrogen bonding or temperature
effects on the vibrational properties of the peptide amide group.10,11

In vibrational spectroscopy, a combination of quantum and
molecular dynamics methods is often needed in larger cluster
computations to calculate realistic band shapes. In particular,
polar molecules, such as peptide models, exhibit large inhomo-
geneous band broadening, for example in IR,12,13 VCD,14 or two-
dimensional15,16 (2D) spectroscopic techniques. The band-shape
modeling lends the peptide vibrational spectroscopy an enhanced
structural sensitivity. This mostly originates from vibrational
coupling among the individual amide chromophores, resulting
in delocalizedmodes, which can give rise to complex, asymmetric
band shapes.17,18 For example, β-sheet peptide conformations
exhibit different IR band shape of the carbonyl stretching mode
than α-helices. The solvent has also a dramatic effect on the
amide and other vibrational frequencies.19,20 In the vibrational
optical activity techniques,21 the structural sensitivity enhance-
ment is mostly achieved through the spectral sign pattern.22,23

Nevertheless, for the case of flexible and polar molecule with
many overlapping transitions, the band-shape modeling with
explicit solvent is also necessary.24

The instantaneous normal-mode approximation investigated
in the present study provides a convenient way to compute the
vibrational frequencies and intensities for the condensed phase
at the harmonic level.25 Second energy derivatives and the
harmonic vibrations are estimated with MD snapshot geom-
etries. While such approach is a useful approximation for some
liquids,26,27 in a recent study28 we observed unrealistic inhomo-
geneous broadening of simulated Raman and Raman optical
activity (ROA) bands when raw clusters were used to simulate
two hydrated molecules, lactamide and 2-aminopropan-1-ol.
The problem persisted both for classical MD or Car�Parrinello
molecular dynamics (CPMD)6 snapshots.

For completeness, we should also mention the time-depen-
dent approaches of band-shape generation, frequently used to
model vibrational linear or 2D spectra.15,29 These are based on
the semiclassical line-shape theory, and the line width is controlled
through a phenomenological decay function.30,31 In a static
averaging approximation, for example, the absorption profile is
calculated from individual MD snapshots and the resultant
electrostatic potentials.13 This typically leads to too broad bands,
which can be improved by many techniques,32 discussion of
which goes beyond the scope of this work.

But also in the instantaneous normal-mode approximation,
most coordinates are too dispersed if compared to quantum-
mechanical uncertainty, as the MD cluster geometries are based
on classical mechanics. We therefore propose to efficiently
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ABSTRACT: Vibrational properties of solutions are frequently simulated with
clusters of a solute and a few solvent molecules obtained during molecular
dynamics (MD) simulations. The raw cluster geometries, however, often provide
unrealistic vibrational band broadening, for both ab initio and empirical force fields.
In this work, partial optimization in normal-mode coordinates is used on empirical
basis to reduce the broadening. The origin of the error is discussed on a simplified
two-dimensional system, which indicates that the problem is caused by the
anharmonic MD potential, mode coupling, and neglect of quantum effects. Then
the procedure of partial geometry optimization on Raman and Raman optical
activity (ROA) spectra is applied and analyzed for the solvated lactamide molecule. Comparison to experiment demonstrates that
the normal-mode partial optimization technique with a suitable frequency limit can significantly reduce the broadening error. For
lactamide, experimental and simulated vibrational bandwidths are compared; the most realistic theoretical spectra are obtained for
partially optimized clusters with the vibrational wavenumber cutoff of about 200 cm�1.
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reduce the consequent spectral broadening by a partial optimiza-
tion of the cluster geometries.11,28 In particular, the normal-
mode optimization algorithm33 seems to be very suitable for this
purpose, as it was found particularly robust for clusters,34 it is
numerically stable, and it does not require manual definition of
the coordinates. For larger molecules, for example, we used it to
fix the desired conformations of peptides35 and large DNA36

molecules, whereas the normal mode's degrees of freedom im-
portant for the spectrum could be relaxed.

For the clusters investigated in the present study, the extent of
the partial optimization is crucial for realistic results. The geom-
etry of MD clusters cannot be optimized completely to avoid
collapse to an energy minimum, implying a loss of the structural
information obtained by the dynamics. In the normal-mode
partial optimization, this can be controlled by a sole parameter,
the maximal harmonic normal-mode frequency (ωmax), below
which the normal modes are fixed. By fixing the shallow modes,
such motions as molecular translations and rotations are re-
stricted. However, the limit has been used on an ad hoc basis
so far. In particular, neither the relation of ωmax to the resulting
bandwidths nor the effect on molecular coordinates has been
established. To rationalize the choice of this parameter, in this
study we perform Raman spectral simulation based on 100 snap-
shots of lactamide in a box of water molecules obtained pre-
viously by a CPMD simulation,28 and monitor the resultant
inhomogeneous broadening. The coordinate changes occurring
during the partial optimization were monitored, and the simu-
lated bandwidths were compared to experimental Raman spectra.

To better understand the origin of the broadening in the
instantaneous normal-mode approximation, we also constructed
a model two-dimensional system, where the classical MD results
could be compared to benchmark vibrational configuration inter-
action (VCI) computation. As shown below, already the model
2D Hamiltonian exhibits band broadening; this is primarily
caused by the anharmonic character of the potential and coupling
of the vibrational modes. However, the results on the lactamide
also document that the error can be efficiently reduced by the
partial optimization, and that this empirical procedure can be
at least partially justified by physical arguments. In particular,
the low-frequency vibrations (solvent translations, torsions, etc.)
that are temperature-excited are treated classically, using the MD
coordinate dispersion, whereas higher-energy vibrations (bending
and stretching modes) need to be fully optimized.

’METHODS

A Model of the Anharmonic Coupling. To obtain a deeper
insight into the role of anharmonicities in MD potential and
spectra calculated within the instantaneous normal-mode ap-
proximation, we considered a two-dimensional model system
with a potential V = (ω1/2)q1

2 + (ω2/2)q2
2 + (d1122/24)q1

2q2
2,

where qi denote the dimensionless normal-mode coordinates37

and cm�1 are used as energy units. The harmonic parameters were
inspired by a B3LYP38/6-31G** computation39 of a hydrogen-
bonded water dimer,10 with the frequencies ω1 = 28 cm�1 and
ω2 = 3712 cm�1 corresponding to a water wagging and OH
stretching mode, respectively. By choice we wanted to mimic a
coupling of low (ω, kT, where kT is the Boltzmann quantum)
and high (ω . kT) frequency modes. The quartic anharmonic
constant was set to d1122 = 448 cm�1. The constant was chosen
rather arbitrarily; nevertheless, its magnitude corresponds to
usual anharmonic coupling constants in molecules.40

To mimic the MD procedure, the classical instantaneous
spectra were simulated for 90 � 90 coordinates equidistantly
chosen on the 2D q1� q2 potential energy surface, within qmin =�2
and qmax = 2. At each point an effective MD frequency of
the second mode was calculated as a second derivative of the
potential, ω2

0 = ∂
2V/∂q2

2. The resulting spectral band was
weighted by the corresponding Boltzmann factor for 50 and 300K.
An arbitrary dipole strength was introduced, constant within the
coordinate space. Individual transitions were summed and con-
voluted with Lorentzian band 10 cm�1 wide (full widths at half-
height, fwhh) to smooth the resultant curve.
For the same system, quantum transition frequencies were

obtained by vibrational configuration interaction (VCI)41 done
in the harmonic oscillator basis involving 51 states, and the
spectrum was generated similarly as for the classical case using
Boltzmann weighting of the initial states. For the first and second
normal mode, 10 and 5 times excited states were included,
respectively. The S4 program42 was used for the VCI computa-
tion. A constant intensity of the |00æ f |01æ transition was
assumed, similarly as for the MD model; i.e., the intensity anhar-
monicities (second dipole derivatives) were neglected.
Normal-Mode Optimization. In the vicinity of an energy

minimum, we can introduce a molecular harmonic vibrational
Hamiltonian given in a matrix form by37

H ¼ 1
2
ðΔ _xtMΔ _x þ ΔxtfΔxÞ ð1Þ

whereM is diagonal matrix of atomic masses mi,Δx is the vector
of atomic displacements with respect to the equilibrium posi-
tions,Δxi = xi� xi

0, superscript t denotes transpose matrices, and
f is the Cartesian force field. Conveniently, mass-weighted coor-
dinates are introduced as Xi = (mi)

1/2Δxi, so that fij = (mimj)
1/2Fij,

andH= 1/2( _X
t _X +XtFX). Finally, the normal-mode coordinatesQi

are typically introduced by

X ¼ sQ ð2Þ
where the transformationmatrix satisfies sts = 1, stFs =Λ; 1 is the
unit matrix, and Λ is a diagonal matrix (Λij = ωi

2δij) containing
squares of the normal-mode frequencies ωi. The Hamiltonian
then becomes a sum of harmonic oscillators:

H ¼ ∑
i

1
2
ð _Qi

2 þ ωi
2Qi

2Þ ð3Þ

Equation 3 is usually used to obtain vibrational molecular
energies. However, using the linear transformation between the
Cartesian displacements and the normal-mode coordinates

Δxμ ¼ ∑
i

1ffiffiffiffiffiffi
mμ

p sμiQi ¼ ∑
i
SμiQi ð4Þ

we can use the Qi coordinates during the optimization in place
of the more usual internal redundant43,44 or Cartesian coordi-
nates. In the QGRAD45 program interfaced to Gaussian,39 initial
Cartesian force field can be estimated on a lower level, and
it is continuously updated by the “BGFS”46�49 formula from
Cartesian gradients

f ði þ 1Þ ¼ f ðiÞ � ΔgtΔg
dxtΔg

þ ðf ðiÞdxÞtdxf ðiÞ
dxtf ðiÞdx

 !
ð5Þ

where Δg and dx are gradient and coordinate increments
between the steps i and i + 1.
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The actual optimization is performed in normal modes, using
the RFO50�54 updating. New normal-mode displacements are

dQ ði þ 1Þ ¼ � 2gðiÞ

Λii þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λii

2 þ 4ðgðiÞÞ2
q ð6Þ

so that updated Cartesian coordinates may be obtained as x(i+1) =
x(i) � SdQ(i+1). Further details can be found in the previous
works.33,34 Note that this scheme also enables a full optimization
of the system. In the restricted normal-mode optimization adopted
in this work, some modes (withωi ∈ (ωmin,ωmax)) are kept con-
stant (dQi = 0).
Lactamide Raman and ROA Spectra. The geometry CPMD

snapshots were selected randomly from a 48 ps simulation
performed previously.28 From the snapshots, clusters containing
(S)-lactamide and 3�9 hydrogen-bonded waters closer than
3.6 Å to a lactamide atom were selected. This approximation well
included the effect of the first hydration shell on the vibrational
properties of lactamide; more distant water molecules did not
influence the signal significantly. All computations were per-
formed at the B3LYP/6-311++G**/CPCM level of theory, using
the continuum model to simulate the effect of the more distant
waters, not explicitly included in the computations. The con-
strained normal-mode optimization was repeated for seven
values of ωmax, 10, 20, 50, 100, 200, 300, and 600 cm

�1. In addi-
tion, we also studied the raw nonoptimized CPMD snapshots
corresponding to infinite ωmax. To fix large imaginary frequen-
cies occasionally exhibited by some CPMD geometries, a lower
limit ωmin = �300 cm�1 was introduced and kept constant.
For the 8� 100 = 800 optimized and raw geometries, Raman

backscattered line intensities55 were calculated by Gaussian, and
the water signal (corresponding polarizability derivatives) was
deleted. Smoother spectra were generated by summing the 100
cluster signals and performing a convolution (e.g., ref 56, eq 3)
with Lorentzian bands 2 cm�1 wide, which were much nar-
rower than the inhomogeneous broadening.
For selected lactamide vibrational bands (528, 813, and

920 cm�1), theoretical bandwidths (fwhh) were obtained from
the simulated spectra by fitting with Lorentzian bands. The bands
were chosen at frequencies where overlap of multiple vibrational
transitions was minimal, and the fitting with the symmetric
function was reasonable. By comparing whole spectral shapes,
we deduce that their broadening reflects behavior of the spectral
signals within the entire range of frequencies. For the fitting, we
used an iterative procedure, comparing integral mean quadratic
deviations of spectral intensities with the ideal Lorentzian profile.

’RESULTS AND DISCUSSION

Two-Dimensional Model.The simpler 2DmodelHamiltonian
well documents the limits of the instantaneous normal-mode
approximation used in MD. In Figure 1, absorption spectra are
simulated for the two-dimensional model using the classical and
quantum approach. We can already see some common errors
introduced by the classical approximation. First, the quantum
theory provides a few transitions only, whereas the classical ap-
proach generates a continuous spectrum (approximated by the
high line density corresponding to the coordinate grid). This is
apparent namely for the lower temperature (50 K, upper part of
Figure 1), where even the lowest energy vibration (with the fre-
quency ω1) predominantly remains in the ground state, and VCI
provides one transition only. For 300 K (lower part of Figure 1)

Figure 1. Absorption spectra (ε, in arbitrary units) of the 2D model
simulated by the quantum (VCI) and classical (MD) approaches at
50 and 300 K.

Figure 2. Model 2D potential (bottom, V = (ω1/2)q1
2 + (ω2/2)q2

2 +
(d1122/24)q1

2q2
2, approximate accessible energy at 300 K is indi-

cated by kT), effective harmonic frequency of the second mode
ω2

0 = ∂
2V/∂q2

2 and Boltzmann probability p for 300 K as dependent
on q1 (top).
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more quantum transitions appear; the system starts to exhibit the
classical distribution of vibrational frequencies.
The MD spectral shape in Figure 1 can be easily understood

on the basis of the potential analyzed in Figure 2. We see that
the “molecule” can explore a relatively large part of the potential
energy surface, limited approximately by the Boltzmann kT
limit. Consequently, different harmonic frequencies equal to
the potential second derivatives are obtained for the higher-
frequency mode (q2). For our coupling term, the effective MD
frequencies are limited by the lower limit for q1 = 0, i.e.,ω2

0 gω2.
However, in the adiabatic quantum model, for pω2 . kT, only
one transition frequency (for 50 K, Figure 1) or a transition with
limited number of satellite bands (300 K, Figure 1) is possible.
Another quantum effect, the shift of the maximal frequency, is

quite small (1 cm�1, Figure 1), and can be neglected in this case.
However, it can be quite large in real molecules,57 and except for
a partial diagonal correction it cannot be simulated within the
instantaneous normal-mode and harmonic schemes. Finally,
even for the higher temperature of 300 K the classical bandwidth
based on the MD/instantaneous normal-mode approach is still
larger than those obtained by the more rigorous VCI calculation.
The example potential was chosen to be simple to enable the

benchmark VCI computation. For real systems, we can expect
that other anharmonic contributions not included in the simpli-
fied 2D Hamiltonian, such as diagonal and cubic terms,57 would
lead to a more complicated behavior. The 2D model is thus not
able to fully explain the MD broadening effects in large clusters;
nevertheless, it convincingly indicates that anharmonic coupling
terms in the vibrational Hamiltonian cause significant differences
between the quantum (VCI) and classical (MD) results.
Solvated Lactamide. Also in the lactamide spectra direct

exploitation of MD geometries leads to overestimation of the
broadening and quite unrealistic spectral shapes. The spectra

simulated from the raw snapshots, the optimized snapshots with
ωmax of 600, 200, and 20 cm�1, and the experimental28 spectra
measured in aqueous solution are compared in Figure 3 (left,
Raman; right, Raman optical activity, ROA). Clearly, the results
for raw nonoptimized clusters (top in Figure 3) are unusable for a
detailed assignment of the lactamide bands. Similarly as for the
model system (Figure 1), the raw MD instantaneous normal-
mode approach overestimates the anharmonic force field terms
and causes too wide dispersion of the harmonic frequencies.
On the other hand, the partial optimization of cluster geom-

etries leads to a radical improvement. Forωmax = 600 cm
�1 many

of the experimental intensity features for wavenumbers above
800 cm�1 are reproduced (Figure 3). However, the bands are still
too broad, and no improvement is apparent below 600 cm�1.
The Raman band at ∼528 cm�1 became even broader for
ωmax = 600 cm�1 than for the nonoptimized case, which can be
explained by the coupling of the complicated 528 cm�1 vibra-
tions with higher-frequency modes. For ωmax = 200 cm�1

(Figure 3), most of the Raman and ROA intensity features are
well developed, and the bandwidths are realistic within the entire
wavenumber region. Forωmax = 20 cm

�1 individual bands can be
recognized as well, but most bandwidths become too narrow
if compared to the experiment. ωmax = 10 cm�1 (not shown)
provided virtually the same spectra asωmax = 20 cm

�1. Note that
simulations in vacuum or a continuum solvent model would
provide line spectra only, without any information about the
broadening.
The optimizations with too lowωmax become less economic in

terms of the required computer time. Note that the normal-mode
coordinates, similar to Cartesian coordinates, are in general not
suitable for complete molecular optimizations as they do not
follow the covalent bond network.34 Thus, whereas the opti-
mization of 100 clusters (without the frequency calculation)

Figure 3. Lactamide solution backscattered Raman (left, IR + IL) and ROA (right, IR � IL) spectra simulated with the partially optimized CPMD
clusters. The ωmax cutoffs and the experimental spectrum in H2O with positions of principal peaks are indicated.
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required 28 days of CPU time (3 GHz, Intel 5160) for the
600 cm�1 limit, 89 and 212 days were needed for 200 and
20 cm�1, respectively. We also attempted a full optimization of
the clusters, which provided results very close to those obtained
with the lowest ωmax limits (10 and 20 cm�1). However, many
clusters could not be fully optimized because of a lack conver-
gence of the optimization algorithm. The full geometries also do
not reflect well the desired dynamical geometry distribution at
300 K; therefore, we do not include these results in the analysis.
The effect of the optimization limit on the relaxation of

molecular coordinates is documented in Figure 4. Here, average
changes of the χOH, ψ, and χCH3 torsional angles are plotted for
seven ωmax values. The OH rotation is associated with the
shallowest potential, and thus remains fixed for most of the opti-
mization models. The rotation is released for ωmax < 100 cm�1,
when the change increases steeply. The ψ angle responds more
gradually, and it is starting to change already forωmax < 300 cm

�1.
The CH3 rotation exhibits the most developed sigmoidal “melt-
ing” pattern with a transition frequency at about 250 cm�1.
This value also well corresponds to the harmonic normal-mode
frequency of this motion.28

A detailed coordinate dispersion is documented on the ψ and
χOH angles in Figure 5. For 10 randomly selected clusters the
optimized torsional angles were extracted for each value ofωmax.
During the optimization, the original broad distribution of
ψ (within ∼105��150� for the selected clusters) becomes

narrower, adopting values mostly within∼102��130� forωmax <
200 cm�1. This reflects the intrinsic molecular potential driving
motion of this angle. On the other hand, for χOH the dispersion
(∼200��270� for nonoptimized clusters, and 210��290� for
ωmax = 20 cm�1) does not change much during the optimiza-
tions. This can be explained by the stabilizing effect of the
surrounding water molecules that make hydrogen bonds to the
OH group. The water positions do not change even for low
values of ωmax.

Figure 4. Average absolute changes of three (S)-lactamide torsional
angles during the optimization, as obtained for seven values ofωmax. The
averages were obtained from 100 CPMD clusters; the angles χOH =
—(CdOCOH),ψ = —(NCCC), and χCH3 = —(CCCH) are indicated
in the randomly chosen snapshot.

Figure 5. Dependence of the optimized (S)-lactamide ψ and χOH
angles on ωmax in 10 randomly chosen clusters.

Figure 6. Simulated lactamide Raman bandwidths (Δω) as calculated
for different ωmax for the bending (528 cm�1), NH2 wagging
(813 cm�1), and C�C/C�O stretching (920 cm�1) vibrational modes.
Experimental widths28 are indicated by the horizontal lines.
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The computed bandwidths for three nonoverlapping peaks
with central frequencies at 528, 813, and 920 cm�1 are plotted in
Figure 6 as obtained with the seven values of ωmax. The experi-
mental widths, indicated by the horizontal lines, were lowered by
3 cm�1 to account for the instrument broadening. We consider
this value to be a lower limit of the correction because of the
instrument low-resolution setup optimized for ROA measure-
ment, and the crude CCD detection of the wavenumbers where 1
pixel corresponds to about 3 cm�1.
The comparison is also hampered by the experimental noise

and transition overlap. Typically, each simulated band contains
not only the dominant transition but also satellites. Nevertheless,
in Figure 6, we can see that an optimal ωmax can be estimated at
least approximately from the crossing of the simulated bandwidth
curve with the experimental line, ranging fromωmax∼ 200 cm�1

(for the 528 cm�1 band) to ∼500 cm�1 (813 cm�1 band). A
similar analysis of the ROA spectra and the direct Raman and
ROA spectral comparison in Figure 3 suggest that an optimal
ωmax value is close to the lower limit of the interval, within
200�300 cm�1, curiously, this range comprises the Boltzmann
temperature quantum (kT ≈ 208 cm�1 at 300 K).
We think that a relation of the limit to kT is quite obvious for

the reasons discussed above, although the actual empirical value
found here may be a coincidence. Unfortunately, comparison with
rigorous results, such as the VCI computation for the dimer, cannot
be presently done for larger clusters to determine the relation more
closely.On the other hand, the spectral profiles (cf. Figure 3) change
very slowly with ωmax; thus in a wide interval around the optimal
value the spectra can be simulated realistically enough to allow for
the normal-mode assignment and estimation of most of the solvent
inhomogeneous normal-mode broadening.

’CONCLUSIONS

The raw cluster simulations based on classical and ab initio
molecular dynamics provide too wide vibrational bands and
unrealistic geometry dispersion of the higher-frequency motions.
On the two-dimensional model, we could show that this may be
primarily caused by the coupling of vibrational modes and
anharmonic force field terms. Geometries and, consequently,
the effective harmonic normal-mode frequencies vary too much
in the molecular dynamics trajectories. For the lactamide, we
showed that the broadening of the vibrational bands simulated
for an ensemble of clusters can be efficiently controlled by the
normal mode optimization constraint. The resultant spectra
exhibit not only better bandwidths but also relative intensities
if compared to the experiment. The only empirical parameter, the
cutoff of the vibrational frequencies in the constrained optimiza-
tion, could be obtained by comparison of selected peaks in the
experimental and simulated spectra. The empirical procedure of
partial optimization could be to a large extent rationalized by the
quantum properties of the vibrations, and provides an efficient
means of modeling vibrational properties of molecules in solutions.
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