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Abstract: Accurate computations of vibrational energies and vibrational spectra of molecules
require inclusion of the anharmonic forces. In standard computational protocols, this leads to a
large vibrational Hamiltonian matrix that needs to be diagonalized. Spectral intensities are
calculated for individual transitions separately. In this work, an alternate direct generation of the
spectral curves is proposed, based on a temporal propagation of a trial vibrational wave function
followed by the Fourier transformation (FT). The method was applied to model water dimer and
fenchone molecules. Arbitrary resolutions could be achieved by longer-time propagations,
although a smaller integration time step (∼0.02 fs) was needed for accurate peak frequencies
than previously found for similar time-dependent applications within the harmonic approximation.
Acceptably accurate relative vibrational spectra intensities were obtained when many random
vectors used in the propagations were averaged. For a model fenchone Hamiltonian, simulated
Raman and Raman optical activity (ROA) spectral shapes compared well with those obtained
by the classical approach. The algorithm is amendable to parallelization. The lack of the lengthy
and computer-memory-demanding diagonalization thus makes the FT procedure especially
convenient for spectral simulations of larger molecules.

I. Introduction

Simulations of vibrational spectra are necessary to understand
experimental data, and to obtain extensive information about
molecular structures and force fields. Particularly for pep-
tides, nucleic acids, and other biologically relevant systems,
the vibrational spectroscopy provides a valuable means for
the monitoring of specific structural and conformational
features.1 Historically, first spectral analyses were carried
out by empirical correlations of IR or Raman band frequen-
cies with the geometry.2 Later theoretical approaches were
based on simplified vibrational calculations, e.g., through
parametrized force fields (FFs).3 Today, precise and fast
quantum mechanical computations4 provide the most flexible
way for theoretical spectral analyses. In particular, the density
functional theory approximations can be applied for larger

molecules, including intensity simulations for experiments
with unpolarized as well as, for example, circularly polarized
radiation.5

The harmonic approximation based on the second derivatives
of the nuclear potential6 is sufficient for many applications. Any
molecule behaves like a system of independent harmonic
oscillators at the harmonic limit. Typically, spectra of large
biopolymers (nucleic acids, peptides) are simulated with this
assumption because of the low resolution, limited spectral range,
inhomogeneous band broadening caused by the solvent and
molecular dynamics, and limited precision of available force
fields.1 For better accuracy or more advanced applications,
anharmonic potential parts need to be included.7-10 Beyond
the harmonic model, computation of molecular vibrational
energies is no more a black box method, but advanced
computational schemes are needed, including vibrational con-
figuration interaction (VCI),11-13 vibrational self-consistent field
(VSCF),9,14-16 many-body perturbation theory (PT),17,18 vi-
brational coupled clusters,19 etc.
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The VCI scheme, where the wave function is expressed
as a linear combination of harmonic oscillator functions, is
probably the most universal and most straightforward
procedure. Unlike for the VSCF and PT approaches,
fundamental and combination energy levels and spectral
transitions can be obtained at the same time. Although VCI
may become impractical for large systems,18,20 it represents
an important benchmark as it is, in principle, equivalent to
the exact Schrödinger solution. Unfortunately, similarly as
for the electronic configuration interaction (CI),21 the dimen-
sion of the Hamiltonian required for a reasonable result
quickly grows with the size of the molecule. Unlike for the
electronic problem, however, where only few lowest-energy
states are usually needed, a large portion of the vibrational
energy levels covering the spectrum is required for vibrations.

Thus, a complete diagonalization of the vibrational Hamil-
tonian is typically needed to provide the transition energies,
corresponding peak positions, and wave functions (eigen-
vectors) bearing spectral intensities. The classical in-memory
iteration diagonalization routines are most convenient for
small and medium dimensions (N < ∼104).22,23 These direct
algorithms occupy computer memory that is approximately
proportional to N2 and require times that scale as N3. Larger
matrices can be more conveniently diagonalized, at least
partially, by so-called power iteration methods, often referred
to as (Jacobi-)Davidson algorithms, which perform the actual
diagonalization in an intermediate (Krylov) vector space.24-28

The actual eigenspace can be built from the largest or from
the smallest eigenvalue. The matrix does not need to be
stored in memory, and the algorithm is simple, requiring
essentially many matrix-vector multiplications only. When
the matrix is sparse (which is often the case with the
harmonic oscillator basis and a polynomial anharmonic
potential), multiplications by the zeros can easily be avoided.

As each vector has to be orthonormalized against the
previous ones, however, complete Davidson diagonalizations
become difficult for larger matrices. It is also important to
point out that for many applications detailed eigenvalue
information is not needed. In particular for condensed phase
spectroscopy, calculated line intensities are often convoluted
with Gaussian or Lorentzian bands of finite widths, to
simulate the inhomogeneous line broadening present in the
experiment. Already for medium-sized molecules, observable
peaks are usually composed from many unresolved vibra-
tional transitions. Line spectrum simulations thus appear
superfluous, whereas it is the spectral envelope that is
desirable for comparison with the experiment to relate the
structure and spectral response.

Therefore, the Fourier methods (Figure 1) may be a better
option for unresolved spectral shapes. Within the harmonic
limit, for example, it can be shown that classical molecular
dynamic trajectories provided exact quantum results.29

Propagation of a fictitious wave function in an arbitrary time
was previously proposed to diagonalize giant Hessians and
to generate corresponding vibrational spectra instead.30 For
large molecules, the Fourier transformation was much faster
than the conventional diagonalizations. The spectral profiles
were obtained by propagation and averaging of many trial
vectors. However, the methods required the harmonic shape

of the nuclear potential. In this work, we propose and test a
different scheme suitable for a general anharmonic problem.

Time-dependent methods have always been popular in
computational chemistry and were applied, for example, to
simulations of the nuclear magnetic resonance,31 Raman scat-
tering, infrared absorption, and vibrational circular dichroism.32,33

Anharmonic vibrational systems were also investigated; how-
ever, it should be noted that previous methods based on
integration of classical trajectories do not provide all anharmonic
corrections, such as the intermode coupling.32,34,35

Modern mechanics-molecular mechanics (QM/MM) meth-
ods also facilitate computation of the spectra via time-
dependent properties.36,37 In particular, more advanced
spectroscopic experiments, such as the vibrational circular
dichroism (VCD) or the two-dimensional (2D) spectroscopy,
profit from various Fourier techniques.38-42 As a special
class, the time-dependent filter-diagonalization methods22

make the spectral generation more efficient for a preselected
frequency interval.43 The methods are based on both
classical44-46andabinitiomoleculardynamics trajectories47-49

but are mostly restricted to the harmonic potential.29

Similarly, in the electronic spectroscopy and reactions,
schemes like the multiconfigurational time-dependent Hartree
approach50 facilitate dynamic calculations for polyatomic
molecules, a topic which goes beyond the scope of the present
study. Rather than model real time-dependent processes, we
introduce the time-dependent wave function and a spectral (e.g.,
dipole) function with the sole purpose of obtaining exact
anharmonic energies and relative spectral intensities (including
special polarized spectroscopies) for a general vibrational
Hamiltonian. As the transition energies are needed rather than
vibrational state energies, the exact ground state is obtained
before the temporal propagation by the Davidson method. This,
however, does not significantly increase the computational
effort, unlike a complete Davidson diagonalization.

II. Theory

Consider a Hamiltonian H, wave functions |K〉, and energies
EK obliging the Schrödinger equation, H|K〉 ) EK|K〉. A

Figure 1. Schematic representation of the two processes of
simulating vibrational spectra: (Top) By the usual way, discrete
energies are found by a Hamiltonian (H) diagonalization; the
intensities (I) are calculated from the eigenfunctions ψ and,
for example, dipole moment µ, and the spectrum s(E) is
created by a convolution with an arbitrary peak shape f.
(Bottom) Within the Fourier method, spectral function (S)
develops in time, and the transformation provides the spec-
trum directly.
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general time-dependent wave function can be written as a
sum, ψ(t) ) ∑K)1,N dK|K〉 exp(-iEKt/p), and propagated
according to the time-dependent Schrödinger equation, ipψ̇(t)
) Hψ(t), where p is the Planck constant, dK represents
expansion coefficients, and N is the number of the basis
functions. In the discrete time integration scheme detailed
below, we calculated the wave function at time t + dt as

with ψ̇(t) ) H/(ip) ψ(t), and ψ̈(t) dt2 ) ψ(t) + ψ(t - 2dt) -
2ψ(t - dt); the wave function was renormalized at each time
step.

The vibrational ground state |G〉 can easily be obtained
by the Davidson diagonalization,25,51 as the first eigenvector.
As pointed out in the Introduction, because the diagonaliza-
tion becomes very inefficient for a large amount of required
vectors,30,51 temporal propagations will be used to obtain
spectral intensities coming from the remaining states instead.

The ground state wave function, besides the numerical
propagation (eq 1), can also be propagated analytically as
ψG(t) ) |G〉 exp(-iEGt/p), where EG is the ground state
energy. Additionally, we propagate a random function R and,
for example, a dipole integral for the absorption spectrum

where µ̂ is the dipole moment operator. Adaptations for other
spectral types are described below. The vector can always
be thought of as decomposed to the exact solutions, R(0) )
∑KdK

RψK(0), where dK
R represents unknown coefficients, so

that

ωKG ) (EK - EG)/p, which can be Fourier-transformed to

Next, we define the absorption spectrum as

In the derivation of eq 5 from 4, we used δ(ωKG′ -
ω)δ(ωK′G′ - ω) ≈ 1/(d�2π)δKK′δ(ωK′G′ - ω), which is valid
for approximate “δ functions” in a form of Gaussian bands,
with a bandwidth d, δd(ω) ≈ exp(-ω2/d2)/(d�π).

In order to remove the dependence on the choice of the
initial vector R, the unknown state weights were replaced
by the average, |dK

R|2 ≈ 1/N. Note, that although the averaging
was realized for expanding the vector to the harmonic
oscillator basis, R(0) ) ∑iri�i, average expansion coefficients
for any other orthogonal basis (in this case, the states ψK)
are the same: Indeed, as the two {�i} and {ψi} sets are
complete, we can always write ri ) ∑JdJ

RUiJ, where U is a

unitary transformation (rotation) matrix. For uncorrelated
random numbers dJ

R within the interval (-1,1), we obtain
〈dJ

RdI
R〉 ) 〈dJ

R2〉δIJ, so that 〈ri
2〉 ) 〈dJ

R2〉. In other words, the
averaging in any basis set provides the same final distribution.

Many random functions Rm (m ) 1-M) were propagated
to average the resultant intensities. Then, if the absorption
index is defined as

the dipole strength of each resolved transition Gf K is equal
to the usual relation52 DKG ) 9.184 × 10-3 ∫ ε dω/ω, where
DKG ) 〈K|µ̂|G〉 · 〈G|µ̂|K〉 is in debye2 and ε is in L mol-1

cm-1. In practical simulations, however, we used scaling of
the calculated intensities by an empirical factor, based on a
comparison of integrated IR and Raman intensities (calibrated
for the water dimer). This procedure would eliminate the
deviation of the simulated bands from ideal Gaussian
functions. It should also be noted that exact absolute intensity
simulations are not needed in most applications, as the
relative band intensities bear most of the structural information.

The model vibrational Hamiltonian was chosen as

where Pi ) -ip∂/Qi, Qi is normal mode coordinate, ωi is
the fundamental frequency, and n is the number of atoms.
All cubic (cijk) and semidiagonal quartic (djjkl etc.; at least
two indices were the same) constants were included. The
size of the Hamiltonian was controlled by skipping the
lowest-frequency modes and by considering harmonic states
�i that significantly interact with the ground or fundamental
(F) vibrations (|〈�i|V|F〉/(Ei - EF)| g threshold, where V
represents the two last sums in eq 7). The threshold was set
to 0 for the water dimer (all 0-5× excited states included),
and to 0.01 by default for the fenchone molecule. For the
dimer, all modes were included, while for fenchone the six
lowest modes were ignored. Only nonzero elements of H
were stored in memory.

III. Implementation

The algorithm derived above was implemented within the
S453 Fortran code as follows:

(1) Calculate the Cartesian dipole derivatives µR ) ∂µ/
∂R; if required, calculate also the second dipole derivatives
µRR ) ∂2µ/(∂R∂R), by a numerical differentiation. The
Gaussian54 program was used for the ab initio computations.

(2) Transform the first (second) derivatives into the normal
mode coordinates, using the Cartesian-normal mode trans-
formation (3n × 3n) matrix S, µQ ) S ·µR (µQQ ) St ·µRR ·S).

(3) Construct the vibrational Hamiltonian matrix H in the
N × N harmonic oscillator basis {�i}, i ) 1-N.

(4) Calculate the ground eigenvector g (|G〉 ) ∑igi|�i〉)
fulfilling H ·g ) EGg, by the Davidson iteration.

(5) Precalculate the dipole matrix u, ui(0) ) ∑jgj 〈�j|µ̂|�i〉,

ψ(t + dt) = ψ(t) + ψ̇(t)dt + 1
2

ψ̈(t)dt2 (1)

µR(t) ) 〈R*(t)|µ̂|ψG(t)〉 (2)

µR(t) ) ∑
K

dK
R*〈K|µ̂|G〉 eiωKGt (3)

µR(ω) ) ∫µR(t) e-iωt dt ) 2π ∑
K

dK
R*〈K|µ̂|G〉δ(ωKG - ω)

(4)

IR(ω) )
√2πdNω

4π2 |µR(ω)|2 )

∑
K

〈K|µ̂|G〉 · 〈G|µ̂|K〉ωδ(ωKG - ω) (5)

ε(ω) ) (9.184 × 10-3M)-1 ∑
R)1,M

IR(ω) (6)

H ) 1
2 ∑

i)1

3n

(Pi
2 + ωi

2Qi
2) + 1

6 ∑
i)1

3n

∑
j)1

3n

∑
k)1

3n

cijkQiQjQk +

1
24 ∑

i)1

3n

∑
j)1

3n

∑
k)1

3n

∑
l)1

3n

dijklQiQjQkQl (7)
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where µ̂ ) ∑i)1
3n µQiQi + 1/2∑i)1

3n ∑j)1
3n µQiQjQiQj is the vibra-

tional dipole.
(6) Initialize the complex dipole function in the frequency

domain (on a grid, typically 2000 points within 0-4000
cm-1), µ(ω) ) 0, set time t ) 0, and iteration step k ) 0.
In a set of complex random vectors rm (m ) 1-M), set each
component rm,i (i ) 1-N) to a random number within (-1
to +1) and normalize, so that |rm| ) 1.

(7) Increment time t by dt and obtain:
New vectors rm

(k+1) ) rm
(k) - (i/p)H · rm

(k) + 1/2d2m
(k).

Updated second derivatives d2m
(k+1) ) (rm

(k) + rm
(k-2) -

2rm
(k-1))/dt.

Dipoles µm(t) ) rm ·u exp(-iEGt/p). The scalar products
in step 7 are related to the HO index, spanning 1-N.

(8) Accumulate the dipole spectrum µ(ω) ) µ(ω) + e-iωt

µm(t)dt, for each m.
(9) If k < kmax, goto 7.
(10) From µ(ω), calculate the intensity according to eqs

5 and 6.

Modifications for Other Spectral Types. The algorithm
above was derived for infrared absorption intensities. For
vibrational circular dichroism (VCD), in steps 1 and 2, we
additionally need to calculate Cartesian (mC ) ∂m/∂p, atomic
axial tensor, AAT) and, consequently, normal mode (mQ )
∂m/∂P) derivatives of the magnetic dipole moment m,55

where p and P are the respective nuclear and normal mode
momenta. The second-order anharmonic contribution was
neglected for VCD and other spectral types. In step 5, besides
matrix u, we calculate mi(0) ) ∑jgj〈�j|m|�i〉, where m )
mQ ·P is the vibrational magnetic dipole. The dipoles mm(t)
) rm ·m exp(-iEGt/p) are propagated in steps 6-9 for each
random vector, and a frequency function mm(ω) is obtained
in analogy to the electric dipole. The VCD spectrum
corresponding to each m vector is Im(ω) ) [�(2π)dNω]/
[4π2] Im(µm*(ω) ·mm(ω)).

Raman spectra for various experimental setups can be
obtained in a similar way, by replacing the dipole operator µ̂
) ∑i)1

3n µQiQi + 1/2∑i)1
3n ∑j)1

3n µQiQjQiQj by electric polarizability,
r̂ ) rQ ·Q + 1/2Q · rQQ ·Q. For backscattering Raman
intensity,55,56 for example, we get IR,180(ω) ) K/(1 - exp(-ω/
kT)) ∑R)1-3∑�)1-3Re(7rR,R�*(ω)rR,R�(ω) +rR,RR(ω)*rR,��(ω)).
The constant K was chosen to be 1 (note that absolute
intensities are rarely measured); k is the Boltzmann constant
and T the temperature. The exponential factor accounts for
scattering from excited vibrational levels as derived in the
harmonic limit.56 An alternative more exact path, based on
individual low-energy states, used instead of the ground state
and transitions weighed by the Boltzmann population, was
not attempted. In that case, the temperature factor would have
been omitted. However, anharmonic spectral correction in
the lowest-wavenumber region, most affected by the tem-
perature, is for most molecules rather small, and the
harmonic-like temperature correction is thus sufficient.

By replacing the dipole operator by the electric dipole-
magnetic dipole polarizability, Ĝ′ ) G′Q ·Q + 1/2Q ·G′QQ ·Q
(also referred to as the optical rotation tensor), and the electric
dipole-electric quadrupole polarizability, Â ) AQ ·Q +
1/2Q ·AQQ ·Q, we can calculate Raman optical activity. The

backscattering incident circular polarized light intensity55 was
obtained as

The B3LYP57/6311++G** method was used to compute
the energy derivatives and the intensity tensors, as imple-
mented in the Gaussian program.54 Water dimer and the
fenchone molecule (Figure 2) in equilibrium geometries were
used for the modeling. Model VCI Hamiltonians with
dimensions of 1325 (water) and 49 584 (fenchone) were used
by default for most calculations; for fenchone, dimensions
of 180, 509, 1456, 3560, 5689, and 119 817 were additionally
used for the timing tests.

IV. Results

For exact Fourier transformation, the peak positions23,58 in
the ω spectrum are constant. As was shown before already
for the harmonic case,29 in practical numerical integrations,
larger time steps lead to overestimation of the peak frequen-
cies. Indeed, as shown in Figure 3, where the water dimer
bending vibration frequency is plotted as a function of the
integration time step, larger steps (>0.06 fs) introduce errors
of over 100 cm-1. Only for steps below ∼0.02 fs does the
frequency stabilize. This is a relatively small fraction of the
period of the corresponding harmonic motion, T ) 2π/ω ≈
21 fs. For harmonic wave function propagations, longer
integration steps of ∼0.1 fs could be used.29 For some
computations, however, steps as large as 2.4 fs were

Figure 2. Water dimer and the fenchone molecule B3LYP/
6-311++G** geometries.

Figure 3. Dependence of the water HOH bending band
frequency on the integration step, for water dimer.

∆IR,180(ω) )
8K

1 - exp(-ω/kT) ∑
R)1-3

∑
�)1-3

Re(3rR,R�* (ω)G′R,R�(ω) -

rR,RR* (ω)G′R,��(ω) + ∑
δ)1-3

∑
γ)1-3

εRγδrR,R�(ω)*AR,γδ�(ω))
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proposed.43 We explain the need to use shorter integration
steps for the anharmonic case even for lower-frequency states
by a coupling to the higher-frequency states included in the
Hamiltonian.

As follows from the general theory of Fourier transforma-
tion, the bandwidth is inversely proportional to the integration
time, ∆ω∼t-1.23,58 This is also observed in the calculated
dependence for the water dimer in Figure 4. As the width
converges relatively slowly, the method does not seem to
be usable for high-resolution spectra; in that case, many
spectral points are additionally needed per frequency interval,
which would further slow down the computations. On the
other hand, the inhomogeneous band broadening is quite
large for typical biomolecular spectra, on the order of ∼20

cm-1,59,60 so that the propagation times can be limited. That
means that for a 0.02 fs time step (used to achieve a high
precision of central frequencies, cf. Figure 3), about 4000/
0.2 ) 200 000 propagation points are needed.

Although the spectral intensities that can be obtained with
the FT method are only approximate, for a large number of
the random vectors, relative band ratios are reasonably close
to the exact result. This is documented in Figure 5, where
backscattering Raman and ROA spectra of fenchone are
simulated for M (number of the vectors) ) 5, 10, and 50
and compared to exact intensities calculated by the direct
diagonalization of the model 49 584 × 49 584 VCI Hamil-
tonian. Already for M ) 5, the raw Raman spectral profile
is similar to the direct calculation; the relative peak ratios
are further improved for M ) 50. The ROA signal converges
more slowly, especially within the 1400-1600 cm-1 region,
where many overlapped transitions (mostly C-H bending
vibrations) are present. However, the simulation M ) 50
provides the correct relative intensity and sign pattern for
ROA, too. Both the Raman and ROA CH stretching higher-
frequency signal seems to converge faster than that for
vibrations below 2000 cm-1. The calculated vibrational
frequencies correspond reasonably well to the observed
values;61 however, we leave a detailed comparison to the
experimental spectral profiles for a future study because of
the complexity of the problem.

As a more exact means to document the convergence, in
Figure 6, part A, we plot an example of an actual rmi

Figure 4. Dependence of the water dimer bending bandwidth
on the integration time, for dt ) 0.02 fs.

Figure 5. Dependence of the Raman (top) and Raman optical activity (bottom) spectra of fenchone on the number of random
vectors used in the propagation.
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coefficient averaging and the root-mean-square deviation that
converges as ∼1/�M.62 Although, as discussed above, we
cannot get the actual state probabilities (di), from eqs 3-5,
it is clear that the intensity will converge in the same manner
that this factor does. The possible error proportional to the
square root of M converges rather slowly; thus benchmark
simulations with large values of M are clearly inefficient.
On the other hand, in accord with the observation of the
spectral convergence in Figure 5, a reasonable intensity error
of ∼10% can be obtained with a limited amount (<100) of
the vectors, which is sufficient in many applications of the
vibrational spectroscopy.

Actual convergence of the Raman and ROA band ratios
(Figure 6, parts B and C) is more complicated due to the
band overlaps; however, the trends are clearly given by the
basic 1/�M dependence for the coefficients. From the figure,
we also see that simulations with M < 20 should be avoided
for ROA, as they may even lead to the wrong signs for some
peaks. For the selected examples of three peak pairs in Figure

6, the lowest-energy lone-standing transitions (656/721 cm-1)
converge most smoothly.

The number of vibrational degrees of freedom associated
with the number of atoms does not seem to be important for
the convergence properties; the water dimer spectra (not
shown) behaved similarly to that of fenchone. However, as
the density of vibrational states increases and the peaks
became more overlapped in more complex molecules, higher
accuracy, and thus presumably a larger number of the starting
vectors, will be required for simulations on larger systems.

As observed also for other time-dependent approaches,29,43

it is difficult to extract information about the individual
normal mode contribution to the spectrum. For harmonic
potential, this is partially solvable by a specially designed
propagation scheme.63 In anharmonic computations, the
concept of normal modes vanishes completely. However, in
a majority of practical computations, the harmonic ap-
proximation is realistic enough to provide reliable informa-
tion about the origin of observable transitions.

As the vectors can be propagated independently, the
algorithm is amendable to parallelization. Our OMP shared
memory implementation (http://openmp.org) did not lead to
a perfect scaling (cf. Figure 7); nevertheless, it documents
the significant speedups that can easily be achieved on
common shared-memory multiprocessor computers. More
importantly, the FT algorithm becomes very convenient for
larger Hamiltonian dimensions. This is documented in Figure
8, where the diagonalization times needed for the direct and
Davidson computations are compared to the FT simulations
for variously sized fenchone VCI Hamiltonians. The David-
son method is apparently quite inefficient, and the CPU time
rises steeply. The direct diagonalization is very fast for
smaller matrices, but the N3 time and N2 memory scaling
make it inconvenient for larger ones; for N ∼ 6000, the FT
methodology becomes the fastest scheme for the vibrational
spectra generation. As pointed out above, slightly longer
times are required for more resolved spectra (longer propa-
gation needed) and more accurate spectral intensities (requir-
ing many random vector averaging). Still, the FT method
would be the most convenient when the Hamiltonian reaches
a certain limit. Additionally, only nonzero Hamiltonian
elements need to be stored for FT, unlike for the direct
methods.

Figure 6. Convergence properties of spectral intensities on
the number of random vectors: (A) average, RMS deviation
interval62 (N-1 ( N-1M-1/2), and actual values for a random
coefficient (i ) 10) for the fenchone simulation in Figure 5
with N ) 6475 and ratios of selected (B) ROA and (C) Raman
peak intensities. Central peak frequencies are indicated in
cm-1; the arrows mark exact values.

Figure 7. Dependence of the acceleration on the number of
processors (fenchone IR spectrum calculation, pgf77-OMP-
linux software environment, 4 Intel E7330/2.40 GHz CPUs
on Supermicro X7QCE motherboard).

2100 J. Chem. Theory Comput., Vol. 6, No. 7, 2010 Ivani et al.



V. Conclusions

The proposed computational scheme enabled us to estimate
conveniently vibrational spectral profiles based on the VCI
Hamiltonian and intensity tensor derivatives. Because the
ground state could be calculated by the classical Davidson
method, the Fourier transformation with suitably chosen
integration steps provided exact transition frequencies.
Besides the wave function, electromagnetic tensors (e.g., the
electric dipole for infrared absorption) were propagated,
which enabled a simultaneous computation of spectral
intensities. Only approximate absolute intensities could be
simulated; however, propagation of many random vectors
and the averaging led to faithful relative band intensities and
correct ROA sign patterns, with accuracy sufficient for most
molecular structural studies based on the vibrational spectra.
For large molecules (large VCI Hamiltonians), the algorithm
provided the spectra faster than the classical methods based
on the explicit matrix diagonalization.
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