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PREFACE

Chirality is a phenomenon that is manifested throughout the natural world, ranging
from fundamental particles through the realm of molecules and biological organisms
to spiral galaxies. Thus, chirality is of interest to physicists, chemists, biologists, and
astronomers. Chiroptical spectroscopy utilizes the differential response of chiral objects
to circularly polarized electromagnetic radiation. Applications of chiroptical spectroscopy
are widespread in chemistry, biochemistry, biology, and physics. It is indispensable for
stereochemical elucidation of organic and inorganic molecules. Nearly all biomolecules
and natural products are chiral, as are the majority of drugs. This has led to crucial
applications of chiroptical spectroscopy ranging from the study of protein folding to
characterization of small molecules, pharmaceuticals, and nucleic acids.

The first chiroptical phenomenon to be observed was optical rotation (OR) and its
wavelength dependence, namely, optical rotatory dispersion (ORD), in the early nine-
teenth century. Circular dichroism associated with electronic transitions (ECD), currently
the most widely used chiroptical method, was discovered in the mid-nineteenth century,
and its relationship to ORD and absorption was elucidated at the end of the nineteenth
century. Circularly polarized luminescence (CPL) from chiral crystals was observed in
the 1940s. The introduction of commercial instrumentation for measuring ORD in the
1950s and ECD in the 1960s led to a rapid expansion of applications of these forms of
chiroptical spectroscopy to various branches of science, and especially to organic and
inorganic chemistry and to biochemistry.

Until the 1970s, chiroptical spectroscopy was confined to the study of electronic tran-
sitions, but vibrational transitions became accessible with the development of vibrational
circular dichroism (VCD) and Raman optical activity (ROA). Other major extensions of
chiroptical spectroscopy include differential ionization of chiral molecules by circularly
polarized light (photoelectron CD), measurement of optical activity in the X-ray region,
magnetochiral dichroism, and nonlinear forms of chiroptical spectroscopy.

The theory of chiroptical spectroscopy also goes back many years, but has recently
made spectacular advances. Classical theories of optical activity were formulated in
the early twentieth century, and the quantum mechanical theory of optical rotation was
described in 1929. Approximate formulations of the quantum mechanical models were
developed in the 1930s and more extensively with the growth of experimental ORD and
ECD studies, starting in the late 1950s. The quantum mechanical methods for calculations
of chiroptical spectroscopic properties reached a mature stage in the 1980s and 1990s.
Ab initio calculations of VCD, ECD, ORD, and ROA have proven highly successful and
are now widely used for small and medium-sized molecules.

Many books have been published on ORD, ECD, and VCD/ROA. The present
two volumes are the first comprehensive treatise covering the whole field of chirop-
tical spectroscopy. Volume 1 covers the instrumentation, methodologies, and theoretical
simulations for different chiroptical spectroscopic methods. In addition to an extensive
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treatment of ECD, VCD, and ROA, this volume includes chapters on ORD, CPL, pho-
toelectron CD, X-ray-detected CD, magnetochiral dichroism, and nonlinear chiroptical
spectroscopy. Chapters on the related techniques of linear dichroism, chiroptical imag-
ing of crystals and electro-optic absorption, which sometimes supplement chiroptical
interpretations, are also included. The coverage of theoretical methods is also extensive,
including simulation of ECD, ORD, VCD, and ROA spectra of molecules ranging from
small molecules to macromolecules. Volume 2 describes applications of ECD, VCD,
and ROA in the stereochemical analysis of organic and inorganic compounds and to
biomolecules such as natural products, proteins, and nucleic acids. The roles of chiroptical
methods in the study of drug mechanisms and drug discovery are described.

Thus, this work is unique in presenting an extensive coverage of the instrumenta-
tion and techniques of chiroptical spectroscopy, theoretical methods and simulation of
chiroptical spectra, and applications of chiroptical spectroscopy in inorganic and organic
chemistry, biochemistry, and drug discovery. In each of these areas, leading experts have
provided the background needed for beginners, such as undergraduates and graduate
students, and a state-of-the-art treatment for active researchers in academia and industry.

We are grateful to the contributors to these two volumes who kindly accepted our
invitations to contribute and who have met the challenges of presenting accessible, up-
to-date treatments of their assigned topics in a timely fashion.

Nina Berova
Prasad L. Polavarapu

Koji Nakanishi
Robert W. Woody
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Figure 7.10. An early step in the R → T quaternary transition of hemoglobin detected by TRMCD

spectroscopy of the tryptophan bands after photolysis of the CO complex. (a) Near-UV TRMCD

spectra collected at delay times ranging from 63 ns to 25 ms after photolysis. (b) A plot of the

near-UV Trp band position versus time shows a red shift at 2 μs that corresponds to formation of

a Trp–Asp hydrogen bond between the two dimers of the Hb tetramer. (Adapted from reference

52 with permission from the American Chemical Society. See page 198 for text discussion.
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Figure 11.2. Schematic diagram of CRDP apparatus. Pulsed laser radiation traverses a circular

polarizer consisting of a tandem calcite prism and quarter-wave plate (λ/4) before being coupled

into a high-finesse linear cavity of length L. Matched intracavity λ/4 retardation plates are

aligned to produce a stable linearly polarized field over the intervening region of length

�, thereby making this portion of the apparatus sensitive to the accruing effects of natural

optical activity. Emerging light is imaged onto two identical detectors that separately monitor

temporal profiles for the two linear components (parallel and perpendicular) generated by a

circular polarization analyzer. The inset depicts the arrangement of cavity optics, highlighting

the relative offset, ϕ0, purposely introduced between the fast axes of intracavity waveplates so

as to resolve the sign of measured specific rotation. See pages 292–293 for text discussion.
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Figure 18.21. A mechanical film stretcher with oppositely

threaded screws to ensure even stretching of the film. See

page 515 for text discussion.
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(b)

Figure 18.23. (a) Large-volume (2–3 mL)

inner rotating cylinder Couette flow cell

with 500-μm annular gap [6]. (b)

Microvolume (25–60 μL) outer rotating

[56, 57] Couette flow cell showing the

outer quartz capillary (3-mm inner

diameter) and inner quartz rod (2.5-mm

outer diameter) which, when assembled,

results in an annular gap of 250 μm. See

page 516 for text discussion.
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1
ON THE INTERACTION OF LIGHT WITH

MOLECULES: PATHWAYS TO THE
THEORETICAL INTERPRETATION OF

CHIROPTICAL PHENOMENA
Georges H. Wagnière

1.1. A BRIEF HISTORICAL RETROSPECTIVE

1.1.1. On the Nature of Light

The ancient Greek philosophers, such as Pythagoras and his disciples, later also Euclid,
gave early speculations on the nature of light. Yet the fundamental question, what light
really is, has been systematically approached only following the birth of modern astron-
omy in the fifteenth and sixteenth century. The developing manufacture of lenses and
of other optical components for technical purposes undoubtedly stimulated this scientific
endeavor.

The lasting foundations of a modern theory of light were, however, not laid before
the second half of the seventeenth century. While Isaac Newton (1642–1727), after
discovering the spectral resolution of white light, tended to consider it as made up of
particles, Christiaan Huygens (1629–1695) attributed to it a wave nature and thereby
succeeded in explaining reflection and refraction. Significant advances in the understand-
ing of light were accomplished in the nineteenth century. Augustin Fresnel (1788–1827)
extended the theory of Huygens to explain diffraction, thereby affirming the apparent
superiority of the wave model. However, a satisfying deeper explanation of the nature
of the oscillating medium was still missing.

Not before the development of a theory of electricity and magnetism was a significant
next step made forward. Jean-Baptiste Biot (1774–1862) not only made important con-
tributions to the understanding of the relation between an electric current and a magnetic
field—the Biot–Savart law—but also discovered the rotation of the plane of linearly

Comprehensive Chiroptical Spectroscopy, Volume 1: Instrumentation, Methodologies, and Theoretical
Simulations, First Edition. Edited by N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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4 COMPREHENSIVE CHIROPTICAL SPECTROSCOPY, VOLUME 1

polarized light in “optically active” liquids, such as sugar solutions. Michael Faraday
(1791–1867) discovered both (a) the electromagnetic law of induction and (b) the effect
named after him, namely, that a magnetic field could cause optical rotation in a material
medium. James Clerk Maxwell (1831–1879) subsequently succeeded in mathematically
unifying the laws of electricity and magnetism. From Maxwell’s equations (see Section
1.2.1) one may directly derive an electromagnetic wave equation that has proven to be
an excellent description of the properties of light and its propagation. Light then appears
as a transverse wave, with an electric and a magnetic field component perpendicular to
each other and to the direction of propagation.

Unexpectedly, and in spite of the success of the classical wave theory, the concept of
a particle nature of light, dormant for about two centuries, resurfaced at the beginning of
the twentieth century. In order to satisfactorily interpret the law of blackbody radiation,
Max Planck (1858–1947) was led to assume that an electromagnetic field inside a cavity,
and in thermal equilibrium with it, behaves as a collection of harmonic oscillators, the
energy of which is quantized. From the photoelectric effect, Albert Einstein (1879–1955)
concluded that radiation is absorbed by an atom in the form of quanta of energy pro-
portional to its frequency, E = hν, where the quantity h is Planck’s constant. Thus the
concept of the photon was born. The particle-wave duality, not only for light, but also
for matter, became a cornerstone of the quantum mechanics that then soon developed.

Assuming a formal analogy between the radiation oscillators and the quantum
mechanical harmonic oscillator, P. A. M. Dirac (1902–1984) initiated an algebra of
photon states. The radiation field is consequently represented as a many-photon system,
each photon acting as a harmonic oscillator of given frequency. State changes of
the radiation field are then described by photon creation and annihilation operators.
However, even in this quantized frame, the electromagnetic picture derived from the
classical description is essentially maintained. Considering a classical ray of light, one
may, according to how the electric and magnetic field oscillate in space and time,
speak of linear, circular , or elliptic polarization . The concept of polarization may also
be attributed to a single photon . Beth’s experiment in 1936 revealed that circularly
polarized light carries angular momentum, and that this angular momentum corresponds
to a spin of the photon of ±1�, depending on if the photon is left or right circularly
polarized.

In our aim to describe chiroptical phenomena of molecules, we ask ourselves to what
extent the quantization of the radiation field must be taken into account. Is it for our pur-
poses sufficient to describe the electromagnetic field classically, or is it also necessary to
explicitly consider this field quantization? A fact taught in elementary quantum mechan-
ics courses is that the quantum mechanical harmonic oscillator for increasing quantum
numbers behaves more and more like a classical oscillator. Similarly, the radiation field
at high quantum numbers, corresponding to a high photon density, behaves more and
more classically as the intensity grows.

One of Albert Einstein’s numerous seminal contributions to modern physics was to
recognize that absorption of light by matter obviously can only be electromagnetic field-
induced, but that there are two kinds of emission, spontaneous and induced . Spontaneous
emission occurs even in the absence of external radiation. It may be pictured as an
excitation of the vacuum state of the electromagnetic field by the atom or molecule.
Its detailed interpretation indeed requires field quantization. In absorption and induced
emission, on the other hand, one must assume a certain external light intensity to be
present, and therefore the classical description is admissible. This is indeed the point of
view that we shall adopt.
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The particular practical significance of induced emission only became apparent in
the middle of the last century and led to the development of masers and lasers . Some
of the chiroptical phenomena that we shall briefly consider in the following sections
indeed require the use of lasers. We shall treat these effects in the frame of the so-called
semiclassical radiation theory [1–6].

1.1.2. Quantum Chemistry in Its Early Stages

For the understanding of the atomic and molecular spectra, measured at higher and higher
resolution in the late nineteenth and early twentieth century, it became clear that only a
quantum mechanical description of matter would be satisfactory. This also initiated the
special field of quantum chemistry . Even the simplest molecule, that of hydrogen, already
poses some difficult problems, however. In the calculation of Heitler and London [7], a
solution of the Schrödinger equation for the electrons is sought, while a priori keeping
the nuclei fixed. A systematic investigation of the separability of electronic and nuclear
motion was worked out by Born and Oppenheimer [8]. They showed that due to the
mass difference between electrons and nuclei, the molecular Schrödinger equation may
be approximately separated into an equation for the electrons at different fixed nuclear
positions, and an equation for the vibrations of the nuclei in the potential energy surfaces
that are derived from the solutions of the electronic equation. Finally, there is the rotation
of the molecule as a whole to be considered, approximated by a three-dimensional rotator,
or top, of appropriate symmetry. Consequently, the overall molecular wavefunction may
then be represented as a product:

�molec = �elXvib�rot,

and the energy E can be expressed as a sum. A molecular change of state is correspond-
ingly written as

�Emolec = �Eel + �Evib + �Erot,

with �Eel usually on the order of 104 –105 cm−1, �Evib ≈ 102 –103 cm−1, �Erot ≈
10−1 –101 cm−1.

It was soon recognized that the solution of the electronic equation alone already is
a formidable task, the main difficulty being the electron–electron interaction. A general
and rigorously justifiable procedure was then developed, consisting of several steps.
(a) Calculate a set of orthonormalized molecular one-electron functions—for instance,
molecular orbitals (MO) as linear combinations of atomic orbitals (LCAO)—by solving
a simplified electronic Schrödinger equation that neglects electron–electron interaction.
Multiply each MO with an appropriate spin function. Assign the electrons individually to
these spin orbitals , respecting the Pauli exclusion principle. (b) Such an assignment was
given the name configuration . An electron configuration is thus described as a product of
the occupied one-electron molecular spin orbitals. Because electrons are fermions, these
products must be antisymmetric with respect to the interchange of any two electrons.
Therefore, the many-electron functions are to be antisymmetrized and may be written
in the form of Slater determinants . Every Slater determinant thus represents an electron
configuration . The solution of the many-electron Schrödinger equation is performed on
the basis of these antisymmetrized configurational functions and is termed configuration
interaction (CI). The electronic wavefunctions finally so obtained consequently present
themselves as linear combinations of such Slater determinants.



6 COMPREHENSIVE CHIROPTICAL SPECTROSCOPY, VOLUME 1

It soon became obvious that the solution of these quantum mechanical electronic
eigenvalue problems was heavily dependent on the availability of computational facilities.
In general, the development of quantum chemistry closely parallels the development of
the computer.

From the beginning, great effort was spent to optimize the molecular one-electron
functions. This allowed calculations that were tractable, and the results could be pictured
visually, which appealed to the structural thinking of the chemists. The 1930s saw the
birth of the concept of hybridization [9], by which the occurrence of particular three-
dimensional molecular geometries could be convincingly interpreted. The electronic
properties of the important class of planar conjugated unsaturated hydrocarbons were
described in the frame of the Hückel theory for π electrons [10]. These π -MOs are
linear combinations of atomic pz functions, the axes of which are perpendicular to the
molecular plane. An attempt to extend the Hückel one-electron theory to nonplanar,
three-dimensional molecules using a basis of s , px , py , pz , and eventually d functions
proved highly successful in spite of its limitations [11]. As an immediate and important
application, it provided a computational background for the derivation of the symmetry
rules for the stereochemically important electrocyclic reactions [12, 13].

The Hartree–Fock method, first formulated for atoms in the 1930s, attempts to opti-
mize the one-electron functions by including the electron interaction as far as possible in
a self-consistent manner at the one-electron level, thereby reducing the need for config-
uration interaction [14, 15]. A similar self-consistent field (SCF) method for molecules
was developed in the 1950s [16].

However, the SCF method in no ways fully eliminates the need for configuration
interaction, in particular also in the calculation of electronically excited states. The still
limited computational resources of the 1950s and 1960s imposed severe restrictions on
the possibilities to perform many-electron SCF-CI calculations. Great effort was there-
fore spent to reduce computational labor by adopting simplifications in the numerical
evaluation of the many intermediate quantities appearing in a calculation—in particular,
the two-electron repulsion and exchange integrals, as well as the integrals describing
the interaction of the electrons with the positive atomic cores. This led to a number of
semiempirical many-electron methods, such as the PPP and CNDO methods [17, 18] and
modifications thereof, which were applied, with variable success, not only to the calcu-
lation of long-wavelength absorption, but also that of circular dichroism (CD) spectra.

As computational efficiency and speed increased, quantum chemical calculations
became more accurate, and the semiempirical procedures gradually have given way to
ab initio methods, in which all quantities are calculated as exactly as possible from their
analytic expression. If in the 1960s and 1970s one was satisfied to perform CI calculations
with perhaps 102 configurations, nowadays a routine molecular many-electron calculation
may include on the order of 106 configurations. Ab initio methods have since also been
refined, to increase their efficiency and to reduce computer time, by more sophisticated
procedures, such as multiconfiguration SCF methods, the coupled cluster methods, and
variants thereof. More recently, the Density Functional Theory (DFT) has been success-
fully used for a wide range of quantum chemical problems, due to its relatively easy
applicability to large molecular systems.

1.1.3. Early Interpretations of Chiroptical Properties

Optical rotation, or optical rotatory dispersion (ORD), is a consequence of the fact that
in an optically active medium the index of refraction is different for left (L) and right
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(R) circularly polarized light. Inside absorption bands we encounter anomalous rotatory
dispersion accompanied by circular dichroism (CD). While ORD is responsible for the
rotation of linearly polarized light, CD transforms linearly polarized incident light into
elliptically polarized light. In measuring this ellipticity, care had to be taken to distinguish
between the ellipticity itself and the concomitant rotation of the polarization ellipse [19].
Technical advances in the manufacture of optical components and in phase-sensitive
detection made it later possible to measure the difference of the absorption coefficient,
�ε(CD) = εL − εR, directly. The first commercial circular dichrographs operating in this
fashion became available in the 1960s. CD spectroscopy then developed into a subfield
of absorption spectroscopy.

From a historic point of view, it seems somewhat paradoxical that the first attempts
to interpret optical activity quantum mechanically coincided more or less with the elab-
oration of purely classical models, essentially based on coupled oscillators. We shall,
however, leave the classical models entirely to history and concentrate on the quantum
mechanical approach.

It was first shown by Rosenfeld that a direct connection could be established between
the quantum mechanical states of a molecule and its optical activity [20]. In particular,
the circular dichroism �ε(a → b) for the transition from a molecular state a to a state
b is proportional to the rotatory strength , which in principle is calculable:

�ε(a → b) ∼ Im〈a|μ|b〉 · 〈b|m|a〉. (1.1)

〈a|μ|b〉 represents the electric dipole transition moment and 〈b|m|a〉 the magnetic dipole
transition moment, of which we take the imaginary part (Im), which is real. As is taught in
elementary courses, the total absorption coefficient is proportional to the dipole strength:

ε(a → b) ∼ 〈a|μ|b〉 · 〈b|μ|a〉, (1.2)

in which only the electric dipole operator occurs.
Yet, as mentioned, the main problem in computing these quantities consists in obtain-

ing molecular wavefunctions of sufficient quality. The calculation of molecular spectra, in
particular of chiroptical spectra, necessarily and evidently depended on the general devel-
opment of quantum chemical calculations, briefly summarized in the previous section.
The unavailability of accurate wavefunctions stimulated the search for symmetry rules
and for simplified models. These efforts initially went into two directions. One was the
so-called polarizability theory of optical activity, the other was the one-electron model .

In the polarizability theory, pioneered by Kirkwood [21], the molecule is subdivided
into pairs of optically anisotropic groups. The interaction between the groups is assumed
to be essentially electrostatic, exchange effects being important only within the individual
groups. The optical activity tensor is calculated from the radiation-induced electric and
magnetic transition moments within the groups. The calculated optical activity of the
composite system may then approximately be reduced to purely electric quantities that
can be directliy related to the electric polarizability tensor of the groups, averages of
which can be experimentally determined. The polarizability theory developed into what
is now commonly called the quantum mechanical coupled oscillator , or exciton model ,
which has found wide application in the interpretation of the optical activity of organic
and inorganic dimers and polymers.

An important concern was whether a potential exists which makes a single electron
optically active and which leads to an analytically solvable Schrödinger equation. Such
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a model was found in the asymmetrically perturbed three-dimensional harmonic oscil-
lator. The model shows well how transitions that are purely electric dipole-allowed in
the unperturbed, achiral case obtain a magnetic dipole-allowed component through the
asymmetric perturbation; and similarly, transitions that originally are purely magnetic
dipole-allowed obtain an electric dipole increment [22, 23], leading to nonvanishing
rotatory strengths.

ORD and CD began in the 1950s and 1960s to be routinely applied in stereochem-
istry. Just as for ordinary dispersion and absorption, it was experimentally verified that
ORD and CD are Kronig–Kramers transforms of each other. If one knows the ORD spec-
trum over a wide spectral range, the CD spectrum may be deduced and vice versa. On
the practical level, CD became the method of choice, because one could better determine
the contributions of individual transitions.

Chiroptical methods complemented crystallographic structure determinations of
biopolymers, as well as those of metal–organic complexes. Here the theoretical
procedure of choice was the coupled-oscillator or exciton model [24–30]. On the other
hand, in the study of local effects, in particular the investigation of the stereochemical
surroundings of particular substituents, a one-electron approach suggested itself. This
then led to the so-called sector rules [31–33].

The various semiempirical SCF-MO-CI methods mentioned in the previous section
have been widely applied to calculate CD spectra. They proved to be successful, for
instance, for the interpretation of the chiroptical properties of chromophores that are
inherently dissymmetric and cannot be subdivided into subgroups, such as the helicenes,
and where neither the coupled-oscillator model nor the sector rules are typically applicable
[34]. In other instances, they agreed satisfactorily with the exciton model [35] or with
the sector rules [36]. As we shall see in the following chapters of this volume, the
modern interpretation of electronic optical activity is based on a combined application
of traditional models and of ab initio calculations.

Due to particular experimental challenges and some theoretical hurdles, the study
of vibrational optical activity (VOA) has followed a path of its own [37–42]. Besides
vibrational CD, circular differential Raman scattering (ROA) has proven to be a method
of great potential. An interesting and particular aspect of VOA is the possibility to
measure and interpret optical activity induced by isotopic substitution. The computation
of vibrational rotatory strengths is not trivial, as for the calculation of the magnetic
transition moments, non-Born–Oppenheimer vibronic contributions must be considered
[37, 38].

With the advent of quantum mechanics, it was quickly recognized that the existence
of mirror-image forms for one and the same molecule raises some fundamental ques-
tions. If only electrostatic interactions exist between the electrons and nuclei within an
isolated molecule, if only electromagnetic forces manifest themselves, then the molecular
Schrödinger equation must be invariant with respect to spatial reflection —that is, with
respect to the parity operation . It is therefore not conceivable that solutions of such a
parity-even equation may be chiral. For chiral molecules, the enantiomeric solution must
be equally admissible. In other words, a chiral molecular wavefunction cannot describe
a stationary state. This situation, called Hund’s paradox [43], is actually not of great
practical significance. The higher and broader the potential barrier between the potential
energy minima of the enantiomers, the slower the inversion frequency. While H2O2, with
a very low barrier, inverts within about 10−12 s, alanine, with a very high barrier needs
on the order of 1000 years. A high inversion barrier implies quasi-stability. However, the
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question is not always trivial, why under given circumstances a particular chiral molecule
occurs, and not its enantiomer.

Within the last decades, interest has focused on the question as to what extent
the influence of the parity-violating weak nuclear forces on atoms and molecules is
detectable. Weak optical activity is indeed measurable in heavy atoms [44]. These parity-
violating forces should also affect the spectroscopy and dynamics of molecules [45–47].
They might have played a role in preferentially stabilizing one enantiomer as opposed to
the other in evolutionary processes, such as the development of biological homochirality .

1.2. ELEMENTS OF THE SEMICLASSICAL THEORY

After the foregoing initial historic excursion, we shall now attempt to briefly summarize
the basic elements of the semiclassical theory of the interaction of light with molecules.

1.2.1. The Classical Description of Light

For a medium without free charges and without free currents, Maxwell’s equations, in
the system of Gauss–CGS units, are written as

∇ × E = −(1/c)(∂/∂t)B, ∇ · B = 0, (1.3a)

∇ × H = (1/c)(∂/∂t)D, ∇ · D = 0, (1.3b)
with

D = E + 4πP and B = H + 4πM, (1.4a,b)

where E denotes the electric field, D the electric displacement, H the magnetic field,
and B the magnetic induction. Inserting Eqs. (1.4a,b) into (1.3a,b), taking the curl of
(1.3a,b) followed by some elementary vector manipulations, and considering the fact
that ∇ · E = 0 and that ∇ · H = 0, one obtains the wave equation for an electrically and
magnetically polarizable medium:

�E = (1/c2)(∂2/∂t2)(E + 4πP) + (4π/c)(∂/∂t)(∇ × M), (1.5a)

�H = (1/c2)(∂2/∂t2)(H + 4πM) − (4π/c)(∂/∂t)(∇ × P); (1.5b)

the vector quantities P and M represent the induced electric and magnetic polarization ,
respectively. We now define a plane wave, propagating in z direction and oscillating in
x, y directions, as a solution of the above equations:

E(z , t) = E−(z , t) + E+(z , t), (1.6a)

H(z , t) = H−(z , t) + H+(z , t). (1.6b)

For the x components, say, of the field quantities we write in more detail:

Ex− = E 0
x− exp(−iϕx), Ex+ = E 0

x+ exp(+iϕx), (1.7a)

Hx− = H 0
x− exp(−iϕy), Hx+ = H 0

x+ exp(+iϕy), (1.7b)
with

ϕx = ω(t − (nx/c)z ), ϕy = ω(t − (ny/c)z ). (1.8)
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The quantities nx and ny are defined as the index of refraction for a wave with electric
field oscillating in x and y directions, respectively. In what follows, we shall assume the
medium in which the wave propagates to be isotropic, and thus nx = ny ≡ n . We now
establish a relationship between the index of refraction n , which is optically measurable,
and the quantities P and M, which represent material quantities that may be traced back
to molecular susceptibilities. The particular property of an optically active medium is
that P depends not only on E, but also on B; and M depends not only on B, but also
on E. We assume the molecules in the medium to interact with the incident vacuum
field, for which B = H. Considering the x components of the electromagnetic vectors,
the constitutive relations thus read:

Px− = αEx− + βiHx− and Mx− = −βiEx− + γ Hx− . (1.9a,b)

The quantities α, β, and γ represent the isotropically averaged electric polarizability
tensor, the optical activity tensor, and the magnetic susceptibility tensor, respectively.
These quantities are defined to be real and will be derived in Section 1.2.3. The imaginary
unit is denoted by i . Introducing (1.9a,b) and (1.7a,b) into (1.5a,b) and making use of
(1.3a,b), we find, after some straightforward but rather tedious algebra, the following
relations between Ex− and Hx− :

Ex−(n2 − εμ − 16π2β2) − Hx−(8π iβμ) = 0, (1.10a)

Ex−(8π iβε) + Hx−(n2 − εμ − 16π2β2) = 0. (1.10b)

In these relations we have introduced the dielectric constant , defined as ε = 1 + 4πα,
and the magnetic permeability , μ = 1 + 4πγ . Similar equations of course also hold for
the y components. The above two coupled equations for Ex− and Hx− have nontrivial
solutions if the determinant of the coefficients (in brackets) vanishes. This condition then
gives us an equation for the refractive index n in terms of the electromagnetic quantities:

n2 − εμ − 16π2β2 = ±8πβ
√

εμ. (1.11a)

Therefrom follows

n = √
εμ ± 4πβ. (1.11b)

Introducing these solutions into (1.10a,b), we find

Ex−

Hx−
= ±i

√
μ√
ε

. (1.12)

Such conditions can only be obeyed by circularly polarized light , as indicated here for
the left (L) and the right (R) circular polarizations (c.p.):

EL = (e0/2)((+i + i j) exp(−iϕ) + (+i − i j) exp(+iϕ)), (1.13a)

HL = (h0/2)((−i i + j) exp(−iϕ) + (+i i + j) exp(+iϕ)), (1.13b)

ER = (e0/2)((+i − i j) exp(−iϕ) + (+i + i j) exp(+iϕ)), (1.14a)

HR = (h0/2)((+i i + j) exp(−iϕ) + (−i i + j) exp(+iϕ)), (1.14b)
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where i and j represent unit vectors in x and y direction, respectively. From the above
equations, we notice that the (+) sign in (1.12) pertains to a left c.p. wave, while the
(−) sign refers to a right c.p. wave. Going back to (1.11b), we may then find

nL = √
εμ + 4πβ, nR = √

εμ − 4πβ; (1.15a)

and for an achiral racemic mixture

n = (1/2)(nL + nR) = √
εμ. (1.15b)

These relations were already derived in 1937 by Condon [48, 49]. The quantities e0 and
h0 are constant field amplitudes fulfilling the condition

√
εe0 = √

μh0.

1.2.2. Elements of Perturbation Theory

We start with the simplest assumptions, considering a molecule to be initially in its ground
state �

(0)
a (r, t). Under the influence of the radiation field, we subsequently describe the

system by the wavefunction:

�a(r, t) = �(0)
a + λ�(1)

a + λ2�(2)
a + · · · . (1.16)

The effect of the radiation is represented as a harmonic perturbation , the exact form of
which will be treated in detail in the next section. However, for the sake of generality,
we consider the incident light to contain more than one, say two, frequencies, ω1 and ω2:

H = H(0) + λH(1);
H(1)(r, t) = 1H−(r) exp(−iω1t) + 1H+(r) exp(+iω1t)

+ 2H−(r) exp(−iω2t) + 2H+(r) exp(+iω2t). (1.17)

Introducing (1.16) into the time-dependent Schrödinger equation,

(H(0) + λH(1))� = i�∂�/∂t ,

and equating coefficients of like powers of λ leads to an infinite sequence of coupled
equations:

(H(0) − i�(∂/∂t))�(0)
a = 0,

(H(0) − i�(∂/∂t))�(1) = −H(1)�(0)
a ,

(H(0) − i�(∂/∂t))�(2) = −H(1)�(1)
a ,

. . . , etc. (1.18)

Considering only steady-state solutions [50, 51] for the hamiltonian (1.17), the first-order
term in (1.16) will oscillate with the basic frequencies ω1 and ω2, and the higher-order
terms will oscillate as sums or differences thereof. In this sense, one then may write

�a
(0)(r, t) = ψa

(0)(r) exp(−iωa t), (1.19a)
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�a
(1)(r, t) = {1ψa

(1)
(−1) exp(−iω1t) + 1ψa

(1)
(+1) exp(+iω1t)

+ 2ψa
(1)

(−1) exp(−iω2t) + 2ψa
(1)

(+1) exp(+iω2t)} exp(−iωa t). (1.19b)

The functions denoted by ψ depend only on space variables; for instance,

1ψa
(1)

(−1) ≡ 1ψa
(1)

(−1)(r), etc.

In the next higher order of the expansion we have

�a
(2)(r, t) =

{1ψa
(2)

(−2) exp(−i2ω1t) + 1ψa
(2)

(+0) + 1ψa
(2)

(+2) exp(+i2ω1t)

+ 2ψa
(2)

(−2) exp(−i2ω2t) + 2ψa
(2)

(+0) + 2ψa
(2)

(+2) exp(+i2ω2t)

+ 1,2ψa
(2)

(−1,−1) exp(−i (ω1 + ω2)t) + 1,2ψa
(2)

(−1,+1) exp(−i (ω1 − ω2)t)

+ 1,2ψa
(2)

(+1,−1) exp(+i (ω1 − ω2)t) + 1,2ψa
(2)

(+1,+1) exp(+i (ω1 + ω2)t)} exp(−iωa t).
(1.19c)

In order to assess the quantities appearing in (1.19b,c), we proceed according to
the well-known method of variation of constants, expanding in terms of eigenfunctions
of H(0):

�a
(0)(r, t) =

∑
k

ak
(0)(t)ψk

(0)(r) exp(−iωk t),

�a
(1)(r, t) =

∑
k

ak
(1)(t)ψk

(0)(r) exp(−iωk t),

�a
(2)(r, t) =

∑
k

ak
(2)(t)ψk

(0)(r) exp(−iωk t),

. . . , etc. (1.20)

Introducing (1.20) into (1.18), setting ak
(0) = δka , the coefficients ak

(1), ak
(2), . . ., are

determined, according to elementary time-dependent perturbation theory, by successive
integrations over the time t . However, we perform indefinite integrations , setting the
constants of integration equal to zero. Thereby we avoid incipient terms and keep only
steady-state terms . The expressions so obtained are compared with (1.19b,c) equating
coefficients of like powers of exp (it).

In this way we find

1ψ
(1)
a(−1) = −

∑
k

1H−
ka

�(ωka − ω1)
ψ

(0)

k , (1.21a)

1ψ
(1)
a(+1) = −

∑
k

1H+
ka

�(ωka + ω1)
ψ

(0)

k ; (1.21b)

and to second order we obtain

1ψ
(2)
a(−2) =

∑
k

∑
l

1H−
la

1H−
kl

�2(ωla − ω1)(ωka − 2ω1)
ψ

(0)

k , (1.22a)
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1ψ
(2)
a(0) =

∑
k

∑
l

{
1H+

la
1H−

kl

�2(ωla + ω1)ωka
+

1H−
la

1H+
kl

�2(ωla − ω1)ωka

}
ψ

(0)

k , (1.22b)

1ψ
(2)
a(+2) =

∑
k

∑
l

1H+
la

1H+
kl

�2(ωla + ω1)(ωka + 2ω1)
ψ

(0)

k . (1.22c)

with corresponding additional expressions for the frequency ω2 and for the combinations
of ω1 and ω2.

The reader will notice that until now we have assumed the molecule to be initially
in the state �a

(0)(r, t) ≡ |a〉 with certainty. However, the initial condition may be that
the molecule is in state |a〉 only with a probability pa < 1 and that it may also be in
other states |k〉 with probabilities pk such that the sum of all probabilities

∑
k pk = 1. To

describe such a situation, it is convenient to introduce the density operator , or density
matrix ρ:

ρ =
∑

k

pk |k〉〈k |. (1.23a)

It is then relatively straightforward to show, in analogy to (1.18), that the time evolution
is given by the commutator i�(∂ρ/∂t) = [H, ρ], to which a damping, or relaxation, term
may be added. Thereby we may describe, besides damping due to absorption and induced
emission, also incoherent effects, such as spontaneous emission and population changes
induced by collisions and thermal fluctuations [52, 53]:

i�(∂ρ/∂t) = [(H(0) + λH(1)), ρ] + i�(∂ρ/∂t)relax. (1.23b)

The influence of damping will, however, not be further pursued here. We will consider
radiation-induced absorption/emission processes in forthcoming sections.

1.2.3. The Interaction with the Radiation

The Hamiltonian for the interaction of a molecule with the electromagnetic radiation field
does not explicitly contain the electric and magnetic light vectors, but rather the vector
potential A. The relation to the field vectors is (in the Coulomb gauge) given by

E = −(1/c)∂A/∂t , B = ∇ × A. (1.24)

For a single particle (electron) and disregarding electrostatic potentials, the Hamiltonian
reads

H = (1/2me)(p − (e/c)A(r, t))2. (1.25a)

Multiplying out this expression and taking into account the fact that p · A = 0, because
of the tansversality condition , we obtain

H = (1/2me)(p2 − (2e/c)A · p + (e2/c2)A2). (1.25b)
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The A2 term may be, for our purposes, conditionally neglected [54, 55], so that the
effective interaction becomes (e, the electronic charge, me the mass of the electron)

Hint = (−e/mec)A · p. (1.26)

We now assume A(r, t) to be of the form

A(r, t) = A0− exp(−iϕ) + A0+ exp(+iϕ); (1.27a)

with ϕ = (ωt − kz ), k = 2π/λ, and λ is the wavelength. Because the second term in
(1.27a) is simply the complex conjugate of the first, we focus on the A− term only.
Thus,

A0− exp(−iϕ) = iA0
x− exp(−iϕ) + jA0

y− exp(−iϕ). (1.27b)

From (1.24) we obtain

E0− exp(−iϕ) = i(iω/c)A0
x− exp(−iϕ) + j(iω/c)A0

y− exp(−iϕ), (1.28a)

B0− exp(−iϕ) = i(−ik)A0
y− exp(−iϕ) + j(+ik)A0

x− exp(−iϕ). (1.28b)

We keep for convenience the time t constant, and we assume the wavelength λ to be
much larger than z within the region where the particle is located (dimension of the
molecule). This long- wavelength approximation allows us to expand exp (−ikz ) into a
fast converging series [4]:

Hint = (−e/mec)A0− · (p + ikzp − . . .) = Hint.1 + Hint.2, (1.29a)

Hint.1 = (−e/mec)(A0
x−px + A0

y−py ), (1.29b)

Hint.2 = (−eik/mec)(A0
x−zpx + A0

y−zpy ). (1.29c)

In (1.29c) we make use of the identity,

zpx = 1

2
(zpx + xpz ) + 1

2
(zpx − xpz ), (1.30a)

zpy = 1

2
(zpy + ypz ) + 1

2
(zpy − ypz ), (1.30b)

and consider the following equalities, derivable from commutation relations:

〈a|px |b〉 = imeωab〈a|x |b〉, (1.31a)

〈a|zpx + xpz |b〉 = imeωab〈a|zx |b〉; (1.31b)

with |a〉, |b〉, being eigenfunctions of H(0), ωab = ωa − ωb.
Furthermore, we notice that (zpx − xpz) = ly, (zpy − ypz) = − lx, the components of

the angular momentum operator .
Combining (1.31a) with (1.29b) we write

〈a|Hint.1|b〉 = (−eiωab/c)(A0
x−〈a|x |b〉 + A0

y−〈a|y |b〉). (1.32a)
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Comparing with (1.28a), we obtain the electric field–electric dipole interaction:

〈a|Hint.1|b〉 = (−e)(E 0
x−〈a|x |b〉 + E 0

y−〈a|y |b〉). (1.32b)

Proceeding similarly, combining (1.31b) with (1.29c), we find

〈a|Hint.2,1|b〉 = (ekωab/2c)(A0
x−〈a|zx |b〉 + A0

y−〈a|zy |b〉)
= (−e/2)((∂Ex−(z )/∂z )0〈a|zx |b〉 + (∂Ey−(z )/∂z )0〈a|zy |b〉), (1.33)

which represents the electric field gradient–electric quadrupole interaction . Finally, we
derive the magnetic dipole–magnetic field (magnetic induction) interaction . One also
starts from (1.29c). We now focus on the second terms on the right-hand side of Eqs.
(1.30a,b), which, as already mentioned above, represent components of the angular
momentum operator. We recall that the magnetic induction B is related to the vector
potential A as shown in (1.24). We thus obtain

〈a|Hint.2,2|b〉 = (−eik/2mec)(A0
x−〈a|ly |b〉 − A0

y−〈a|lx |b〉)
= (−e/2mec)(Bx− lx + By− ly ). (1.34)

Generalizing to an arbitrary coordinate system and reintroducing the time dependence,
we may write in general the following:

Hint. ≡ H(1)(r = 0; t) = −μ · E(t) − m · B(t) − Q :∇E(t) + · · · . (1.35)

Here the field quantities E(t) and B(t) no longer depend on spatial variables. They adopt
spatially fixed values at the origin of the multipole expansion:

E(t) = E0− exp(−iωt) + E0+ exp(+iωt); (1.36a)

B(t) = B0− exp(−iωt) + B0+ exp(+iωt). (1.36b)

The electric field gradient is similarly understood to be taken at the same origin: ∇E ≡
∇0E. From now on, however, we simplify our notation: E0− ≡ E−, B0− ≡ B−, and so
on. The electric dipole operator μ and the magnetic dipole operator m are, respectively,
given by

μ = er, m = (e/2mec)l, (1.37)

where r designates the position operator and l represents the angular momentum operator.
The electric quadrupole term may be written (e/2) (rr :∇E) or, equivalently,

(e/2)r · (r · ∇)E. (1.38)

Before proceeding to the detailed study of optical phenomena, we briefly return to
the A2 term that we had neglected. This term is important in very high magnetic fields
when diamagnetic effects become strong. It does not appear to significantly alter the
multipole expansion as given in (1.35), which is generally accepted as a basis for the
interpretation of optical phenomena in atoms and molecules. However, the problem is
not trivial, and the interested reader is referred to the pertinent literature [54, 55].
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1.2.4. The Induced Electric Polarization

Phenomena such as light scattering and refraction [39, 56, 57] depend mainly on the
light-induced electric polarization P, as already indicated in Section 1.2.1. Here it is
defined as a macroscopic quantity , with the dimensions of a dipole moment per unit
volume. It may be considered as the average contribution of an individual molecule times
the concentration of these molecules in the sample. Our immediate aim, therefore, is to
calculate the radiation-induced electric dipole moment in a single molecule in a particular
state, usually assumed to be the ground state a . We will denote this molecular quantity
by pa

(n)(. . .). The index (n) stands for the order of the effect, and inside the parentheses
(. . .) we indicate the optical process that gives rise to that particular contribution to the
polarization. We may in general write [see Eq. (1.16) in Section 1.2.2]

pa ≡ p = 〈�a(r, t) |μ| �a(r, t)〉. (1.39)

The wave function in (1.39) is calculated as described in Eqs. (2.17)–(2.20). For ordinary
Rayleigh scattering we thus find

p(1)(ω;−ω) = 〈ψa
(0)|μ|ψa

(1)
(−1)〉 + 〈ψa

(1)
(+1)|μ|ψa

(0)〉

=
∑

k

{ 〈a|μ|k〉(〈k |μ|a〉 · E−)

�(ωka − ω)
+ (〈a|μ|k〉 · E−)〈k |μ|a〉

�(ωka + ω)

}
. (1.40)

The quantity p(1)(ω;−ω) is to be read as follows: It is the first-order electric dipole
response of the molecule to an incoming photon of frequency (−ω), giving rise to a
scattered photon of frequency (+ω). The negative frequency (−ω) is to be formally
interpreted as the loss of a photon of energy �ω by the radiation field and the concomitant
uptake by the molecule. Correspondingly, (+ω) means the reverse. The choice of the
absolute signs is a matter of definition; the relative signs are to be considered.

A general classification of linear and nonlinear effects is represented in Figure 1.1.
The reader will immediately recognize that the nonlinear, higher-order contributions lead
to a growing variety of quantum mechanical terms, especially if several frequencies are
involved. Assuming pure electric dipole interactions of the molecule with the radiation
field, we find for sum frequency generation (SFG), for instance, the following:

p(2)(ω1 + ω2;−ω1, −ω2) =
∑

k

∑
l

〈a|μ|l〉(〈l |μ|k〉 · 2E−)(〈k |μ|a〉 · 1E−)

�2(ωla − ω1 − ω2)(ωka − ω1)
+ · · ·

(1.41)

plus five similar terms. Figure 1.2 shows the 3! = 6 possible permutations. As a next
example, we consider a Raman-type four-wave mixing effect with incident frequencies
−ω1, +ω2, and −ω3 and resulting frequency (+ω1 − ω2 + ω3):

p(3)(ω1 − ω2 + ω3;−ω1, +ω2, −ω3)

=
∑

k

∑
l

∑
m

〈a|μ|m〉(〈m|μ|l〉 · 3E−)(〈l |μ|k〉 · 2E+)(〈k |μ|a〉 · 1E−)

�3(ωma − ω1 + ω2 − ω3)(ωla − ω1 + ω2)(ωka − ω1)
+ · · · .

(1.42)

There are 23 additional similar terms in (1.42), 4! = 24 in all. Here we have limited
ourselves exclusively to considering electric dipole interactions with the radiation field.
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Figure 1.1. Ward graphs (left) and ladder graphs (right) for linear (S2.a), second-order nonlinear

(S3.a, S3.b), and third-order nonlinear (S4.a, S4.b1, S4.b2) elastic scattering (S) processes. The

broken horizontal lines in the ladder graphs represent virtual, nonstationary states of the

molecular system. (Reproduced with permission, from reference 57.)
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Figure 1.2. To every permutation of vertices in a graph corresponds a quantum mechanical

term. Here is the example of sum frequency generation. (Reproduced with permission, from

reference 57.)
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1.2.5. The Evaluation of Rotational Averages

Optical measurements are often performed on media in which the individual molecules
are randomly oriented, such as in liquids or gases. This requires the orientation-dependent
quantities that we have derived above to be spatially averaged. Mathematically, this cor-
responds to the averaging of Cartesian tensors [57–59]. While the energy denominators
in (1.40)–(1.42) are scalar quantities, independent of orientational effects, the numera-
tors are, in general, tensors of rank (n + 1) for a polarization p(n)(. . .). We will briefly
exemplify this averaging procedure with the expressions obtained in the previous section,
starting with (1.40). We formally define 〈a|μ|k〉 ≡ μak and 〈k |μ|a〉 ≡ μka .

The average is

〈μak (μka · E−)〉 = (1/3)(μak · μka)E−. (1.43a)

The spatially averaged induced polarization 〈p(1)(ω;−ω)〉 may thus be written in the
form

〈p(1)(ω;−ω)〉 = χ(1)(ω;−ω)E−, (1.43b)

where χ(1)(ω;−ω) is a scalar susceptibility calculated in the molecular reference frame,
and E− is a vectorial field part defined in the laboratory frame. The reader will rec-
ognize that χ(1)(ω;−ω) is just the averaged molecular electric polarizability , and that
N χ(1)(ω;−ω) = α, where N is the number of molecules per unit volume, and α repre-
sents the macroscopic electric polarizability [see Section 1.2.1, Eq. (1.9a)].

We presently proceed to the second order, to sum frequency generation, represented
by (1.41). We formally define 〈a|μ|l〉 ≡ μal , and so on. The average of the numerator
is

〈μal (μlk · 2E−)(μka · 1E−)〉 = (1/6)(μal · μlk × μka)(2E− × 1E−). (1.44a)

Similar expressions may be obtained for all six terms. The spatially averaged induced
electric polarization 〈p(2)ω1 + ω2;−ω1, −ω2)〉 can thus be written in the form

〈p(2)(ω1 + ω2;−ω1, −ω2)〉 = χ(2)(ω1 + ω2;−ω1, −ω2)(
2E− × 1E−). (1.44b)

From (1.44a) we notice that χ(2)(ω1 + ω2;−ω1, −ω2) is not a scalar but instead a
pseudoscalar . As a product of three polar vectors, it is odd with respect to space
inversion—that is, with respect to the parity operation . It thus only fails to vanish in non-
centrosymmetric media. Liquids (or gases) can only be noncentrosymmetric if they are
chiral . In a racemic mixture there is no sum (or difference) frequency generation. In the
special case that ω1 = ω2 and 2E− = 1E−, then 〈p(2)(ω1 + ω2;−ω1, −ω2)〉 = 〈p(2)(2ω;
−ω, −ω)〉 = 0. In liquids, even in chiral ones, there is neither coherent second harmonic
generation [60] nor optical rectification.

Finally, we return to the four wave mixing effect considered in (1.42). We define
〈a|μ|m〉 ≡ μam , 〈m|μ|l〉 ≡ μml , and so on. The average of the numerator is

〈μam(μml · 3E−)(μlk · 2E+)(μka · 1E−)〉
= {+(2/15)(μam · μml )(μlk · μka)

− (1/30)(μam · μlk )(μml · μka) − (1/30)(μam · μka)(μml · μlk )}3E−(2E+ · 1E−)
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+{−(1/30)(μam · μml )(μlk · μka)

+ (2/15)(μam · μlk )(μml · μka) − (1/30)(μam · μka)(μml · μlk )}2E+(3E− · 1E−)

+{−(1/30)(μam · μml )(μlk · μka)

− (1/30)(μam · μlk )(μml · μka) + (2/15)(μam · μka)(μml · μlk )}1E−(3E− · 2E+).

(1.45)

Every one of the three terms in this sum consists of a scalar molecular part times a
vectorial field part.

1.2.6. Transition from an Initial State to a Final State

The reader will notice that until now we have neglected damping effects. By introduc-
ing imaginary damping terms in the frequency denominators of the expressions for the
induced polarizations, one obtains complex susceptibilities. The real parts of the suscepti-
bilities then represent dispersion effects , the imaginary parts absorptions . Here we shall,
for simplicity, not follow this procedure, but rather return to elementary perturbation
theory (Section 1.2.2). There we assume a situation where one of the frequencies of the
radiation field, ω1, ω2, . . ., or a sum or difference thereof, is equal to the frequency of a
given molecular transition, say between states a and b: ωba = ωb − ωa .

As we have just seen, in the case of scattering and refraction , the quantity of interest
is the induced polarization pa . This quantity may be formally viewed as the expectation
value, or matrix element, of a polarization operator between the same initial and final
state a . In the case of a transition from a to b induced by the radiation, the quantity of
interest may be represented by the matrix element of a transition operator R(n) between
initial and final state [57]. In the case of a one-photon transition in the electric dipole
approximation, this quantity is the transition moment:

〈b|R(1)(−ω)|a〉 = 〈b| − μ · E−|a〉. (1.46)

The transition probability per unit time is proportional to the absolute value squared:

w (1)(a → b;ω) = (2π/�
2) | 〈b|R(1)(−ω)|a〉 |2 δ(ωba − ω)

= (2π/�
2) | 〈b| − μ · E−|a〉 |2 δ(ωba − ω)

= (2π/�
2)〈b| − μ · E−|a〉〈a| − μ · E+|b〉 δ(ωba − ω). (1.47)

The resonance condition is marked by the delta function δ(ωba − ω). This relation (1.47)
is also called the “Fermi golden rule.”

For two-photon absorption , one similarly obtains

〈b|R(2)(−ω1, −ω2)|a〉

= −
∑

k

〈b|μ · 2E−|k〉〈k |μ · 1E−|a〉
�(ωka − ω1)

−
∑

k

〈b|μ · 1E−|k〉〈k |μ · 2E−|a〉
�(ωka − ω2)

. (1.48)

The two-photon transition probability per unit time then reads

w (2)(a → b;ω1, ω2) = (2π/�
2) | 〈b|R(2)(−ω1, −ω2)|a〉 |2 δ(ωba − ω1 − ω2). (1.49)
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In the Raman effect we encounter absorption of a photon −ω1 immediately followed
by emission of a photon +ω2. The Raman transition operator R(2)(−ω1, +ω2) is obtained
from the operator for two-photon absorption by replacing in the numerators of (1.48) 2E−
by 2E+, and in the denominator −ω2 by +ω2. Consequently,

w (2)(a → b;ω1, −ω2) = (2π/�
2) | 〈b|R(2)(−ω1, +ω2)|a〉 |2 δ(ωba − ω1 + ω2). (1.50)

The interested reader may want to write out expressions (1.49) and (1.50) in detail,
following the outlined procedure. We shall return to them in the Section 1.3.4. on two-
photon optical activity and on Raman optical activity.

1.3. CHIROPTICAL PHENOMENA

1.3.1. Natural Optical Activity: CD and ORD

We begin by going back to Section 1.2.1 and we recall that in an optically active medium
the induced macroscopic electric polarization P depends not only on the interaction with
the electric field vector of the radiation E, but also on the magnetic field vector H [Eq.
(1.9a,b)]. At the molecular level, we consider the Hamiltonian in the long-wavelength
approximation [Eq. (1.35)]. In the previous sections we had only considered the electric
dipole–electric field term: −μ · E. At present, we must indeed take into account both
the magnetic dipole–magnetic induction contribution to the Hamiltonian, as well as the
electric quadrupole–electric field gradient term. We notice that the electric dipole operator
μ is odd with respect to the parity operation P , the magnetic dipole operator m is even ,
and so is the electric quadrupole operator Q. From this symmetry point of view, we must
take both additional terms in the Hamiltonian into consideration.

For practical reasons we will presently start out by considering circular dichroism .
As one may immediately conclude, the transition probability per unit time for a naturally
optically active transition a → b is then given by

w (1)(a → b;ω) = (2π/�
2)(〈b|μ · E−|a〉〈a|μ · E+|b〉

+ 〈b|μ · E−|a〉〈a| m · B+|b〉 + 〈b|m · B−|a〉〈a|μ · E+|b〉
+ 〈b|μ · E−|a〉〈a| Q :∇E+|b〉 + 〈b|Q : ∇E−|a〉〈a|μ · E+|b〉
+ higher terms)δ(ωba − ω). (1.51)

The first term in Eq. (1.51), the pure electric dipole term, is usually dominant. The
second and third terms, mixed electric dipole–magnetic dipole factors, will be seen to be
responsible for CD in chiral fluids. As we shall now show, the electric dipole–electric
quadrupole contributions, terms 4 and 5 in (1.51), average to zero in an isotropic medium;
for instance,

〈b|μ · E−|a〉〈a| Q : ∇E+|b〉 = (e2/2)〈b|r · E−|a〉〈a|r · (r · ∇)E+|b〉. (1.52a)

In this expression we identify molecule-fixed and space-fixed vector quantities. In the
process of isotropic averaging, following Section 1.2.5, we note that the vector operator
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∇ behaves as an ordinary space-fixed vector. Following Eq. (1.44a), we thus find for
the averaged quantity and from simple vector calculus the following:

(e2/12)(〈b|r|a〉 · 〈a|r × r|b〉)(E− · ∇ × E+) = 0. (1.52b)

After space-averaging, the two electric dipole–magnetic dipole terms in (1.51) sur-
vive, however, and we obtain the following for their contribution to w (1)(a → b;ω):

(2π/3�
2)〈a|μ|b〉 · 〈b|m′|a〉i (E+ · B−−E− · B+)δ(ωba − ω). (1.53)

In this and in the following expressions, we write for the magnetic dipole operator
m = im′, where m′ is real. The product 〈a|μ|b〉 · 〈b|m′|a〉 = Im(〈a|μ|b〉 · 〈b|m|a〉) is
known as the rotatory strength of the transition [20] [see also Eq. (1.1) in Section 1.1.3].

On the basis of Eqs. (1.13a)–(1.14b), we write the following for left circularly
polarized (L c.p.) radiation:

E− = (e0/2)(+i + i j), E+ = (e0/2)(+i − i j); (1.54a)

B− = (b0/2)(−i i + j), B+ = (b0/2)(+i i + j). (1.54b)

And for right circularly polarized (R c.p.) radiation we write

E− = (e0/2)(+i − i j), E+ = (e0/2)(+i + i j); (1.55a)

B− = (b0/2)(+i i + j), B+ = (b0/2)(−i i + j). (1.55b)

Introducing these expressions into Eq. (1.53), we find the following for the difference of
the transition probability under L and R c.p. light:

�w(a → b) = w(a → b)L − w(a → b)R

= (4π/3�
2)〈a|μ|b〉 · 〈b|m′|a〉e0b0 δ(ωba − ω)

= (2/3�
2)〈a|μ|b〉 · 〈b|m′|a〉e0b0 δ(νba − ν). (1.56)

In CGS–Gauss units in vacuum, we note

e0 = b0; ρ(ν) = (1/2π)E−(ν) · E+(ν) = (1/4π)e2
0 ;

Thus:

e0b0 = e0
2 = 4πρ(ν), (1.57)

ρ(ν) being the radiation field energy density per unit frequency, at frequency ν. Conse-
quently,

w(a → b)L − w(a → b)R = (8π/3�
2)〈a|μ|b〉 · 〈b|m′|a〉ρ(ν)δ(νba − ν). (1.58a)

The relation to the experimental quantity, namely the difference of the absorption coeffi-
cient (Section 1.1.3) for left and right c.p. light, �ε (CD), is given by the proportionality:

�ε(CD) = εL − εR ∼ w(a → b)L − w(a → b)R. (1.58b)
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The point of departure for our consideration of ORD is given by Eq. (1.40) in Section
1.2.4. In this expression we replace the electric dipole interaction with the radiation field
by the magnetic dipole interaction, indicated by −ω(M), to get

p(1)(+ω;−ω(M))

=
∑

k

{ 〈a|μ|k〉(〈k |mμ|a〉 · B−)

�(ωka − ω)
+ (〈a|m|k〉 · B−)〈k |μ|a〉

�(ωka + ω)

}
. (1.59)

After isotropic averaging , we may write

p(1)(+ω;−ω(M)) = χ(1)(+ω;−ω(M))B−, (1.60a)

where χ(1)(+ω;−ω(M)) is a pseudoscalar. From now on, we omit for convenience the
pointed brackets 〈p(1)〉 used in Section 1.2.5 to indicate isotropic spatial averaging. In
addition to (1.59) and (1.60a), we of course also obtain an analogous complex conjugate
term:

p(1)(−ω;+ω(M)) = χ(1)(−ω;+ω(M))B+. (1.60b)

The susceptibility in Eq. (1.60a) is now found to be

χ(1)(+ω;−ω(M)) = 1

3

∑
k

{ 〈a|μ|k〉 · 〈k |m|a〉
�(ωka − ω)

+ 〈a|m|k〉 · 〈k |μ|a〉
�(ωka + ω)

}
. (1.61a)

Assuming all wavefunctions |k〉 real, this is equal to

χ(1)(+ω;−ω(M)) = i
2ω

3�

∑
k

〈a|μ|k〉 · 〈k |m′|a〉
(ω2

ka − ω2)
. (1.61b)

The numerators in the summation evidently contain the rotatory strengths of the transi-
tions a → k . We finally establish the connection to Eq. (1.15a) in Section 1.2.1. From
our definition, P− = αE− + βiB− follows, N being the concentration of molecules:

β = −iN χ(1)(+ω;−ω(M)) = N Im{χ(1)(+ω;−ω(M))},

and thus

nL − nR = −8π iN χ(1)(+ω;−ω(M)) = 8πβ. (1.62)

The circular differential character of ORD may also be visualized in the following
simple and straightforward way. As above, we of course assume isotropic averaging .
Ordinary refraction is due to (see (1.43b)):

p(1)(ω;−ω) = χ(1)(ω;−ω)E−,

and optical activity [see (1.60a)]:

p(1)(+ω;−ω(M)) = χ(1)(+ω;−ω(M))B− = Im{χ(1)(+ω;−ω(M))}iB−. (1.63)
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Introducing the field vectors E− and B− for left and right c.p. light, as given in Eqs.
(1.54a)–(1.55b), we find that in the left c.p. case the vector iB− adds to E− whereas
in the right c.p. case it subtracts . The absolute sign of the circular differential effect
in a particular case evidently depends on the absolute sign of the pseudoscalar suscep-
tibility Im{χ(1)(−ω;+ω(M))}, which of course is opposite for enantiomers, but which
characteristically reflects the chiroptical properties of the molecule considered.

1.3.2. Optical Activity of Higher Order: Sum and Difference
Frequency Generation

After having discussed the chiroptical effects of first order in the molecule–electro-
magnetic field interaction, we now briefly consider the influence of chirality on three- and
four-wave mixing [61–63]. We begin here with sum and difference frequency generation
[61]. For this purpose we return to Section 1.2.5, where for sum frequency generation
we had found, after isotropic averaging [see Eq. (1.44b)], the following:

p(2)(ω1 + ω2;−ω1, −ω2) = χ(2)(ω1 + ω2;−ω1, −ω2)(
2E− × 1E−).

The detailed expression for χ(2)(ω1 + ω2;−ω1, −ω2) may be deduced from Eqs. (1.41)
and (1.44a). What we notice is that this molecular quantity is odd with respect to parity
and therefore is a pseudoscalar. However, although sum frequency generation (as well
as difference frequency generation) in liquids requires the presence of chiral molecules,
the effect induced by pure electric dipole interactions in itself is not circular differential.
A difference arises only if one adds contributions to p(2)(ω1 + ω2;−ω1, −ω2) in which
one interaction is of magnetic dipole (M) or electric quadrupole (Q) type. In the first
case we have

p(2)(ω1 + ω2;−ω1(M), −ω2) = χ(2)(ω1 + ω2;−ω1(M), −ω2)(
2E− × i 1B−). (1.64)

Here the susceptibility is defined to be real, and the factor i in the field part comes
from the magnetic dipole operator, as in Eqs. (1.53) and (1.63). Of course, there is an
additional contribution, arising from p(2)(ω1 + ω2;−ω1 − ω2(M)), corresponding to the
alternative replacement of the electric dipole operator by the magnetic dipole operator
m = im′ for the interaction with the field of frequency ω2.

We now focus our attention on the field part of expressions (1.44b) and (1.64) in order
to deduce the dependence of p(2) on the state of polarization of the incident radiation.
For sum frequency generation, parallel incidence and circular polarization, (ω1) left–(ω2)
left (L–L), and, respectively, (ω1) right–(ω2) right (R–R), we obtain

L–L : 2E− × 1E− = 0; R–R : 2E− × 1E− = 0. (1.65)

Here there cannot possibly be any circular differential effect. However, for sum frequency
generation at parallel incidence and circular polarizations left–right (L–R) vs. right–left
(R–L), one finds [see Eqs. (1.54a)–(1.55b)]

L–R : 2E− × 1E− = +(i/2) 2e0
1e0k; 2E− × i 1B− = +(i/2) 2e0

1b0k. (1.66a)

R–L : 2E− × 1E− = −(i/2) 2e0
1e0k; 2E− × i 1B− = +(i/2) 2e0

1b0k. (1.66b)
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We notice that for L–R the contributions have the same sign, whereas for R–L they show
an opposite sign. k is a unit vector in propagation direction. The added contributions
lead to the inequality

| p(2)(ω1 + ω2)L–R |
=| p(2)(ω1 + ω2)R–L | . (1.67)

The procedure for difference frequency generation is similar, but there we find a
characteristic difference in the selection rules; in particular,

L–R : 2E+ × 1E− = 0; R–L : 2E+ × 1E− = 0. (1.68)

On the other hand:

L–L : 2E+ × 1E− = +(i/2) 2e0
1e0k; 2E+ × i 1B− = +(i/2) 2e0

1b0k. (1.69a)

R–R : 2E+ × 1E− = −(i/2) 2e0
1e0k; 2E+ × i 1B− = +(i/2) 2e0

1b0k. (1.69b)

For L–L the contributions add, while for R–R they subtract. We consequently find

| p(2)(ω1 − ω2)L–L |
=| p(2)(ω1 − ω2)R–R | . (1.70)

The reader will realize that one may also examine perpendicular incidence of the two radi-
ation beams and other possible combinations of polarizations. Furthermore, one notices
that the electric quadrupole–electric field gradient term does not average to zero, but
must also be taken into consideration [61].

1.3.3. Optical Activity of Higher Order: Four-Wave Mixing

In Section 1.2.4, Eq. (1.42), we considered Raman-type four-wave mixing in the pure
electric dipole approximation: p(3)(ω1 − ω2 + ω3;−ω1, +ω2, −ω3). The numerators in
the quantum mechanical terms describing this quantity lead, after isotropic averaging,
to expressions of the form shown in Eq. (1.45). There we focused our attention on the
vectorial field factors which read

3E−(2E+ · 1E−), 2E+(3E− · 1E−), 1E−(3E− · 2E+).

If we now consider p(3)(ω1 − ω2 + ω3;−ω1(M), +ω2, −ω3), assuming that for the fre-
quency ω1 we have a magnetic dipole interaction (M), then in the molecular factors of
Eq. (1.45) we must replace μka by m′

ka , and the field factors correspondingly become

i 3E−(2E+ · 1B−), i 2E+(3E− · 1B−), i 1B−(3E− · 2E+). (1.71)

Proceeding here as in the previous section, we may ascertain that the added contribu-
tions of

p(3)(ω1 − ω2 + ω3;−ω1, +ω2, −ω3) and p(3)(ω1 − ω2 + ω3;−ω1(M), +ω2, −ω3)

indeed are circular differential [61–63].
By successively also considering ω2(M) and ω3(M), as well as different combinations

of the polarizations of the incident radiation beams, such as L–L–L versus R–R–R;
L–L–R versus R–R–L, a large variety of possible nonlinear chiroptical effects may be
conceived. The incidence of the beams may be parallel or perpendicular to each other.
In addition, a comparable variety of electric dipole–electric quadrupole (Q) effects is
possible, corresponding to [61–63] p(3)(ω1 − ω2 + ω3;−ω1(Q), +ω2, −ω3), and so on.
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1.3.4. Two-Photon CD and Raman Optical Activity

We now return to Section 1.2.6 and consider the matrix element of the transition operator
for two-photon absorption 〈b|R(2)(−ω1, −ω2)|a〉. As we know, the two-photon transition
probability per unit time is proportional to

w (2)(a → b;ω1, ω2) ∼ 〈b|R(2)(−ω1, −ω2)|a〉〈b|R(2)(−ω1, −ω2)|a〉∗

= 〈a|R(2)(−ω1, −ω2)
∗|b〉〈b|R(2)(−ω1, −ω2)|a〉. (1.72)

Introducing into (1.72) the right-hand side of Eq. (1.48) leads to a somewhat cumbersome
formula that we shall not write out. However, after isotropically averaging the fourth rank
tensor expressions that occur, the field factors may be recognized to be of the form

(1E+ · 2E+)(1E− · 2E−), (1E+ · 1E−)(2E+ · 2E−), (1E+ · 2E−)(2E+ · 1E−).

(1.73)

We now assume a magnetic dipole interaction with the radiation field to occur for
ω1:〈b|R(2)(−ω1(M), −ω2)|a〉. Following (1.72), but considering only one magnetic
dipole interaction in all, this expression has to be multiplied by 〈b|R(2)(−ω1, −ω2)|a〉∗,
where the asterisk, as above, denotes complex conjugation. The field factors
correspondingly now read

i (1E+ · 2E+)(1B− · 2E−), i (1E+ · 1B−)(2E+ · 2E−), i (1E+ · 2E−)(2E+ · 1B−).

(1.74)

Making use of Eqs. (1.54a)–(1.55b), the reader may ascertain that these expressions
have opposite signs for L and R c.p. light. A variety of additional circular differential
terms is conceivable. A detailed theoretical treatment of two-photon CD is to be found in
reference 64 describing different conditions for the incident radiation. A similar treatment
of Raman optical activity may be developed by replacing −ω2 with +ω2 in expression
(1.72). This entails a corresponding modification of the selection rules. For a general
theoretical exposition of Raman optical activity, consult reference 65. The stimulated
Raman effect is described in references 53 and 66. Concerning stimulated Raman optical
activity, see references 62 and 63.

1.3.5. Magnetic Circular Dichroism: MCD

The Faraday effect, manifesting itself as magnetic circular birefringence, magnetic rota-
tory dispersion (MORD), and magnetic circular dichroism (MCD), is circular differential
but achiral . It occurs in matter of any symmetry. Because we are mainly interested in
general symmetry and selection rules, we shall limit ourselves to an elementary treat-
ment of MCD. We consider, as in previous sections, a fluid in which the molecules are
randomly oriented, and to which we now apply a static magnetic field B0. For simplicity,
and possibly eschewing mathematical rigor, we treat the influence of the static field on
the molecules in the frame of time-independent perturbation theory:

|a ′〉 = |a〉 −
∑
n 
=a

|n〉 〈n|m|a〉 · B0

�ωan
, (1.75a)
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〈b ′| = 〈b| −
∑
n 
=b

〈b|m|n〉 · B0

�ωbn
〈n|. (1.75b)

Introducing these relations into the expression for the transition probability per unit time,

w(a ′ → b ′) = (1/�
2)〈b ′|μ · E−|a ′〉〈a ′|μ · E+|b ′〉f (ν),

we obtain the following after having, for practical reasons, shifted from the variable ω

to the variable ν and after having replaced the delta function in Eq. (1.51) by a general
and more realistic lineshape function f (ν):

w(a ′ → b ′; B0) = 4π2

3h3

⎧⎨
⎩

∑
n 
=a

1

νna
Im(mna · μab × μbn)

+
∑
n 
=b

1

νnb
Im(mbn · μab × μna)

⎫⎬
⎭ · (−iB0 · E− × E+)f (ν). (1.76)

We notice that the molecular part of this expression and also the field part are even
with respect to the parity operation. The response to enantiomers must thus be the same.
Writing B0 = B0k and using expressions (1.54a) and (1.55a), we find

For L c.p. light : (−iB0 · E− × E+) = −B0e0
2/2, (1.77a)

For R c.p. light : (−iB0 · E− × E+) = +B0e0
2/2. (1.77b)

Thus,

w(a ′ → b ′; B0)L − w(a ′ → b ′; B0)R ∼ −B0e0
2. (1.77c)

What we have derived here is the so-called B-term of MCD. We have assumed all zeroth-
order wavefunctions, |a〉, |n〉, |b〉, to be nondegenerate. If, due to symmetry and/or spin
properties, we encounter degeneracies, we also obtain A terms . If, in addition, the ground
state is magnetically degenerate, there appears a C term [67–69]. However, the treatment
of these aspects will be left to the specialized chapters.

1.3.6. Magnetochiral dichroism: MChD

MORD and MCD are induced in the presence of a static magnetic field by a pure
electric dipole interaction with the radiation field. The only magnetic dipole interaction
that occurs is with the static magnetic field. In magnetochiral dichroism (MChD) and
birefringence, however, there occurs both a magnetic dipole interaction with the static
field and a magnetic dipole interaction, as well as an electric quadrupole interaction,
with the light field [70–73]. From that point of view, MChD may be considered as a
combination of natural CD (hereafter denoted as NCD) and of MCD (see Figure 1.3).
As we now shall see, MChD occurs only in chiral media, but, in contrast to MCD, it is
not circular differential . For MChD we again combine in a formal sense Eq. (1.51) in
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Figure 1.3. Graphs for the
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at right. The general form of the

tensor products of the corresponding

molecular susceptibility are given: μ

stands for a parity-odd electric dipole

interaction, and m stands for a

parity-even magnetic dipole

interaction. i represents the

imaginary unit. The overall symmetry

with respect to parity P and time

reversal T is also noted for each case.

(Reproduced with permission, from

G. Wagnière, On Chirality and the

Universal Asymmetry,

VHCA-Wiley-VCH, Zurich, 2007.)

Section 1.3.1 with Eqs. (1.75a,b) in Section 1.3.5. The electric dipole–magnetic dipole
contribution to the transition probability per unit time then reads [70]

w(a ′ → b ′; B0; el-mag) =

4π2

3h3

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
n 
=a

1

νna
(μbn · mab × mna + μba · mnb × man)+

∑
n 
=b

1

νnb
(μna · mab × mbn + μba · man × mnb)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

· (B0 · E− × B+)f (ν). (1.78)

We notice that the molecular part of this expression (inside the curly brackets) is odd
with respect to the parity operation, and so is the field part. On the basis of Eqs.
(1.54a)–(1.55b), we analyze the field part in the same way as in the previous section.
We then find:

For L c.p. light : (B0 · E− × B+) = B0e0b0/2, (1.79a)

For R c.p. light : (B0 · E− × B+) = B0e0b0/2. (1.79b)

This confirms that the magnetochiral effect is not circular differential. MChD has the
same sign for left and right circularly polarized light . It is consequently independent of
the polarization of the incident radiation [70–73]. On the other hand, the effect changes
its sign if the direction of the static field with respect to the direction of propagation of
the incident light beam is reversed:

w(a ′ → b ′; B0)↑↑ − w(a ′ → b ′; B0) ↓↑∼ B0e0b0. (1.80)
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We notice that the vector E− × B+ is parallel and proportional to the Poynting vector,
which is parallel to the wavevector k of the incident radiation. The electric dipole–electric
quadupole contributions to MChD display similar symmetry properties.

In analogy to Eq. (1.76), we may consider Eq. (1.78) as a contribution to the magne-
tochiral B term . Where magnetic degeneracies occur, we will find magnetochiral A terms
and possibly C terms . Magnetochiral dichroism and birefringence are Kronig–Kramers
related, as are also all absorption/dispersion effects mentioned in previous sections.

Under ordinary laboratory conditions, the magnetochiral effect is small, because it
requires for its detection a strong magnetic field. Considering that in Eq. (1.76) we replace
termwise an electric dipole transition moment by a magnetic transition moment to obtain
(1.78) (see also Figure 1.3), we conclude that the intensity I of MChD relates to that
of MCD as that of natural CD relates to that of ordinary absorption. This ratio may be
set approximately equal to the ratio of the energy of an elementary atomic (molecular)
magnetic dipole and of an elementary atomic (molecular) electric dipole in the radiation
field. It corresponds to the order of magnitude of the Bohr magneton, divided by the
Bohr radius times the unit charge:

|I (MChD|/|I (MCD)| ≈ (e�/2mec)/(a0e) = (1/2)(1/137) = 3.65 × 10−3. (1.81)

The first measurement of the magnetochiral effect was performed in emission [74], fol-
lowed by an interferometric detection of magnetochiral birefringence [75], confirming
the estimated order of magnitude.

As indicated above, the sign of the magnetochiral effect depends on the pseudoscalar
product of the external magnetic field with the wavevector of light, B0 · k . The vector B0

is parity-even, time-odd; the vector k is parity-odd, time-odd. The product is parity-odd,
time-even, which characterizes a chiral interaction [76]. These symmetry considerations
allow us to understand that there must also exist a magnetochiral effect in electric con-
duction , depending for its relative sign on B0 · I [77]. Indeed, the electric current vector
I transforms with respect to both parity and time reversal like k .

1.3.7. On Chirality and Magnetism: A Simple Model as Example

It was recently observed that magnetochiral dichroism may be significantly enhanced in
chiral media that are ferromagnetic [78, 79]. Although ferromagnetism is usually due to
the parallel alignment of electron spins, it is also of interest to study the interplay of
chirality and strong orbital paramagnetism . A model which suggests itself in this context
is that of a free electron on a quasi-infinite helix [80].

The model of a free electron on a helix has served to interpret fundamental aspects
of natural circular dichroism (here denoted as NCD) [81, 82]. If one assumes periodic
boundary conditions, then such a free electron (for simplicity here considered as spinless)
displays not only chirality , but also orbital angular momentum pointed parallel or antipar-
allel to the helix axis. If we parametrically describe the helix as (a cos ϕ, a sin ϕ, bϕ),
where a denotes the radius and 2πb represents the pitch of the helix, then the eigen-
functions will be of the form

|m〉 = L−1/2 exp(imϕ/N ), m = 0, ±1, ±2, . . . , (1.82)

where N is the quasi-infinite number of turns and L = 2πN (a2 + b2)1/2 is the curve
length of the helix. We assume the degeneracies of the states |m〉 (for m 
= 0) to be
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lifted by an external static magnetic field. The interaction of the free electron with an
electromagnetic field incident along the helix axis is now considered and is described as
indicated in Section 1.2.3, Eq. (1.26):

Hint = (−e/mec)A · p ≡ H′ exp(−iωt) + c.c. (1.83)

We calculate the transition intensity from a definite state n to a definite state m:

I (n → m) ∼ w(n → m) ∼ (2π/�) | 〈m|H′|n〉 |2 . (1.84)

In contrast to Section 1.2.3, we do not multipole-expand the interaction Hamiltonian,
but keep it in the exponential form (1.27a,b). Thanks to the simple exponential expres-
sions, both of the wavefunctions (1.82) and of the interaction Hamiltonian (1.83), the
calculation of (1.84) in closed form is relatively straightforward. Setting for simplicity
n = 0, implying that the transition starts from the angular momentum-free ground state,
we deduce the anisotropy factors for the transitions |0〉 → |m〉 in two basic situations:
We begin by considering the intensity difference between L and R c.p. incident light for
a given direction of propagation , denoted by (+) for forward and (−) for backward
propagation, respectively. One finds [80]

gLR(++) ≡ IL(+) − IR(+)

IL(+) + IR(+)
= −2N 2kb + 2Nm

m2 − 2mNkb + N 2 + N 2k2b2
, (1.85a)

gLR(−−) ≡ IL(−) − IR(−)

IL(−) + IR(−)
= −2N 2kb − 2Nm

m2 + 2mNkb + N 2 + N 2k2b2
. (1.85b)

The first term in the numerators of the right-hand side of Eqs. (1.85a,b) corresponds
to NCD, and the second term corresponds to MCD. The NCD should exhibit the same
sign, irrespective of the direction of incidence of the light, forward or backward. For
a given direction of the angular momentum, however, the MCD must change its sign
upon reversal of the direction of the light incidence. To fulfill these basic selection
rules, the denominators should have the same (positive) sign and absolute value. This
is conditionally fulfilled in the limit kb = 2πb/λ � 1. It implies that the wavelength of
the light must be significantly larger than the pitch of the helix, and it corresponds to the
long-wavelength approximation . If the pitch of the helix b is zero, evidently the natural
optical activity vanishes, but not the MCD.

Next we examine the difference between forward and backward propagation for a
given chirality of the light wave [80]:

gLL(+−) ≡ IL(+) − IL(−)

IL(+) + IL(−)
= 2mNkb + 2mN

m2 + N 2 + 2N 2kb + N 2k2b2
, (1.86a)

gRR(+−) ≡ IR(+) − IR(−)

IR(+) + IR(−)
= 2mNkb − 2mN

m2 + N 2 − 2N 2kb + N 2k2b2
. (1.86b)

The first term in the numerators of the right-hand side of Eqs. (1.86a,b) represents the
MChD, the sign of which is noncircular differential and consequently is independent
of the state of polarization of the incident radiation. The second term corresponds to
MCD, which changes its sign on going from left to right circularly polarized light. We
notice, however, that the obtention of these clear-cut selection rules again depends on
the long-wavelength approximation and on N being large.
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Both NCD and MChD are proportional to kb, the relation of the pitch of the helix
to the wavelength of the light. In the limit where the magnetic quantum number m
approaches N , we see from (1.85a,b) and (1.86a,b) that the absolute value of the MChD
approaches that of the NCD. This suggests that the magnitude of the NCD signal may
represent an upper limit to that of the MChD signal. In conclusion, this example illustrates
the different selection rules for NCD, MCD, and MChD, as well as their dependence on
the long-wavelength approximation.

1.4. CONCLUDING REMARKS

This introductory chapter aims at giving a brief overview of chiroptical effects in the
frame of the semiclassical theory. It is hoped that it may serve as a point of departure for
the study of the more detailed and topical expositions that follow, as well as an orientation
for those readers who wish to enter the field of chirality and to get acquainted with its
elements. However, the literature cited here is limited, and the choice of it subjective.

The phenomenon of optical activity was discovered two centuries ago. A hundred
years later, in the first quarter of the twentieth century, it was recognized that the study of
optical activity contributed very fundamentally and in a general way to the understanding
of the spatial structure of molecules. Thus it became one of the cornerstones of modern
stereochemistry.

The development of quantum mechanics opened the door to a physical understanding
of optical activity. If one can calculate the wavefunctions of a chiral molecule, its optical
activity may in principle be quantitatively derived. However, the task of obtaining good
wavefunctions was, and still is, a major challenge. In spite of recent and spectacular
advances in quantum chemical computation, this problem is not yet generally solved.

The development of lasers in the course of the five last decades has offered new
possibilities in the experimental study of chiroptical phenomena. In particular, it has also
made precise measurements of vibrational optical activity possible. It has opened the
door to the study of many-photon, nonlinear optical and dynamical chiral effects.

The chemist is primarily interested in chiroptical phenomena as an analytical tool, in
order to better understand the structure of, and reactions between, molecules. However,
there is another aspect to chirality, namely the use of chosen chiral molecules to study,
steer, and guide light. It seems to me that here the potential of chiroptical methods
has not yet been systematically exploited. A combination of chiroptical and magneto-
optical effects in chiral optical waveguides and fibers offers a variety of possibilities to
independently control light polarization and phase, possibly leading to novel applications
in optical transmission and switching [79, 83]. Finally, there is the fascinating field of
optical teleportation [84] in which undoubtedly also significant discoveries related to
chirality remain to be made.
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2
MEASUREMENT OF THE CIRCULAR

DICHROISM
OF ELECTRONIC TRANSITIONS

John C. Sutherland

2.1. INTRODUCTION

2.1.1. Scope

This chapter describes the measurement of circular dichroism (CD) for absorption due to
transitions between two distinct electronic states. This is distinguished from absorption of
lower-energy photons, which are associated with changes of only the vibrational modes
of the absorber and from the absorption of higher energy photons, which may result in
ionizations. From the instrumental viewpoint, the chapter describes the measurement of
CD that can be recorded using (a) a photomultiplier or avalanche photodiode to quantify
the intensity of a light beam, (b) a photoelastic modulator to periodically alter the beam’s
polarization, and (c) a monochromator located between the light source and the modulator.
Using either criterion, the focus is on the spectral domain spanning about a decade in
wavelength (photon energy) from roughly 1.2 μm (1 eV ≈ 160 zJ) in the near infrared
to 120 nm (10 eV ≈ 1.6 aJ) in the vacuum ultraviolet (VUV). In the near infrared, there
is overlap between the domain of electronic and purely vibrational transitions, the use
of photomultipliers or avalanche photodiodes versus other solid-state detectors, and the
use of dispersive versus Fourier-transform spectrometers. There is also some overlap
in the VUV with synchrotron beamlines that use arrays of magnets called “insertion
devices” to cause the emitted synchrotron radiation to be elliptically polarized. To my
knowledge, no single spectrometer spans the entire spectral domain discussed here, and
the vast majority of laboratory instruments come nowhere close to either the upper or

Comprehensive Chiroptical Spectroscopy, Volume 1: Instrumentation, Methodologies, and Theoretical
Simulations, First Edition. Edited by N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody.
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lower limit. However, similar analytical approaches and types of instrumentation are
employed throughout this spectral domain and thus are logically treated together.

The focus in this chapter is on the measurement of CD resulting from the inher-
ent chirality of the absorbing system. There are several spectroscopic methods that are
closely related in terms of science or instrumentation; some are treated in other chapters.
These include magnetic circular dichroism (MCD), linear dichroism (LD) (Chapter 18),
optical rotatory dispersion (ORD) (Chapter 11), fluorescence-detected circular dichroism
(FDCD) (Chapter 3), circularly polarized luminescence (CPL) (Chapter 3) and fluores-
cence polarization anisotropy. A basic CD instrument of the type described here can be
configured by temporary alterations of the sample compartment, an additional or reposi-
tioned detector, and modified electronics to perform many of the important experiments
in the visible and UV regions [1]. These include unpolarized absorption and total fluo-
rescence in addition to most of the experiments mentioned above. Except for absorption,
such extensions of the basic technology will not be discussed. Other reviews of instru-
mentation related to CD have appeared, some containing information complementary to
that included here [2–7].

2.1.2. Notation

In addition to standard mathematical notation, square brackets are used, when necessary,
to indicate explicitly the argument of a function; braces are reserved for indicating lists,
sets, and other collections; and parentheses are used exclusively to group terms. Vectors
are denoted by an arrow above the symbol and average values by a bar in the same
location. To avoid using more than one equals sign in a single mathematical expression,
a right arrow (→), indicates that the expression on the right is derived from the expression
on the left. The same symbol connects a collection of equations on the left to one or
more equations on the right. When more than one arrow is used, they are numbered and
can be read “which becomes n .”

2.2. THEORY

CD is a form of absorption spectroscopy, with the CD at a particular wavelength
being defined as the difference in the absorbance of left- and right-circularly polarized
light. Thus a brief review of absorbance is appropriate. CD is discussed first as an
observable experimental parameter, which by convention can be expressed in several
systems of units. Then, both CD and absorption are factored into extrinsic and intrinsic
components.

2.2.1. Absorbance: Decadic and Eulerian

There is an inherent exponential relationship between the ratio of the intensity of a
monochromatic light beam incident on a sample, I0, and the transmitted intensity, I , as
shown in the center panel of Figure 2.1. Optical intensity is the power per unit area
(W/m2) of the beam passing through an imaginary surface perpendicular to the propaga-
tion direction and the total power (W) in the beam must be determined by integration.
For simplicity, a uniform beam of unit area will be assumed, so the intensity is effec-
tively interchangeable with the total power of the beam. Because light, or more generally
electromagnetic radiation, is a quantum phenomenon, the beam can also be characterized
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Figure 2.1. The center panel shows transmission as a function of position within a sample of

thickness l. The average decadic absorbance for the sample is 1.0 and is indicated by the solid

curve. The dashed curves are for the two circularly polarized components for which �ACD = 0.1, a

value orders of magnitude larger than observed for most real samples. The left panel shows the

decomposition of the electric vector of a vertically polarized beam into two circularly polarized

components of equal magnitude and opposite directions of rotation. The right panel shows the

effect of passing through the chiral absorbing sample on the components of the electric vector.

Magnitudes are decreased due to absorption and the two circular components have different

magnitudes due to CD, resulting in an elliptical trajectory for the electric vector. The major

axis of the ellipse is twice the sum of the magnitudes of the left- and right-circularly polarized

components, and the minor axis is twice their difference. The ellipticity, θ , is the angle whose

tangent is the ratio of the semi-minor to the semi-major axes. The difference in refractive indices

for the two circularly polarized components results in rotation of the major axis of the ellipse

through an angle α with respect to the polarization of the incident beam. This is the parameter

measured in ORD. The vector difference and angles shown are much greater than observed for

real samples.

in terms of photons per unit time whenever convenient. The use of exponentials to relate
intensities and absorption arises naturally from consideration of the interaction of the pho-
tons with the absorbing entities in a sample, as will be discussed further in Section 2.2.4.
For now, the relationships between absorbance and incident and transmitted intensities
at a particular wavelength are presented as definitions. In principal, any base could be
used to express the exponential relationship, but only two (10 and e, also known as
Euler’s number) are of interest; they give rise to the decadic absorbance, A, and the
Eulerian absorbance, a . They are related to the incident and transmitted monochromatic
intensities as shown in (2.1), which also indicates the conventions used to express com-
mon and natural logarithms. Decadic absorbance is in widespread use in chemistry and
biophysics and is more convenient for many purposes. However, Eulerian absorbance is
more convenient for mathematical derivations. The simple relationship between the two
absorbances, shown on the far right side of (2.1), also holds between the decadic and
Eulerian forms of differential absorbances, such as CD. Thus, the measurement of CD
will be analyzed using Eulerian absorbances and then translated to decadic absorbances
in the final result. Absorbances are always defined for a particular wavelength, λ, but
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the wavelength will be referenced explicitly only to indicate an extended spectrum,
that is, A[λ], or to indicate a particular wavelength of interest. Eulerian absorbance is
also referred to as the Napierian absorbance in honor of John Napier (1550–1617),
whose Naperian logarithms preceded the development of both common and natural
logarithms.

{I = I010−A, I = I0e−a} →
{

A = log
I0

I
, a = ln

I0

I
, a = A ln 10

}
. (2.1)

2.2.2. Measurement of Circular Dichroism

In principal, we could measure the transmission of a sample at some defined wave-
length using just right- or left-circularly polarized light, thereby obtaining the information
required to compute the absorbance for each polarization component, and compute the
CD by taking the difference. Indeed, some of the first measurements of the CD of elec-
tronic transitions of the heme ring in metalloproteins in the near infrared were recorded
using a double-beam spectrophotometer with additional optical components that caused
the sample and reference beams to be left- and right-circularly polarized, respectively
[8]. In most cases, the differences in absorption are too small to be measured in such
a direct fashion, but the concept provides a basis for showing how tiny differences
in absorption can be measured using modulation techniques. Assume that the incident
intensities of the right- and left-circularly polarized beams are identical and denoted by
I0 and that the transmitted components are denoted by IR and IL, respectively. The Eule-
rian absorbances for right- and left-circularly polarized light are related to IR and IL, as
shown in the left set in (2.2). The ratio of the transmitted to incident intensity are shown
as a function of relative position in the sample of thickness l within the center panel of
Figure 2.1. The mean intensity and intensity difference due to CD are defined on the right
of (2.2).

{IL = I0e−aL , IR = I0e−aR },
{

I ≡ IL + IR

2
, �ICD ≡ IL − IR

}
. (2.2)

The Eulerian CD, �aCD , and average absorbance are defined on the left side of (2.3)
and rearranged on the right to give expressions for each polarized absorbance in terms
of the mean absorbance and the CD.

{
�aCD ≡ aL − aR , a ≡ aL + aR

2

}
→

{
aL = a + �aCD

2
, aR = a − �aCD

2

}
. (2.3)

In (2.4) the ratio of the differential and mean intensities is expressed using the definitions
from the right side of (2.2). In step 1, this ratio is expanded in terms of the expressions
given in the left side of (2.2) and the incident intensity, which is common to all of the
terms of the ratio, is removed. In step 2, the absorbances for the left- and right-circularly
polarized absorbances are replaced by the mean and differential values from the right side
of (2.3) and the exponentials are factored, resulting in removal of the terms involving
the mean absorbance. Rearranging slightly results in a ratio of exponentials recognized
as a hyperbolic tangent, which is written as such in step 3 and then approximated by
its argument. This is a good approximation for arguments less than about 0.1 and is
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an excellent approximation as used here because the values of �aCD are rarely greater
than 0.01.

�ICD

I
= 2

IL − IR

IL + IR
−→

1
2

e−aL − e−aR

e−aL + e−aR
−→

2
− 2

e
�aCD

2 − e− �aCD
2

e
�aCD

2 + e− �aCD
2

−→
3

− 2 tanh

[
�aCD

2

]
≈ −�aCD (2.4)

Equating the intensity ratio (far left) in (2.4) with the Eulerian CD (far right), converting to
the decadic CD, and rearranging gives the simple expression for CD shown in (2.5). The
negative sign results because an increase in absorbance yields a decrease in transmission.

�ACD = −1

ln 10

�ICD

I
(2.5)

CD is thus obtained from the ratio of measured light intensities, as is absorption. How-
ever, in the case of CD, both intensities involve the beam transmitted through the same
sample. Because absorption and CD are both obtained from the ratios of light intensi-
ties, it does not matter whether we measure these intensities in terms of photon flux
or energy flux (power). It also follows that all absorption values are unitless, although
they can be expressed on different scales—for example, decadic and Eulerian. There are
other approaches that arrive at the same result [5]. As in absorption spectroscopy, a CD
spectrum usually is reported as the difference between the CD of a sample containing
the material or materials of interest and an otherwise identical “blank” sample without
them.

2.2.3. Ellipticity

In the chemical and biochemical literature, CD is often expressed in ellipticity, θ , rather
than absorbance, but there is a simple, linear relationship between these parameters. In
the preceding discussion, light beams were characterized by their intensity. However,
intensities are scalar quantities. The definition of ellipticity requires an analysis based
on the behavior of the electric vector of a light beam, which is represented by �E . The
intensity of a light beam is proportional to the square of the amplitude of the corre-
sponding electric vector, that is, I ∝ |�E |2. The effect of a chiral absorbing medium on a
beam of linearly polarized light is illustrated in the left and right panels of Figure 2.1,
which shows the loci of the tip of the electric vector of a linearly polarized beam before
and after passing through a chiral sample. According to the superposition principle [9],
a linearly polarized light beam can be described as the sum of two circularly polarized
beams with equal amplitudes and opposite directions of rotation. An absorbing chiral
sample can attenuate one circular polarization more than the other and also shift their
relative phases. The absorption differences cause the light emerging from the sample to
be elliptically polarized, while the phase shift causes the major axis to be rotated through
an angle α compared to the incident beam. This angle is the parameter measured in opti-
cal rotatory dispersion (ORD), the Kramers–Kronig transform of CD. The ellipticity, θ ,
in radians, is defined as the angle whose tangent is given by the ratio of the semi-minor
to the semi-major axis of the ellipse. The semi-minor axis is the magnitude of the electric
vector of the right-circularly polarized component minus that of the left circularly polar-
ized component, while the semi-major axis is their sum. For typical applications, these
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angles are much smaller that those shown, so θ can be approximated by its tangent. The
tangent is computed using the square roots of the corresponding intensities, as shown
in (2.6). The derivation proceeds much as described in (2.4). Note that the definition of
ellipticity used here is right-minus-left, which effectively inserts a minus sign. Convert-
ing from radians to degrees and to decadic CD results in the expression shown in (2.7).
Like all angles, ellipticity is inherently unitless, but, like absorbance, can be expressed
using different scales—for example, radians and degrees.

θrad ≈ tan θrad =
√

IR − √
IL√

IR + √
IL

−→
1

e− aR
2 − e− aL

2

e− aR
2 + e− aL

2

−→
2

e
�aCD

4 − e− �aCD
4

e
�aCD

4 + e− �aCD
4

−→
3

tanh

[
�aCD

4

]
≈ �aCD

4
(2.6)

θdeg = 360

2π
θrad −→ 360

2π
ln 10

�ACD

4
≈ 32.98�ACD (2.7)

2.2.4. Intrinsic Absorption and CD

Absorbance and CD are influenced both by the intrinsic properties of the material being
studied and extrinsic properties such as the concentration of the absorbing entities and
the distance the light beam travels through the sample. A major reason for recording the
absorbance of a sample, as opposed to the fraction of the light transmitted or absorbed,
is that absorbance facilitates separation of the contributions of the intrinsic and extrinsic
properties. The same applies to circular dichroism. Consider a sample containing N
identical absorbing entities per unit volume that are randomly located and oriented. For
a sample consisting of small molecules, the absorbers are just the individual molecules.
For macromolecules, however, the absorbers can be subunits, such as the peptide bonds
of proteins or the bases of nucleic acids. Let σ represent the effective absorption cross
section of each absorber. The adjective “effective” has two implications. The absorption
is averaged over all equally probable orientations, so the effective absorption cross section
is circular. Second, any photon intersecting this cross-sectional area will be absorbed,
while photons not intersecting any such area will be transmitted. Consider a sample
volume Al , where A is a planar area perpendicular to a collimated photon beam moving
along the positive x axis and l is the distance the beam travels through the sample. The
intensity of the beam crossing the front face of the sample is I0, the intensity exiting the
rear surface is Il , and the intensity at some intermediate position is I [x ]. A thin slab of
area A and depth �x located a distance x from the front surface of the sample volume
will contain NA�x absorbers. As �x approaches zero, it becomes impossible for any
absorber to be behind any other. Thus the fraction of the incident beam absorbed in this
incremental volume is equal to the fraction of the surface area occluded by the effective
cross-sectional areas of the absorbers, leading to the difference equation on the left of
(2.8). Integrating and taking antilogarithms results in the expression on the right of (2.8).
Comparing this result with (2.1) results in the expression for the Eulerian absorption
on the left in (2.9), which is a statement of the Beer–Lambert law and provides a
tidy separation of the intrinsic properties of the absorber, which reside in σ , from the
extrinsic properties of concentration and path length. An important intrinsic property is
the dependence of the absorbance on wavelength/photon energy.

�I = −σNA�x

A
I −→

1

∫ Il

I0

dI

I
= −σN

∫ l

0
dx−→

2
ln

[
Il

I0

]
= −σNl−→

3
Il = I0e−σNl (2.8)
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{a = σNl , A = εCl} → {�aCD = �σCD Nl , �ACD = �εCD Cl} (2.9)

Absorbance is unitless. Therefore, the units in which the cross section is expressed are
determined by the units chosen for the concentration of absorbers and the pathlength.
Using straightforward SI units, l would be in meters and N in absorbers per m3, so
the units of σ are m2 per absorber. To avoid large numbers of zeros, cross sections
are typically reported in nm2. By (a decidedly non-SI) convention, the units used in
the Beer–Lambert law for decadic absorption are cm for pathlength and moles/liter (M)
for concentration. Thus, the units of the molar absorbance coefficient, ε, are M−1 cm−1

(or cm2/m-mol). Defining analogous quantities for the left- and right-circularly polarized
components and taking differences results in the expressions on the right-hand side of
(2.9). The intrinsic counterpart of ellipticity is called molar ellipticity, denoted by [θ ]. By
convention, the concentration of absorbers is defined as cm2/d-mol, which has the effect
of multiplying the numerical value by 100. Thus [θ ] equals 3298 �εCD . In addition to
depending on wavelength, ε, �εCD , and [θ ] may be influenced by a variety of other
factors such as temperature and pH. Converting from �ACD to �εCD or [θ ] requires
knowledge of the product of the pathlength and the concentration of absorbers. They
can be determined separately, but it is sometimes advantageous to obtain only their
product—for example, when working with films. In such situations, the Cl product can
be obtained from absorption measurements and then used to scale the CD spectrum. This
is one of many situations in which simultaneous measurement of CD and absorption is
desirable, because exactly the same beam size and position on the sample are assured.

2.2.4.1. CD–Absorbance Anisotropy Ratio and Multicomponent Spectra.
For a sample containing a single chiral species, the ratio of CD to absorbance is an
intrinsic parameter that can be obtained without knowledge of optical pathlength, absorber
concentration, or their product because �ACD/A = �εCD/ε = �aCD/a = �σCD/σ . This
ratio, which is sometimes denoted by g , is the intrinsic chiral anisotropy at a particularly
wavelength. Of course, such ratio spectra cannot be extended outside of the spectral
region where the sample absorbs.

A major advantage of absorbance compared to transmission, is that at any wave-
length, the observed absorbance is the sum of the absorbances of all of the individual
components that may be present in a mixture, assuming they do not interact. The same
is true for CD, except that some of the components can contribute negative values of the
CD, that is, �ACD = ∑

i �ACD ,i . The appearance of an isosbestic point in absorption
spectra recorded during a titration of a sample suggests that the reaction is between just
two states, initial and final. The observation of isodichroic points in the corresponding
CD spectra support the same conclusion, and the observation of both is strong evidence
that only two spectroscopically distinct species are present. In the case of multiple chiral
species, the CD–absorbance anisotropy becomes characteristic of the mixture and inde-
pendent of both optical path length and absolute concentrations of the components, as
demonstrated in (2.10), where fi is the fraction of the mixture associated with species i .
For example, if the index i spans the various structural components of a protein (alpha
helix, beta sheet, . . . ) and the decadic extinction and CD spectra of each structural are
known, then the CD-absorption anisotropy spectrum provides enough data to determine
the fractional component of each structural type [10–12]. This is attractive in studies of
thin films of insoluble proteins but the sample may be partially oriented.

�ACD

A
=

∑
i �εCD ,i Ci l∑

i εi Ci l
→

∑
i fi �εCD ,i∑

i fi εi
(2.10)
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Figure 2.2. Schematic diagram showing the conceptual relationships of the typical subsystems

found in dichrometers operating in the UV, visible, and near infrared. The arrows indicate

the path of travel of the light beam and the electronic signals. Configurations of optical

components typical of three classes of dichrometers are shown in Figures 2.4, 2.5, and 2.7. The

electronic subsystems are shown in greater detail in Figure 2.9. Auxiliary subsystems (e.g., sample

temperature controllers) are not shown, although frequently present in modern instruments.

In some laboratory instruments, the function of the polarizer is incorporated with the internal

components of the monochromator. In some synchrotron radiation CD (SRCD) instruments, the

source optics and monochromator are tightly integrated with the synchrotron storage ring.

2.2.5. Components of a Conceptual CD Spectrometer

CD spectrometers operating in the spectral range characteristic of electronic transitions
can be considered as composed of a dozen subsystems, as shown schematically in
Figure 2.2. With the exceptions of the polarization modulator and electronics, the required
components are found in a wide variety of instruments. Thus, the operation of these two
subsystems will be discussed in detail, while criteria for the selection of the others will
be presented in connection with the description of specific classes of dichrometers. For
now, it suffices to say that the light source produces a broad spectrum, typically spanning
the IR, visible, and UV. The source optics direct as much of the emitted light as possible
into the monochromator, which transmits only a narrow spectral band. The sample optics
ensure that the light beam from the monochromator passes through the linear polarizer
(if present), polarization modulator, and sample before impinging on the light detector.
However, the various components must be chosen to be compatible with one another,
particularly in regard to the cone of radiation they can accept and the spectral range over
which the instrument must perform.

2.2.5.1. Three Classes of Practical CD Spectrometers Based on Photoelas-
tic Modulators. In current dispersive CD spectrometers, a beam of monochromatic,
linearly polarized light is incident on a photoelastic modulator (PEM). The PEM must be
oriented with its stress axis making an angle of 45◦ with respect to the polarization of the
incident optical beam, as shown in the elevation view of Figure 2.3. This orientation of
the PEM is compatible with incident light that is either vertically or horizontally polar-
ized. The plan view of the PEM, shown in this figure, also appears in each subsequent
instrument diagram. The operation of the PEM is discussed in Section 2.2.5.2.

Schematic diagrams of three classes of CD spectrometers are shown in the Figures
2.4, 2.5, and 2.7. Figure 2.4 is typical of instruments using a xenon arc light source
and single-grating monochromator. Such instruments are best suited for studies in the
near UV, visible, and near IR and can easily be adapted to function as a fluorometer,
hence providing multifunctional capabilities for a modest investment. For operation in
the visible and near infrared, tungsten–halogen light sources can also be considered.
Restricting the spectral range to wavelengths greater than about 240 nm makes possible
the use of calcite polarizers and thus monochromators with lower focal ratios, which
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Figure 2.4. Schematic plan view of a simple CD spectrometer based on a high-pressure xenon

arc, Xe; a single grating, G, Czerny–Turner monochromator; interchangeable order-sorting filters,

F; crystal polarizer, P; photoelastic modulator, PEM; sample, S; and photomultiplier detector, PM,

with integrated current-to-voltage converter, i/v. The source optics consist of an objective lens,

Lo, that collects a large solid angle; a condensing lens, Lc, that focuses an image of the source onto

the plane of the entrance slit, Se, of the monochromator; and a spherical mirror, Mb, behind the

source, that increases the intensity of light reaching the monochromator by a factor of typically

1.2 to 1.5. The lamp housing and sample compartment enclosures are not shown.

deliver more light to the sample. Gratings are usually interchangeable, so it is easy to
optimize performance of the monochromator for different spectral ranges. Most of the
commercially built CD instruments currently in use employ a xenon arc light source
combined with a double-prism monochromator, as shown in Figure 2.5. They permit
operation into the far UV and are responsible for most published studies of protein
secondary structure. Some use external polarizers. Others use a crystalline quartz prism
or prisms to integrate the function of the polarizer with the monochromator.

That xenon arcs are the overwhelming choice for the light source for laboratory-
based instruments reflects their superior radiance across much of the spectrum. There
are, however, two negative features that are demonstrated by the spectrum shown in
Figure 2.6. The precipitous drop in intensity for wavelengths less than 300 nm, which
continues down to zero at about 160 nm, limits CD studies of protein secondary structure.
In addition, the sharp spectral lines between 450 and 500 nm and also above 600 nm
causes noise in CD instruments that acquire data while scanning the monochromator.
The figure also shows that the output degrades slowly with time of operation, so xenon
arcs must be replaced periodically.
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Figure 2.5. Schematic plan view of a laboratory dichrometer with double Czerny–Turner prism

monochromators. Light from a high-pressure xenon arc, Xe, is focused on the entrance slit of

the first monochromator, Se, by an off-axis ellipsoidal objective mirror, Mo. A spherical mirror,

Mb, reflects light back through the xenon arc, increasing the light entering the monochromator

by roughly 50%. In a Czerny–Turner monochromator, a spherical collimating mirror directs the

incident beam onto the prism, P1, and a second spherical mirror focuses the dispersed spectrum

onto the exit plane. The prism is rotated about a vertical axis, thus determining which wavelength

of the dispersed spectrum is centered on the intermediate slit, Si. In this design, P1 is made of

crystalline quartz, indicated by the stippling, so that two wavelengths of the dispersed spectrum

enter the second monochromator; one is horizontally and the other vertically polarized. The

second prism, P2, is of amorphous quartz and the orientation of the prism is chosen such

that the horizontally polarized component (— — —) is focused on the exit slit, Sx, while the

vertically polarized component (- - -) is blocked. A lens, Lc, approximately collimates the beam,

which passes through a pile-of-plates polarizer, Pp; photoelastic modulator, PEM; and sample, S,

before reaching the photomultiplier detector, PM. Pp is also referred to as a filter because the

unwanted polarization that it removes is also predominately the unwanted second wavelength

that enters the second-stage monochromator. A current-to-voltage converter, i/v, can be located

within the PM housing. The sample is mounted on a platform, Sp, that is kinematically located

in the sample compartment, Sc, which is bolted to the body of the dichrometer. Kinematically

positioned sample platforms permit facile interchange of sample holders and can be used to

enable a number of different experiments in addition to CD, including MCD, LD, ORD, FDCD, and

fluorescence polarization anisotropy [1]. A lens, Ls, can be added to focus the beam to reduce the

quantity of sample required or in LD, MCD, and fluorescence experiments [13, 14].

The third class of CD spectrometers, based on synchrotron radiation sources, first
appeared in 1980 [15]. The spectrum generated by a synchrotron source increases with
decreasing wavelength, as indicated in Figure 2.6. While heterogeneous in design, SRCD
beamlines typically employ an ultra-high vacuum (UHV) single monochromator with a
toroidal, ellipsoidal or parabolic holographic diffraction grating and a UHV window
between the monochromator and the sample chamber, as shown in Figure 2.7. Windows
and the PEM optical element are made of CaF2 or LiF, while a polarizer, if required,
is made of MgF2. Exploitation of this extended range for studies of proteins has been
limited by the high absorbance of water below 170 nm, but development of methods
for studying hydrated films offers hope of progress in this area. CD measurements of
a myoglobin film shown in Figure 2.8 demonstrate spectral features extending to the
limits of the measurement. At present there are fewer than a dozen SRCD instruments
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Figure 2.6. Upper: Spectral irradiance from a 300-W high-pressure xenon arcs on a surface

located 500 mm from the source. An irradiance of 1 W m−2 nm−1 at this distance corresponds to

a spectral radiance of 2.5 W nm−1 sr−1, where it is assumed that the arc is a point source. Figure

courtesy of the Newport Corporation’s Oriel Instruments Group. Lower: Spectral radiance from

port U11 of the National Synchrotron Light Source, also taken as a point source. Data computed

for horizontal and vertical acceptances of 55 and 10 mrad, 1-nm band pass, and a stored electron

beam of 500 mA, one-half of the maximum injection current. Data in the two figures cannot be

compared directly because radiation from a larger solid angle can be collected from the xenon

source, while for the synchrotron radiation, the solid angle is fixed by the design of the beamline.

On the other hand, it is usually not possible to get all of the collected light from the xenon arc

through the entrance slit of a monochromator. For the synchrotron instrument, in contrast, the

entire photon beam is generated inside the monochromator, because the electron beam defines

the entrance slit. The critical difference between the two sources is that in the far and vacuum UV,

output from the xenon arc is decreasing rapidly, while the beam intensity from the synchrotron

is increasing faster than exponentially.
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Figure 2.7. Schematic elevation view of a synchrotron-source CD spectrometer or ‘‘beamline.’’

A beam of photons generated by relativistic electrons passing through the field of a bending

magnet is reflected by a plane mirror inclined as an angle of 45◦ to deflect the beam vertically onto

an off-axis ellipsoidal or toroidal diffraction grating. The mirror may have to be water-cooled.

The electron beam is deflected out of the plane of the figure by the magnetic field. In this design,

the electron beam serves as the entrance aperture of the monochromator. A series of bending

magnets cause the electrons to travel in a closed horizontal loop around the synchrotron storage

ring. The electron beam and all of the components of the optical system up to a window are

within a UHV vacuum system, which is not shown. The grating disperses the ‘‘white’’ synchrotron

spectrum in a vertical plane, and a horizontal slit transmits the selected wave band, which then

passes through a PEM and sample before impinging on the cathode window of a photomultiplier.

The UHV window is made of CaF2 or LiF, as is the optical element of the PEM. A MgF2 polarizer

may be placed before the PEM to ensure complete polarization of the beam. The components

downstream of the window are contained in a housing which may be evacuable, permitting

operation to below 130 nm. In some installations, a nonvacuum housing is used, but it must be

purged with dry N2, which permits CD measurements to below 150 nm.
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Figure 2.8. CD as a function of wavelength

from 132 to 260 nm for a film of myoglobin on

a CaF2 substrate. A similar CaF2 plate was used

for the blank spectrum, which was subtracted

before the data were plotted. Data were

recorded on beamline U11 at the National

Synchrotron Light Source at Brookhaven

National Laboratory with a lock-in amplifier

analog time constant of 1 s, digital integration

period of 4 s, and spectral separation of one

reading per nanometer. This spectrum is

extended by almost 40 nm compared to what

can be achieved using SRCD and aqueous

samples, and 50 nm compared to

conventional-source instruments.
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in the world, but most are operated as user facilities and are thus available to many
scientists. A recent review focused on (a) the methods required to exploit SRCD in
protein characterization and (b) results obtained to date [16].

2.2.5.2. Photoelastic Modulator Operation. The analysis leading to (2.5)
assumed that the absorbance of left- and right-circularly polarized light could be
measured separately. To achieve the sensitivity required in practice, all modern CD
spectrometers employ a polarization modulator, which makes the analysis slightly more
complicated. The first generation of dichrometers employed Pockels cells to modulate
the polarization of a linearly polarized photon beam [17–19]. These modulators have
the advantage of being able to generate arbitrary sequences of polarization states,
but suffered from severe limitations including: poor transmission in the VUV, high
driving voltages that could damage the modulator at long wavelengths, and the need for
near laser-like collimation to avoid the generation of multiple polarization states. The
invention of the photoelastic modulator (PEM) [20–22] extended the spectral range
of dichrometers into both the VUV and infrared while greatly increasing the angular
acceptance of the modulator and thus the optical power reaching the sample. PEMs
quickly became the device of choice for all dichrometers. However, they are resonant
devices and thus operate at a fixed frequency. In addition, the degree of polarization
produced and the driving voltage required to produce a given result at a particular
wavelength are more involved than the corresponding situation for Pockels cells and can
impact the operation of dichrometers and the interpretation of recorded spectra. Thus,
consideration of the operation of PEMs is necessary for understanding the operation of
all current CD instruments.

For PEMs operating in the spectral range addressed in this chapter, the device usually
consists of a rectangular slab of some transparent, isotropic material bonded to a quartz
crystal that acts as the frequency-determining element in an electronic oscillator circuit.
Amorphous silica (synthetic quartz) is the material of choice for all instruments that do
not need to operate at wavelengths less than about 165 nm; penetration further into the
VUV requires either CaF2 or LiF optical elements. The quartz crystal and the optical
element bonded to it are cut to resonate at an ultrasonic frequency, typically near 50 kHz.
A beam of linearly polarized light passes through the optical element of the PEM, the
principal axes of which are oriented at 45◦ with respect to the plane of polarization of
the incident light beam, as shown in Figure 2.3.

The quartz crystal transducer functions as the frequency-determining element of an
electronic oscillator circuit, which is not shown in the figure. The alternating current
flowing in this circuit causes the crystal to mechanically vibrate at the frequency of the
oscillator due to the piezoelectric effect, inducing similar vibrations in the transparent
optical element. As the optical element vibrates, the refractive index for the direction
parallel to the long axis of the optical elements changes with respect to the refractive
index for the orthogonal direction, thereby shifting the phase of the two components with
respect to each other sinusoidally in time.

Suppose that for a particular wavelength of light, λ, the maximum difference in the
refractive index for the parallel and perpendicular components is �n = n‖ − n⊥ and
the thickness of the optical element is d . The instantaneous phase shift, δ[t], between
the two orthogonal beams that emerge from the PEM is given by δ[t] = 2πd�n[t]

λ
−→

1

2πdCS0
λ

sin ωt−→
2

δ0 sin ωt , where C is the stress optical constant of the optical element, S0 is the
amplitude of the stress applied to the optical element by the quartz transducer, and ω is
the angular frequency of the oscillations of the transducer, that is ω = 2π f , where f is
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the frequency of the PEM. When the instantaneous phase shift is zero, the light emerging
from the modulator will have the came polarization as the incident beam. However, when
the phase shift is π /4, the exiting beam will be circularly polarized. The instantaneous
intensities of the exiting beam can therefore be represented as the sum of right- and left-
circularly polarized beams, as shown in (2.11). The sine-of-a-sine term is expanded in
terms of Bessel functions of the first kind as shown in (2.12). In subsequent discussions,
all of the higher-order odd harmonics (3ω, 5ω, . . .) are ignored, not because they are
necessarily small but because measurement of their amplitudes is not required.

I0[t] = I0,L[t] + I0,R[t], where I0,L/R[t] = I0

2
(1 ± sin δ) → I0

2
(1 ± sin[δ0 sin ωt]),

(2.11)

I0,L/R = I0

2
(1 ± 2J1[δ0] sin ωt ± 2J3[δ0] sin 3ωt + . . .). (2.12)

Passage of the light beam through the sample attenuates both polarizations according
to the expressions shown in (2.13). Applying the relevant expressions to the incident
intensities shown in (2.12) results in the expression for the total time-dependent intensity
shown in (2.13). In practical instruments, these intensities are converted to voltages, as
described in Section 2.2.6.1.

I [t] = I0,Le−aL + I0,Re−aR → I0e−a

2

(
e

�aCD
2 + e− �aCD

2

−2J1[δ0]
(

e
�aCD

2 − e− �aCD
2

)
sin ωt + . . .

)
. (2.13)

2.2.6. Electronics and Computer Systems

2.2.6.1. Conversion of the Optical Beam Power to a Voltage. Some descrip-
tions of the measurement of absorption and CD use the same symbols to describe the
optical beam and the subsequent processing of the signals after detection. However,
understanding the operation of a spectrometer and the source of potential artifacts is
facilitated by distinguishing between the optical signals that exist before the detector,
assumed to be a photomultiplier integrated with a current-to-voltage converter, and the
electrical signals (voltages) that are processed downstream of the detector. This analysis
is also necessary to understand the simultaneous measurement of CD and absorption
spectra. Suppose that v [t] represents the instantaneous voltage appearing at the output
of the detector when the photocathode is illuminated with monochromatic light of wave-
length λ and intensity I [t , λ], which corresponds to the parameter on the left in (2.13),
although the wavelength was not indicated explicitly there. Technically, this is the power
in the optical beam, and not intensity, so the units are watts (W). Alternatively, the beam
can be characterized in terms of light quanta, in which case the units are photons/s.
The instantaneous signal current produced by the photomultiplier can be described as
the product of the incident beam power, the sensitivity of the device at the particular
wavelength, φ[λ] (amps/watt or amps/photon), and the internal gain of the photomulti-
plier, GPM [V ] (dimensionless), which is controlled by the high voltage (or high tension),
V , applied between the photocathode and anode. The value of φ[λ] includes both the
sensitivity of the photocathode and the transmission of the window through which the
photon beam must pass to reach the photocathode.
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Various techniques are used to ensure that the signal generated by a modern pho-
tomultiplier are directly proportional to the power of the incident optical beam [23].
The current from the photomultiplier is converted to a voltage by the current-to-voltage
converter, frequently integrated within the housing containing the photomultiplier and
characterized by a gain, Gi/v (volts/amp). Thus, the instantaneous signal voltage from
the detector assembly is related to the instantaneous power in the photon beam inci-
dent on the photomultiplier as indicated in (2.14). The gain of a photomultiplier is an
approximately exponential function of the applied high voltage. Increasing V by a few
hundred volts can increase the gain by several orders of magnitude, a property critical
to the operation of most CD spectrometers. The gain of the current-to-voltage converter
can be adjusted in some instruments.

v [t] = Gi/v GPM [V ]φ[λ]I [t , λ]. (2.14)

2.2.6.2. Measurement of Circular Dichroism. The output of the detector assem-
bly can also be viewed as the sum of a time-average signal, v , plus very small sinusoidal
signals at the frequency of the PEM, ω, and its harmonics (2ω, 3ω, . . . ). Measurement of
CD requires determination of the amplitude of the fundamental, while experiments involv-
ing linear polarizations require determination of the amplitude of the first harmonic term.
The amplitude of the signal at angular frequency ω is obtained with a phase-sensitive
detector (PSD), also referred to as a lock-in amplifier. The output of the PSD is a steady
or “dc” voltage, �vω, equal to the amplitude of the sinusoidal signal at frequency ω

times the gain of the PSD, GPSD , as shown schematically in Figure 2.9. The other crit-
ical feature of the electronics shown in Figure 2.9 is a comparator circuit that controls
the high voltage applied to the PM, so that the time-average output voltage is always
equal to a reference value, v C , which can be adjusted so that the output of the lock-in is
easily translated into absorbance or ellipticity. One way of setting the calibration of the
CD scale of the dichrometer is by adjusting the value of vC . Combining the definitions
of �vω and vC with the expressions in (2.13) and (2.14), rearranging, and simplifying
will result in the expression for the decadic CD in terms of these instrumental parameters
as shown in (2.15). In arriving at this result, the equality of the hyperbolic tangent and
its argument was invoked, as was the assumption that the gain of the photomultiplier
is independent of frequency, that is, GPM is the same for both the static signals and
those modulated at frequency ω, but the gain of the current-to-voltage converter may not
be. The expressions in (2.15) demonstrate that a simple relationship can be established
between CD and voltages that fall in some conveniently measured range such as ±10 V.
Implications of these results as regards the calibration of CD spectrometers are discussed
in Section 2.3.1.

�ACD = −�vCD

GPSD ln 10J1[δ0]v

Gi/v [ω]

Gi/v [0]
. (2.15)

Contrary to popular belief and ubiquitous product literature, in a CD experiment the
phase amplitude of the PEM need not be set for exactly quarter-wave retardation, that
is, δ0 = π/4 (90◦

). Indeed, the maximum value of J1, and hence the largest CD signal,
�ICD , occurs for δ0 ≈ 0.587π (106◦

) [20]; but a wide range of values are acceptable,
provided that the same value is maintained at all wavelengths. This is in contrast to linear
dichroism, where δ0 must be maintained at the “magic phase” of 0.765π (138◦

) to avoid
an artifact that distorts large LD signals [1].
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Figure 2.9. Electronic components used to extract the CD and absorption signals from the

voltages produced by a photomultiplier, PM, detector and the circuit that controls the voltage,

V , applied to it. The instantaneous voltage, v[t], from the current-to-voltage converter, i/v, is

connected to the signal input of a phase-sensitive detector, PSD, and to the input of a comparator

circuit, Comp, and also read by the control computer. The two latter connections respond only

to the time-average value of the signal voltage, v. The PEM controller supplies a reference signal

to the PSD, the output of which is a dc voltage, �vω, proportional to the amplitude of the sin ωt

term in v[t]. The function of the comparator is to generate a signal that programs the voltage

applied to the PM to maintain the time-average output signal at a preset calibration value, vC .

This programming signal, or some other parameter that reflects the value of V , should also be

recorded as part of a CD measurement.

2.2.6.3. An Alternate Approach to Extracting the CD Signal. In 1994,
Richard DeSa introduced an alternate method of extracting CD signals from the instan-
taneous voltage signal that does not depend on a normal lock-in amplifier. Instead, both
the instantaneous voltage signal, v [t], from the detector and the reference signal from the
PEM controller are digitized directly by a fast, high-resolution analog-to-digital converter
located in the backplane of a control computer. The digital data stream is analyzed in real
time to extract the time-average signal and the amplitude of the signal at the frequency
of the PEM. CD instruments using this approach are marketed by OLIS, Inc., Bogart,
Georgia, USA. While this system has not been described in the refereed literature, it has
been discussed briefly in review articles [1, 5]. Product literature indicates that the design
eliminates the need for external calibrations of the CD scale. Another unusual feature of
DeSa’s design is an operating mode in which both the ordinary and extraordinary beams
from a Rochon polarizer pass through a single PEM and then through two sample cells
before impinging on two photomultipliers. The CD from each beam is then analyzed as
described above. The result is that two CD measurements can be performed indepen-
dently and simultaneously. However, this capability should not be used to record the CD
of a sample and its corresponding blank at the same time, because this would be com-
parable to measuring the two spectra in separate instruments with separate instrumental
baselines.

2.2.6.4. Spectrometer Computer Systems. All modern dichrometers are con-
trolled by and transfer data to a dedicated computer, and they can be classified based on
the relationship between the optical and electronic components and the computer system.
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Weakly coupled systems have most of the functionality of the instrument, including all
of the analog electronics, integrated with the optical components. This integrated optical-
electronics package is connected to a computer by a standard interface such as RS-232 or
USB. Such instruments are often the descendants of stand-alone dichrometers, where the
user interface was a collection of switches, knobs, and dials on the instrument and spectra
were recorded on chart paper. The negative aspects of this arrangement are higher costs
of construction because many components are specific for the particular brand of instru-
ment, thus forfeiting the benefits of economies of scale. At the other end of the spectrum
are instruments in which most of the electronics are integrated into the computer. This
became a popular approach in the 1990s because standard input/output boards can be
adapted to a specific purpose through software, thus making use of hardware compo-
nents that are produced in higher volume. While software is expensive to develop, it is
essentially free to “manufacture.” The negative aspect of this approach is that the service
life of the dichrometer tends to be determined by that of the computer system, which is
usually much shorter than that of dedicated hardware. The use of proprietary software
also makes it difficult to have an instrument serviced by the end user or a third party.
Finally, laboratory-built instruments, including most synchrotron-source dichrometers,
use a component model in which the optical and electronic components are purchased
separately and integrated with a computer system. Initial costs are high, particularly if
the costs of the personnel involved in construction are included. However, component
instruments are essentially immortal, especially if control software is designed around a
virtual instrument, rather than the particular components used in construction. Thus the
electronic components and computer, which have a finite service life, can be replaced
with improved models, while the optical components can be maintained indefinitely. The
cost of the SRCD end station tends to be a small fraction of the cost of the complete
beamline, particularly when the prorated cost of the entire facility is included.

Some instrument control computers are connected to a local area network (LAN),
which may be connected to the internet, thus creating the possibility of additional lay-
ers of computing involved in the acquisition, storage, and analysis of CD and related
data [24]. Such arrangements facilitate archival storage and analysis of experimental
data while keeping the spectrometer control computer free to acquire new data. Recent
additions to the computerized processing of CD data of proteins include the analysis of
secondary structure over the internet using a suite of programs [25] and the Protein Circu-
lar Dichroism Data Base (PCDDB) [26], where analyzed spectra and their accompanying
metadata can be deposited and made available to the broader community.

2.2.7. Simultaneous Measurement of Absorption

The operation of the high-voltage servo system makes it possible to record the information
needed to obtain the (unpolarized) absorption spectrum of a sample at the same time
the CD is recorded [27]. Two scans are required and they are the same sample and
blank required for CD. The function of the comparator circuit is to adjust the voltage
supplied to the PM such that the time-average current from the detector remains constant.
Suppose we let AS and AB represent the time-average absorptions of the sample and blank
solutions, respectively. Both, of course, are functions of wavelength. Suppose that, for
each wavelength in the scans of the sample and the blank, the voltages applied to the
PM are recorded (i.e., VS and VB ), along with the intensities of the incident beam, I0,S

and I0,B , at the time the CD of both sample and blank are recorded. The servo loop
ensures that the time-average signal currents are the same for both, so we can equate
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them, as shown in (2.16). After rearrangement, the decadic absorption of the sample
above background is found to be the difference in the corresponding pseudo absorptions,
which are defined as the sum of the log of the PM gain plus the log of the intensity
of the incident intensity recorded at each wavelength at the time of the measurement.
Because these expressions involve the differences in logarithms, only relative values
of the gains and incident intensities are required. If the light source is known to be
stable in time, the intensity terms can be ignored. However, they cannot be ignored in
current synchrotron spectrometers, because the intensity of the incident light at each
wavelength decreases slowly as the circulating beam of electrons in the storage ring is
depleted. The log of the gain of most photomultipliers is not quite a linear function of
the applied high voltage, but can be represented by a second-order polynomial, that is,
log[GPM [V ]] = c1V + c2V 2. Performing this calibration requires the ability to control
the high-voltage circuit independent of the servo circuit [6, 27]. There may be small
differences between individual PM of the same type, so a calibration should be performed
for each tube. The analysis requires that nothing other than the sample and the recorded
intensities should change between the recording of the two pseudo-absorbances. This
analysis was developed for and tested on CD spectrometers with fixed slits and may not
be applicable to CD instruments in which the width of monochromator slits are changed
during a spectral scan.

GPM [VS ]I0,S 10−AS = GPM [VB ]I0,B 10−AB

−→
1

AS − AB = log[GPM [VS ]] + log[I0,S ] − (log[GPM [VB ]] + log[I0,B ])−→
2

pAS − pAB .

(2.16)

2.2.8. Selection of Optical Components

The selection of compatible optical components for a dichrometer is strongly influenced
by the conservation of a parameter called étendue, which for a small light source or
image is the product of the area of the source/image times the solid angle subtended
by the conjugate aperture [28]. As light passes through a perfect optical system, étendue
remains constant. It can never decrease, but can increase in a system containing imperfect
optical components—for example, a lens that produces a poor image of its source. One
complication in analyzing an optical system is that it can be difficult to determine solid
angles. However, for an optical system involving circular apertures, such as lenses and
mirrors, there is a simple relationship between the solid angle, �, subtended by the
aperture and the corresponding and easily measured f #, the ratio of the distance of the
plane of the aperture from the source divided by the radius of the aperture [1], as shown
in (2.17). For roughly square apertures, an approximate solid angle can be obtained by
using the radius of the circle with the same area as the aperture, while for the very
small solid angles characteristic of synchrotron radiation beamlines, the product of the
divergence of the optical beam in the horizontal and vertical planes gives an excellent
approximation of the solid angle.

� = 2π

(
1 − 1√

1 − (2f #)−2

)
. (2.17)

The design considerations inherent in the selection of optical components are
illustrated by considering those shown in Figure 2.4. The radiation pattern for a xenon
arc is approximately omnidirectional. Thus increasing the solid angle subtended by
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the objective lens, Lo, increases the number of photons entering the optical train
proportionately. However, the number of photons entering the monochromator peaks
when the diameter of the circular image of the source equals the height of the entrance
slit. Moving Lo closer to the source increases the number of photons collected, but
they do not enter the monochromator. Even in the optimum configuration, most of
the photons collected from the source do not enter the monochromator. Using a more
powerful condenser lens, Lc, reduces the size of the image of the source on the entrance
slit so more photons enter the monochromator, but if the f # of Lc with respect to the
slit Se is less than that of the collimating mirror, Mc, with respect to Se, the additional
photons will not reach the grating and thus are of no value. Actually, the excess photons
are detrimental in that they can contribute to the level of stray light reaching the detector
and are thus to be avoided. One of the excellent features of photoelastic modulators
is that they have a large acceptance angle and thus, unlike Pockels cells, rarely are the
limiting component in the optical train. The other component that is of concern is the
polarizer. Crystal polarizers made of calcite have significantly larger acceptance angles
than those made of quartz or MgF2. Unfortunately, calcite becomes opaque between
200 and 250 nm, so conventional source VUV dichrometers must operate at a higher
f #, thus reducing throughput. In contrast to conventional-source systems, the solid angle
of a synchrotron beam is tiny, so the image can be demagnified while maintaining
comfortable solid angles that are compatible with downstream components.

2.3. OPERATIONS

2.3.1. Spectrometer Calibrations

In contrast to ORD, the need to use a transfer standard such as camphorsulfonic acid to
calibrate the CD scale of a dichrometers is generally recognized. But why? According
to (2.5), the measurement of CD requires only the measurement of two light intensities.
Even the more detailed expression for CD in (2.15) indicates that measuring the output
of the PSD is all that is required, provided that the servo-reference voltage, vC , PEM
maximum phase shift, δ0, and PSD and i /v gains are known. A plausible explanation
is that in earlier generations of dichrometers, and even some current instruments, the
PSD uses analog band-pass amplifiers. While sensitive and selective, the gain of such
circuits may be difficult to determine ab initio. Velluz et al. [17] discussed the difficulties
associated with predictable quantification of the CD signal in the first generation of
commercial dichrometers, and Schippers and Dekkers [29] described a single-photon-
counting detector that attempted to provide an empirical calibration for a dichrometer
using a PEM, but the solution to the problem remains elusive. Uncertainties regarding
PSDs should be less problematic for modern lock-ins that employ digital signal processing
to extract the desired information. Another possible source of error is the assumption
that the gain of the current-to-voltage converter, Gi/v , is independent of frequency. Such
circuits are usually configured as low-pass amplifiers, which means that their response
is constant below some frequency but declines exponentially for higher frequencies. It
is tempting to set the circuits “roll-off” frequency too close to the 50-kHz modulator
frequency because higher-frequency noise is suppressed. However, this invalidates the
presumption of equal gain for the 50 kHz and “dc” signals. This possibility is considered
explicitly in (2.15). As noted above, the dichrometers designed by Richard DeSa do not
use separate analog circuits to process the 50-kHz and dc signals and are said not to
require external calibration. An alternate approach to CD calibration would be a physical
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device that is placed in the dichrometer. While standard in the infrared [30], they are not
used in the ultraviolet.

Even if not formally required, frequent checks of instrument calibration represent
good practice. The classic calibration for CD is the “two-point” method using (+)-
10-camphorsulfonic acid (CSA) [31]. The strength of the CD band at 290.5 nm is
+2.36 M−1 cm−1, while that of the band at 192.5 nm is −5 [5], which gives a ratio of
2.1. A simple way of obtaining the concentration of the CSA sample, while avoiding
artifacts resulting from the fact that it is hygroscopic, is from its absorption spectrum.
The molar extinction coefficient is 34.5 M−1 cm−1 at 285 nm. Besides checking the cal-
ibration, the same CD290.5/CD192.5 ratio spectrum provides an indication that the PEM
is being programmed correctly to maintain constant phase retardation as a function of
wavelength. The CD spectrum also provides a low-resolution check on the wavelength
calibration. More accurate procedures for checking monochromator wavelength calibra-
tion have been reviewed recently [1]. They use known wavelength standards identical
to those used to calibrate spectrophotometers. In a dichrometer, peak absorbance can be
determined by following the high voltage applied to the PM, or pseudo-absorbance, if
available. The same review describes a rigorous procedure for checking PEM program-
ming, although it is not practical for most end users [32]. The calibration of a PEM
is influenced by environmental factors, including temperature and atmospheric pressure,
and thus should be calibrated under the same conditions used to record experimental
spectra. For this reason, some manufactures maintain the PEM at a constant temperature.
The amplitude of modulation for a given driving voltage increases significantly when
a PEM is in vacuum, so the same calibration program cannot be used when a VUV
spectrometer is purged with N2 as when it is evacuated. Other CD calibration issues and
compounds that are believed to be more stable than CSA and which have more CD bands
spanning a broader range of wavelengths have recently been described [33, 34] and may
be offered commercially.

2.3.1.1. Cell Pathlength Calibration. A critical item of equipment for many
studies and in particular studies of protein secondary structure, is the sample cell. For
work in the far UV, synthetic quartz has long been the window material of choice. But to
exploit the extended spectral range opened by synchrotron radiation, the focus has shifted
to CaF2 [35]. In either case, optical pathlengths must be kept very short, 5 to 50 μm being
typical. Such dimensions pose a challenge to manufactures. An error of a few microns
is insignificant for cells with a 1 cm, or even a 1 mm optical path, but is unacceptable
for the shorter path cells that are required for the VUV. The solution is to calibrate each
cell, which is a straightforward procedure that makes use of interference fringes generated
between internal reflections from the front and back windows of the cell. Typical data
are shown in Figure 2.10. To achieve the required level of reflectivity the cell must be
empty, so there is the implicit assumption that the dimensions are unchanged by loading
the sample. The pathlength, l , is given by the expression in (2.18), where n12 is the
number of extrema (either minima or maxima) between two selected wavelengths. For
the data shown in Figure 2.10, the pathlength was found to be 24 μm, 20% larger than
the nominal 20-μm dimension of the cuvette [1]. The interference pattern also provides
evidence that the front and rear windows of the cuvette are parallel. If the spectral
resolution of a CD instrument is inadequate to record an interference pattern, the cell
can be calibrated using a high-quality spectrophotometer.

l = n12λ1λ2

2(λ2 − λ1)
(2.18)
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Figure 2.10. Interference pattern recorded

from the pseudo-absorption of an empty

nominal 20-μm path quartz cuvette. Data

were recorded on beamline U9B at the

National Synchrotron Light Source,

Brookhaven National Laboratory.

2.3.2. Performance and Potential Artifacts

2.3.2.1. Signal-to-Noise Ratio and Optimum Absorbance. The critical signal
measured in a CD experiment is �ICD , which, according to (2.5), can be replaced by
−�aCD I . The noise in a photomultiplier signal is statistical and thus proportional to

√
I .

In (2.5) there is the implicit assumption that the only significant absorption is due to the
chiral molecule being studied, but in considering factors that affect the signal-to-noise
ratio (S/N), it is necessary to express the total absorption at a particular wavelength, aT ,
as the sum of the absorption due to the chiral absorber(s) being studied, as , plus the
absorption due to the buffer or other absorbers, including water, which may be present,
aB . The buffer is presumed to be nonchiral and hence does not contribute to the CD
signal, but influences S/N by attenuating the photon beam. Therefore, the signal-to-noise
ratio can be written as shown in (2.19), where the expression for �aCD is replaced using
the chiral anisotropy relationship. The expression on the right in (2.19) indicates that
four factors play a role in determining the signal-to-noise ratio of the CD measured at a
particular wavelength. S/N is directly proportional to the intrinsic chiral anisotropy of the
sample, to the absorption, and hence concentration, of the chiral components, to the square
root of the intensity of the incident beam, and to the square root of the transmission of
the sample, including absorption by both chiral and nonchiral components. The objective
in preparing a sample is thus to achieve the highest practical ratio of chiral absorbers
to nonchiral absorbers. Once that ratio is fixed, the absorbance of the chiral components
is proportional to the total absorption of the sample at each wavelength. The optimum
total absorption for a particular wavelength is found by replacing aS by a constant times
aT in expression 2 in (2.19) and setting the derivative of this expression with respect to
aT equal to zero. Thus, the optimum value for the total Eulerian absorbance is 2 and
the optimum decadic absorbance is 2/ ln 10 ≈ 0.87, as shown in Figure 2.11. However,
the profile is asymmetric, with values greater than 80% of the maximum extending from
about 0.4 to 1.6. In the absence of other considerations, it would thus be appropriate
to have the maximum absorption of the chiral components encountered in a spectrum
greater than 1.0. However, it is also important to avoid total absorbances that are too high
because of artifacts that result from stray light and detector dark current, as discussed in
Section 2.3.2.2. This is particularly true for VUV CD spectra of proteins recorded with
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a xenon-arc instrument because I0 decreases and AB increases near the short wavelength
limit.

S

N
= |�ICD |√

I
−→

1
|�aCD |

√
I −→

2

|�εCD |
εS

aS

√
I0e−aT −→

3

|�εCD |
εS

ln 10AS

√
I010−AT . (2.19)

2.3.2.2. Stray Light and Detector Dark Current. Any light reaching the detec-
tor that either has not passed through the sample or is outside the narrow range of
wavelengths in the primary “monochromatic” beam emerging from the monochroma-
tor will result in an erroneous CD signal. In most cases, stray light will result in the
apparent value of I in (2.5) being higher than the value produced by the primary wave-
length, giving a low value for the CD. The trivial form of stray light is due to leaks
in the sample compartment or the connections between it and the monochromator or
detector. Such problems are easily detected by an increase in the PM voltage resulting
when a black cloth is placed around the dichrometer or when the room lights are extin-
guished. Out-of-band light emerging from the monochromator and non-light-dependent
signals (dark current) arising in the photomultiplier are more serious issues. They occur
frequently in CD measurements in the far and vacuum UV at the short-wavelength limit
of a scan where the absorption of the sample, and hence the high voltage applied to the
photomultiplier, rises rapidly. These problems can be analyzed using a model that also
suggests procedures to detect their existence and minimize their effects. The approach is
to modify (2.14) to include the contribution to the observed time-average output voltage
from the detector due to photomultiplier dark current and stray light, as shown in (2.20).
The current from the photocathode is thus the sum of three terms, which are enclosed
in parenthesis. The first term is the photocurrent generated by the primary light beam
of intensity I0 and wavelength λ0, i.e., the true signal. The second term represents the
contribution of out-of-band (stray) light reaching the photocathode. In this expression,
IS [λ] represents the spectral density of the incident beam on the entrance slit of the
monochromator that results in intensity I0 at the primary wavelength and R[λ, λ0] is the
ratio of the throughput of the monochromator for wavelength λ relative to the throughput
for λ0. For high-quality holographic grating and prism monochromators, R is typically
less than 10−5 for wavelengths well separated from the primary wavelength [36, 37]. The
third term is the Richardson–Dushman expression for the current from the photocathode
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due to thermionic emission, where A is the area of the photocathode, CR is Richardson’s
constant, T is the absolute temperature, W is the work function of the cathode surface,
and k is the Boltzmann constant. This current is amplified along the dynode chain with
the same gain as photon-induced cathode current [38], and thus the dark current at the
anode increases exponentially as the applied high voltage increases. Other mechanisms
that generate dark current are usually less important in CD experiments.

The sum of these three quantities are multiplied by the gain of the photomultiplier
along the dynode string and the gain of the current to voltage converter to give the time-
average signal voltage. CD is measured accurately only if the sum of the contributions of
dark current and scattered light are insignificant compared to the signal from the primary
wavelength.

v = Gi/v GPM [V ]

(
φ[λ0]I0[λ0]e−a[λ0] +

∫
λ�=λ0

R[λ, λ0]φ[λ]e−a[λ]dλ + ACRT 2e
−W
kT

)
.

(2.20)

Problems arise when the absorption of the sample plus background becomes large or the
incident intensity at the primary wavelength decreases. Both conditions tend to occur
near the short-wavelength limit of the spectrum of an aqueous sample. As the magnitude
of the signal due to the light intensity at the primary wavelength decreases, the servo
circuit increases the voltage applied to the photomultiplier and thus the internal gain to
maintain v = v C , but the contributions of the dark current and stray light may no longer
be insignificant compared to the signal generated by the primary wavelength, and thus
the output of the phase-sensitive detector will no longer be a valid measure of the CD
of the sample.

There are three distinct failure modes in the limit of high sample absorption and/or
low primary intensity, although the behavior of a particular instrument may reflect a com-
bination of more than one of these limiting cases. Differential diagnosis of the failure
modes is based on observation of the behavior of the high voltage applied to the photo-
multiplier and the effect of blocking the light beam with an opaque object or inserting a
nonfluorescent short-wavelength cutoff filter. Because all photomultipliers are character-
ized by specified upper limit of the voltage difference that can be applied between the
photocathode and the anode without damage, servo circuits are designed so that some
maximum value, VMAX cannot be exceeded. For an ideal dichrometer, there would be
no dark current or stray light and when the beam reaching the detector is blocked by an
opaque object, V goes to VMAX and v drops to zero. For a practical instrument, v usually
drops to a finite value that depends on the magnitude of the dark current. Insertion of
a cutoff filter chosen to block the primary beam will have only a minor impact on the
stray light term. Thus, this test indicates the sum of dark current plus stray light.

Analysis of the terms in (2.20) suggests various strategies for avoiding erroneous
CD results due to detector dark current and stray light. They can be discussed both in
terms of the technology used to improve performance and with respect to the regions of
the spectrum for which they are applicable. Not surprisingly, the regions of concern are
toward the limits of the spectral domain covered by this article: the far and vacuum UV
and the red and infrared. Starting with the terms representing light intensity that appear
in the first and second terms, it is obviously an advantage to have a source with high
intensity where needed and lower intensity elsewhere. Synchrotron radiation sources are
far superior to xenon arcs for CD studies in the far and vacuum UV because their radiance
increases with decreasing wavelength, just the opposite of the xenon arc (Figure 2.6). The
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same terms in (2.20) indicates the importance of having a detector with a high quantum
yield and transparent window at the primary wavelength. Window transparency is an
issue in the vacuum UV, as the best synthetic quartz becomes opaque at about 160 nm.
Fortunately, photomultipliers are available with LiF, MgF2, and CaF2 windows. Low
photocathode sensitivity is more of an issue for studies in the red and near infrared.

The expression for dark current due to thermionic emission in (2.20) provides
rationales for three methods that are used to suppress dark current in photomultipli-
ers: reducing the effective area, decreasing the temperature, and increasing the work
function of the photocathode. Choosing a photomultiplier with a small photocathode is
one means of achieving the first goal. Photomultipliers optimized for wavelengths less
than 160 nm tend to have a small photocathode because of difficulties inherent in fabri-
cating larger LiF and MgF2 windows. Applying a magnetic field that permits electrons
generated only from that area of the photocathode irradiated by the photon beam to
reach the first dynode is another approach [39], but determining when this condition
is fulfilled is problematic. In addition, limiting photocathode area can be counterpro-
ductive. For example, one approach to reducing anomalous CD signals due to scattered
light is to position a photomultiplier with a large photocathode immediately behind the
sample.

Another approach to reducing dark current is to cool the photocathode. Reducing
photocathode temperature is effective until the dark current produced by thermionic emis-
sion drops below dark current due to dynode leakage, which is not included in (2.20).
This transition temperature depends on the work function of the photocathode, with tem-
peratures as low as −60◦C being required for red- and infrared-sensitive detectors. While
effective throughout the spectrum, cooling is particularly useful at longer wavelengths
where the necessity of working with photocathodes with lower work functions results in
higher thermionic emission and thus higher dark currents. Finally, choosing a photocath-
ode with a higher work function is an effective way of reducing dark currents, but only
relevant for UV studies, because such detectors do not respond to visible and near-UV
radiation. The use of such a detector has an additional benefit because the response to
stray light is also suppressed.

An effective, but expensive, strategy in the red and near infrared is to combine
a cooled photomultiplier with a spectrometer in which the optical beam is periodically
interrupted (chopped) at a frequency typically between 100 and 1000 Hz, as first described
by Breeze and Ke [40]. A more sophisticated, and even more expensive, approach detects
the time-average intensity with a lock-in amplifier tuned to the frequency of the chopper,
while the CD is extracted from two sequential lock-ins: The first one is tuned to the PEM
frequency and operated with a time constant set between the periods of the chopper and
the PEM, and the second one is tuned to the frequency of the chopper [41].

Stray light is usually a problem only for studies in the ultraviolet, because short-
wavelength blocking filters can remove potentially contaminating wavelengths for CD
experiments in the red and infrared. As noted above, choosing a photomultiplier with
a high work function, and hence little or no sensitivity to wavelengths outside the UV,
reduces the response to stray light when the primary wavelength is in the UV. Another
approach is to use a double monochromator, hence effectively squaring the value of W .
This is typical for bench-top instruments with xenon arc sources operating in the UV
because the source generates much higher intensities in the visible and near infrared
than in the ultraviolet. The disadvantage is that the throughput of the primary wave-
length is also reduced by the double monochromator. Chopping the optical beam with an
opaque object, as described above, does not discriminate against stray light. However,
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chopping the beam with a short wavelength cutoff filter would discriminate against both
wavelengths transmitted by the filter and dark current.

2.3.2.3. Inhomogeneous and Anisotropic Samples and Photodegradation.
The theory describing measurement of absorption and CD presumes that the absorbing
entities are randomly distributed and oriented throughout the sample. Sample inhomo-
geneity results in measurement errors that become progressively larger as the absorbance
of the sample material increases. The simplest situation to understand is when a
fraction of the incident beam never passes through the sample. No matter how opaque
the sample, the transmission can never drop below this fraction, with corresponding
effects on the measured absorbance and CD, thus “flattening” peak signals, and in the
case of CD, possibly distorting spectral shapes. While the “incompletely filled cuvette
syndrome” is classified as gross operator error, the formation of bubbles spanning
the entire sample depth in cuvettes with very short pathlengths is far more insidious.
Special precautions should be taken when working with submillimeter pathlengths,
particularly if the sample temperature may increase after it is loaded into the cuvette.
Degassing or saturating the sample with helium can be effective. Unlike most gases,
the solubility of helium increases at higher temperatures. One of the several advantages
of the simultaneous measurement of CD and absorption is that the optical beam
samples exactly the same region of the sample. Even subtler is the situation in which
absorbing moieties are clustered together as supramolecular structures with dimensions
comparable with the wavelength of the radiation (i.e., 100 nm). Membrane fragments
are particularly susceptible [42]. Castiglioni and co-workers have presented empirical
approaches to correcting absorption flattening in such situations [43–45]. Samples
involving materials such as compacted membrane fragments or insoluble proteins may
not follow the Beer–Lambert law and may exhibit linear dichroism, which can result
in spurious apparent CD signals [1]. Intense VUV radiation in some SRCD instruments
can result in photodegradation of unbuffered protein samples [46].
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3
CIRCULARLY POLARIZED

LUMINESCENCE SPECTROSCOPY AND
EMISSION-DETECTED CIRCULAR

DICHROISM
James P. Riehl and Gilles Muller

3.1. INTRODUCTION

Since the very first observation of circular polarization in the luminescence from a chiral
crystal of sodium uranyl acetate, Na[UO2(CH3COO)3], by Samoilov in 1948 [1], the
measurement of the usually small net circular polarization from chiral molecular systems
has become a useful probe of chiral molecular structure. This species crystallizes in the
P213 space group, allowing for two enantiomeric forms, and the circular polarization is
so large that it was easily detected with simple static optics. The much more difficult
measurement of the usually small net circular polarization in the luminescence from
chiral molecules in solution began with the pioneering studies of the research group
of Professor Oosterhof at the University of Leiden in the late 1960s on chiral organic
molecules [2, 3] and in the early 1970s by Professor Steinberg and coworkers at the
Weizmann Institute on biomolecular systems [4, 5]. In recent years, this technique has
developed into a reliable and useful spectroscopic tool for the study of a wide variety
of chemical systems, but recent applications have overwhelmingly been concerned with
CPL from chiral luminescent lanthanide (III) complexes since the first report of Luk
and Richardson in 1974 [6] for reasons outlined later in this chapter. This phenomenon
has been referred to as circularly polarized luminescence (CPL), circularly polarized
emission (CPE), and other names. Here we will use the most common acronym CPL to
describe this experimental technique. In this chapter we also discuss the measurement of
the differential emission intensity due to differences in the absorption of left versus right
circularly polarized light. This has been commonly referred to as fluorescence-detected
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circular dichroism (FDCD), since almost all previous work and many new applications
of this technique are based on the observation of organic fluorescence. In this chapter we
will use the more general name of emission-detected circular dichroism (EDCD) for this
measurement due to the recent application of this technique to luminescent lanthanide (III)
ions with long emission lifetimes. There is no doubt that in the future that the interested
reader will find both of these terms used in the literature. CPL spectroscopy has been
the subject of numerous reviews [4, 7–12], whereas reviews or general discussions of
EDCD (FDCD) results or techniques have been quite limited [10, 11, 13].

It should be noted that whereas EDCD spectroscopy (like conventional CD) probes
the chiral structure of the ground state, CPL is a probe of the chirality of the excited
state. These types of experiments are not redundant, since geometry changes may occur
on electronic excitation. Furthermore, both of these experimental techniques have the
potential of providing information concerning molecular dynamics and energetics that
occur between the time of excitation and emission.

3.2. THEORETICAL PRINCIPLES

3.2.1. CPL Spectroscopy

In CPL spectroscopy, one is interested in measuring the difference in the luminescence
intensity (�I ) of left-circularly polarized light (IL) versus right-circularly polarized light
(IR). By convention, this difference is defined as follows:

�I ≡ IL − IR . (3.1)

Just as in ordinary luminescence measurements, the determination of absolute emission
intensities is quite difficult, so it is customary to report CPL measurements in terms of the
ratio of the difference in intensity, divided by the average total luminescence intensity.

glum = �I
1
2 I

= IL − IR
1
2 (IL + IR)

, (3.2)

where glum is referred to as the luminescence dissymmetry ratio (or factor). The extra
factor of 1/2 in Eq. (3.2) is included to make the definition of glum consistent with the
definition of the related quantity in circular dichroism, CD, namely, gabs :

gabs = �ε

ε
= εL − εR

1
2 (εL + εR)

, (3.3)

where in this equation εL and εR denote, respectively, the molar absorption coefficients
for left- and right-circularly polarized light, and ε has always been explicitly defined as
an average quantity.

The relationship of I and �I to molecular properties is through the transition prob-
ability (Fermi Golden Rule). In general, one must describe the probability of emitting
a left- or right-circularly polarized photon at a time t following the excitation of the
luminescing species to the excited or emitting state [7]. For organic fluorescence chro-
mophores the excited-state lifetime is so short that one can normally consider the system
as unchanged between excitation and emission, whereas for organic phosphorescence or
other long-lived excited states such as lanthanide (III) emission, one can often consider
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Figure 3.1. Schematic energy level diagram for

absorption and emission transitions.

any photoinduced internal molecular structural changes as complete and the orientational
distribution as completely isotropic by the time of emission.

Referring to the schematic energy level diagram presented in Figure 3.1, the steady-
state differential intensity of left (L)- minus right (R)-circularly polarized light for a
transition from an initial emitting state n to a final state g may be expressed as follows:

�I (λ) = (�c/λ)Nn�Wgnfσ (λ), (3.4)

where we have introduced the differential transition probability �Wgn ,

�Wgn ≡ W L
gn − W R

gn (3.5)

a lineshape function, fσ (λ), and the population of the emitting state, Nn . In Eq. (3.4) we
have ignored, for the reasons given above and simplicity, the time and orientation depen-
dence of Nn and �Wgn . The probability of emitting a right- or left-circularly polarized
photon may be related in the usual way to molecular transition matrix elements through
Fermi’s Golden Rule. Under the assumption that the emitted light is being detected in
the laboratory 3 direction (see Figure 3.2), and allowing for only electric dipoles and
magnetic dipoles in the expansion of the molecule–radiation interaction Hamiltonian, we

1

2

3 Detector

Figure 3.2. Laboratory coordinate system.
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obtain the following expressions:

W L
gn = K (λ3)[|μgn

1 |2 + |μgn
2 |2 + |mgn

1 |2 + |mgn
2 |2 − 2i (μgn

1 mgn
1 + μ

gn
2 mgn

2 )], (3.6)

W R
gn = K (λ3)[|μgn

1 |2 + |μgn
2 |2 + |mgn

1 |2 + |mgn
2 |2 + 2i (μgn

1 mgn
1 + μ

gn
2 mgn

2 )], (3.7)

where 1 and 2 refer to laboratory axes and the electric dipole transition moment, μgn ,
and the imaginary magnetic dipole transition moment mgn are defined as follows:

μ
gn
1 ≡ < g |μ1|n >,

mgn
1 ≡ < g |m1|n > .

(3.8)

The differential transition rate is, therefore,

�Wgn = −K (λ3)[4i (μgn
1 mgn

1 + μ
gn
2 mgn

2 )]. (3.9)

Note that the i in Eq. (3.9) results in the differential transition probability being a real
number. The condition for this quantity to be nonzero is that the chromophore of interest
must have a nonzero magnetic and electric transition dipole moment along the same
molecular direction. In the absence of perturbing external fields, this is only true for
molecules that are chiral.

The final connection between molecular properties and experimental observables
requires knowledge of the orientational distribution of the emitting molecules with respect
to the direction and polarization of the excitation light and the direction of detection. We
consider here only the limiting cases in which the sample is “frozen,” so the orientational
distribution of emitting molecules is determined by (a) the distribution created by the
excitation beam and (b) the isotropic or random distribution appropriate for a sample
that has had sufficient time between absorption and emission to completely scramble any
orientational distribution created by the excitation beam. The “frozen” limit is clearly
appropriate when considering chiral crystals.

In order to measure CPL from crystals, the crystal system must be at least uniax-
ial with the optic axis oriented along the direction of emission detection, so circularly
polarized luminescence may be propagated through the crystal without scattering which
leads to depolarization. The implication is that the index of refraction of the crystal is
uniform in directions perpendicular to the direction of emission detection. Of course, the
other requirement is that the emitting species must be chiral. This situation is also true
for randomly oriented “frozen” solutions of chiral molecules. In this case, of course, the
orientational distribution of molecules is isotropic, and independent of the direction of
emission detection.

Expressed in the laboratory (1 2 3) coordinate system, the total luminescence tran-
sition rate may be obtained by adding equations (3.6) and (3.7):

Wgn = 2K (λ3)[|μgn
1 |2 + |μgn

2 |2 + |mgn
1 |2 + |mgn

2 |2]. (3.10)

The luminescence dissymmetry ratio can then be related to the molecular transition matrix
elements as follows:

glum = �I
1
2 I

= IL − IR
1
2 (IL + IR)

= −4i
μ

gn
1 mgn

1 + μ
gn
2 mgn

2

|μgn
1 |2 + |μgn

2 |2 + |mgn
1 |2 + |mgn

2 |2 , (3.11)
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where we have made the simplifying assumptions that the lineshapes for CPL and total
luminescence are identical and that the number of molecules in the emitting state is
independent of their orientation. The direct connection to molecular structure relies on
relating the transition matrix elements from laboratory to molecular coordinate systems.
For the case of a randomly oriented emitting distribution, the orientational averaging
yields the following general result:

glum(λ) = 4Re

[ �μgn · �mgn

| �μgn |2 + | �mgn |2
]

. (3.12)

A severe complication arises, however, with the fact that the orientational distribution
of emitting molecules is determined by the orientation of the absorption dipole moment
with respect to the polarization and direction of the incident beam. This is commonly
referred to as photoselection. The problem here is not due to any inherent depolarization
due to sample configuration, but rather the issue is that it is experimentally very difficult
to measure circular polarization in the presence of linear polarization. The reasons for
this will be discussed in some detail in Section 3.5.1. To our knowledge, there have been
no reliable reports of CPL measurements in which linear polarization in the luminescence
has been present. Although, in principle, there are experimental geometries that can be
used to ensure no linear polarization in the luminescence, these rely on very precise
control of incident excitation polarization and direction. This has limited the application
of CPL to solutions composed of either (a) molecular systems in which the luminescent
species is essentially a spherical emitter (such as lanthanides) or (b) small molecules
that have a sufficient time between excitation and emission to completely scramble any
photoselected orientational distribution.

The form of Eq. (3.12) illustrates an important characteristic of chiroptical spec-
troscopy. Larger dissymmetry values are seen when the transition involved is inherently
weak. For electric-dipole-allowed transitions, the denominator in Eq. (3.12) will be dom-
inated by the first term, |μ|2. An advantageous situation occurs when the transition is
electric dipole forbidden and magnetic dipole allowed. The magnetic dipole transition
moment is typically a thousand times smaller than the electric dipole term. These same
arguments apply to CD spectroscopy where it is much easier, for example, to study the
n → π∗ transitions of chiral ketones than to study π → π∗ transitions. As a result, it may
be very difficult to apply CPL studies to chiral molecules that are strongly luminescent,
such as organic dyes, due to the presence of allowed transition.

3.2.2. EDCD Spectroscopy

In EDCD we relate the extent of absorption of circularly polarized light to the intensity
of emission observed following the excitation. This is expressed as follows:

gEDCD = EL − ER
1
2 (EL + ER)

(3.13)

where the emission intensity observed following left- or right-circularly polarized light
is denoted EL and ER , respectively. In order to relate this measured quantity to the CD
measured in the usual manner, one needs to take into account the fact that the relative
intensity of the polarized excitations seen by an emitting species is going to depend on
the how much differential absorption takes place between the sample cell wall and the
location of the molecule in question. This is illustrated in Figure 3.3. Molecules close to
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the cell wall in the direction of the excitation source will presumably see equal intensity
of left- and right-circularly polarized light, whereas other molecules will see unequal
amounts of circularly polarized light due to differential absorption. The issue of having
to deal with a photoselected orientational distribution of emitting molecules also has
severe consequences in EDCD spectroscopy, as will be described in Section 3.5.2.

The issues of absorption and photoselection have limited the application of EDCD.
However, general expressions have been developed for situations in which the sample of
interest contains absorbers other than the fluorescent species, as well as in cases where
the fluorescent species have been excited through energy transfer from nonfluorescent
absorbers [14–17]. Interpretation of the measurement of EDCD is much simpler if one
is able to study a system in which the only chiral molecules in the sample are the
same ones for which we are analyzing the luminescence, if we can assume an isotropic
orientational distribution, and if we are able to ignore the presence of any other absorbing
species. Under these conditions we can derive the following expression for the differential
intensity of left- or right-polarized light, dEL or dER , as a function of distance x :

dEL = αLCφIL(x) dx , (3.14)

dER = αRCφIR(x) dx , (3.15)

where C denotes the concentration in moles per liter, the absorption coefficient, α, is
related to the molar decadic extinction coefficient (α = 2.303ε), and it is assumed that
the fluorescence quantum yield, φ, is independent of incident polarization. The intensities
of polarized excitation decrease exponentially as a function of distance into the cell:

IL(x) = I0 exp(−αLCx), (3.16)

IR(x) = I0 exp(−αRCx) (3.17)

Integrating equations (3.14) and (3.15) over the length of the cell, l , we obtain the
following:

EL = I0φ(1 − e−αLCl ), (3.18)

ER = I0φ(1 − e−αR Cl ). (3.19)
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Substituting into Eq. (3.13), we obtain the following expression:

gEDCD = 2(e−αR Cl − e−αLCl )

2 − e−αRCl − e−αLCl
. (3.20)

At the usual low concentrations and low absorption coefficients seen in these types of
measurements, the exponentials exp(-αCl ) in Eq. (3.2) may be expanded as (1 − αCl ),
and the equation is rewritten as

gEDCD = 2(αLCl − αRCl)

αLCl + αRCl
= AL − AR

1
2 (AL + AR)

, (3.21)

where the absorbance, A, has the customary Beer–Lambert definition

A = εlC = αCl/2.303 (3.22)

Thus under these somewhat limiting conditions and assumptions the EDCD and CD
should yield identical information.

3.3. MEASUREMENT TECHNIQUES

3.3.1. The Measurement of Circularly Polarized Luminescence

Unlike circular dichroism where a number of commercial instruments have been avail-
able for more than 40 years, the measurement of circularly polarized luminescence has
almost exclusively been performed on custom-built instruments that were designed, devel-
oped, and improved by a limited number of research groups over the last three decades
[5, 8, 9, 18]. The basic design of a CPL instrument involves the use of a quarter-wave
modulating circular polarization analyzer that converts alternately left then right circular
polarization in a luminescence beam into linear polarization. Differences in the measured
intensity of this linear polarization in phase with the modulation are directly proportional
to the extent of circular polarization in the luminescence. The first CPL instruments used
a lock-in amplifier referenced to the driving frequency of the modulator to measure the
circular polarization. The more modern instruments have utilized photon-counting detec-
tion with various techniques of gated-photon counting. These have been shown to be
more reliable, easier to calibrate, and less influenced by the electronic problems (i.e.,
ground loops) associated with the use of lock-in detection of usually weak CPL signals
[7, 9, 19].

Another advantage of photon-counting methods versus the analog methods employed
in the earlier equipment for the detection and analysis of CPL is that the standard devia-
tion, σd , in the measurement of the luminescence dissymmetry factor follows a Poisson
distribution [18, 20] and may be calculated directly from the total number of photon
counts, N , that is, σd = √

2/N . One can see that the determination of accurate glum val-
ues can be done in a short time for transitions associated with large glum values of highly
luminescent compounds, whereas a longer time of collection is required for transitions
associated with small glum values of weakly luminescent systems for achieving the same
percent error. In general, one is not interested in having the same absolute error at each
wavelength point, but rather, as is the case for analog instrumentation, one generally
records spectra with the same relative error (or signal to noise ratio) at each wavelength.
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Figure 3.4. Schematic diagram for the instrumentation used for the measurement of CPL.

In order to do this, one simply counts photon pulses for a fixed amount of time at each
wavelength.

All of the custom-made instruments use the same basic optical design. As a rep-
resentative example, we present here a brief description of the CPL instrument used in
the laboratory at San José State University. This CPL instrumentation follows the design
shown in Figure 3.4. This instrument, as illustrated, is currently designed to measure
“steady-state” CPL. A continuous wave excitation light source is provided by a tunable
dye laser (Coherent-599) pumped by an argon-ion laser, an argon-ion laser without the
dye laser (Coherent Sabre TSM 15 or Coherent Innova-70), or a 450-W xenon arc lamp.
The choice of excitation light source (laser or xenon arc lamp) depends on the nature
of the specific chiral system under study. A number of different types of applications
of CPL spectroscopy are described in Section 3.6.1. In general, laser excitation is used
when one desires either high-intensity wavelength, or polarization selectivity. In practice,
laser excitation is used primarily for selective direct excitation of lanthanide (III) ions,
whereas the arc lamp is used for excitation of the broad absorptions commonly seen in
organic/polymeric systems or organic-based ligands.

With the exception of the excitation monochromator, the experimental setup for laser
and xenon arc-lamp configurations are identical. In the laser configuration, the excitation
wavelength is, of course, a property of the specific laser. For tunable laser sources,
the specific excitation wavelength is set via a computer-controlled stepping motor. The
emission wavelength is selected via a double monochromator (SPEX 1680), which is
also controlled by the computer. In the xenon arc-lamp configuration, both excitation and
emission wavelengths are selected via single-grating monochromators (SPEX 1681) and
are controlled by the computer. It should be mentioned that in this experimental setup the
laser beam is situated below the sample and emission light path and is reflected through
the sample quartz fluorescence cuvette with a polished bottom surface. In addition, the
polarization of the laser beam is aligned along the direction of emission (laboratory 3
direction) in order to minimize any polarization in the 12 plane for the reasons discussed
in Section 3.5.1.
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Situated between the sample and emission monochromator is the circular analyzer
which is composed of a photoelastic (or elasto-optic) modulator (PEM) followed by a
high-quality linear polarizer. The PEM is constructed from an isotropic clear optical
material that becomes anisotropic on application of a periodic stress. For CPL measure-
ments the PEM is set to act as a dynamic quarter-wave device, alternately converting the
right- and then left-circularly polarized light emitted from the sample to linearly polar-
ized light. The light is then directed toward the emission monochromator and ultimately
to a cooled photomultiplier operating in photon-counting mode.

A plot of the modulation phase versus time is given in Figure 3.5. The time depen-
dence of the phase shift, ϕ, is related to the sinusoidal periodic stress frequency, ωPEM ,
(usually 50 kHz), as follows:

ϕ = Am(λEM ) sin[sin(ωPEM t)] (3.23)

where we have explicitly noted that the amplitude, Am , of the periodic stress is dependent
on the wavelength of the emission. The maxima and minima of this function corre-
spond to plus quarter-wave (+1/4) and minus quarter-wave (−1/4) retardation. Since a
fixed oriented linear polarizer is placed after the PEM, the monochromator sees light
of only one polarization throughout the modulation cycle. This is very important due
to the polarization sensitivity of monochromators. The amplitude of the stress applied
to the PEM for so-called wavelength tracking is controlled by the dedicated computer
through application of an appropriate voltage to the optical head unit of the PEM.
Since in such polarization-sensitive detection experiments it is obviously necessary to
minimize sources of depolarization, one must avoid placing optical elements between
the sample compartment and the PEM. This requirement is even more important for
CPL-type measurements because the difference in intensities between the left- and right-
circularly polarized emitted light are 10–100 times less than that normally observed
in linearly polarized luminescence measurements. However, once the emitted light has
passed through the PEM and the linear polarizer, it is strongly recommended that the
emitted light travels through an appropriate filter to eliminate scattered excitation and
other stray light. The emitted light, which is passing through the emission monochroma-
tor, is detected by the thermoelectrically cooled photomultiplier tube (PMT), operating in
photon-counting mode, and converted to TTL-level pulses by the amplifier-discriminator
for counting by the differential photon counter (DPC).

In our experimental setup the PEM control unit provides a 50-kHz reference signal
to the DPC that is used to define a fixed time window for gated counting. This is
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also illustrated in Figure 3.5. The beginning and ending of the two counting windows
corresponding to left- and right-circularly polarized photons are determined by monitoring
the reference signal as it crosses through 0 and then waiting a fixed number of clock cycles
(10 GHz) before starting and stopping the counting of photon pulses. In our experimental
setup the DPC is a stand-alone device that is set up and monitored by the computer. It
is periodically probed to determine the number of counts corresponding to IL and IR

detected in the two half-cycles of the polarization modulation. We usually set the time
window to 50% of the modulation cycle as illustrated in Figure 3.5 and count all photons
detected in this time window as either left- or right-circularly polarized. There is a slight
error with this assumption associated with the phase shift being not exactly quarter-
wave. The shaded area in this figure corresponds to the error in this approximation.
Obviously, the shorter the time window, the less the error will be in glum . One can easily
calculate the error by calculating the area of the shaded region and comparing it to the
rectangular time windows. For a 50% window we calculate a theoretical error of less
than 5%; and although a correction factor could be applied to the measurement, since
there are numerous sources of other errors in optics, and statistical errors associated
with the photon counting, we have decided to simply report the experimental results as
measured. It should be emphasized that one of the most important aspect of this gated-
counter technique is the requirement that the time windows for left- and right-circular
polarization detections must be positioned properly, have a high temporal resolution, and
be exactly equal in width.

In our laboratory, we use two custom-built DPCs. The older of the two DPCs was
built at the University of Leiden, The Netherlands, under the supervision of H. P. J. M.
Dekkers, and is a fixed-function design built from application-specific integrated circuits
(ASICs). The DPC supports a variable sample size of 2 × 10N photons, where N = 4,
5, 6, 7, or 8. This parameter is set via a physical setting on the device. Control of the
device is performed using start, stop, and reset commands that are sent from a computer
through a Keithley KPCI-3102 digital I/O board. When a start command is sent to the
DPC, the DPC counts for the specified sample size and returns a final glum value. This
value is also read through the digital I/O board. More recently, our research group at San
José State University has developed a new DPC based on a Field Programmable Gate
Array (FPGA) design. The immediate benefit of an FPGA is that it is a software design,
one that is easily modified and replicated. Building a DPC is as easy as purchasing
a commercially available Spartan 3AN FPGA board, loading the code implementing
the design, and housing it in an enclosure. In our laboratory we currently have two such
implementations, one intended for use with our laser instrumentation and another intended
for use with instrumentation for near-infrared studies. The new DPC takes advantage of
the serial port available on the Spartan 3AN board. All input and output functions are
performed through this interface. This means that any computer with a serial port—as
most PCs do—is able to use the new DPC without an expensive I/O board. Development
and testing of DPC features are also greatly simplified, because serial port programming
interfaces and terminal applications are readily available. Current commands supported
by the new DPC include Count, Reset, and Toggle Mode. The mode Toggle is meant to
enable switching between the standard photon counting mode and a pulse mode. This
new DPC, in its current form, supports the counting of total photon pulses from any
value from 1 to 2 × 109. This sample size is fixed in the sense that it is a constant value
that is set in the FPGA code. It is flexible, however, in that this value can be changed
and can be implemented simply by reloading the FPGA board with the new code. Also,
given the expandable and easy-to-modify nature of FPGA designs, it would be possible
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to implement a new feature in the future that would support the specification of a sample
size via computer input.

One feature of the new DPC is that it does not return results in the form of a
final glum value. Instead, the current FPGA design returns the individual left and right
photon counters, leaving the calculation of the glum value to the computer [see Eq.
(3.2)]. The advantage to this approach is that it provides more information, including
total luminescence intensity, and allows for calculation of glum values across increments
of the sample size (i.e., for a fixed sample size of a thousand, it would be easy to make
counts for any positive, integer multiple of a thousand). As previously mentioned, the
new DPC also includes a pulse mode. In our current experimental setups, all light sources
are continuous wave. For laser setups, it is possible to break the continuous wave into
pulses with the use of a chopper. Taking a reference signal from the chopper’s controller,
it is possible to perform photon counts based on the duration of the pulse, rather than
for a fixed quantity of photons.

Advances in computer technology, and especially the commercial availability of
very-high-speed counting/timing boards that may be easily programmed, will certainly
lead to the development of new instrumentation for CPL in which the gated detection,
calibration, and control will all be performed within a high-speed computer. Such an
improvement in measurement technology is underway in our laboratory.

The overall principle and the optical components of CPL instruments capable of
measuring the time-dependence of glum are similar to the ones described above, with the
main difference being the excitation source. Unlike the use of a continuous excitation
light source for the steady-state CPL instrumentation, a pulsed excitation light source is
used in the time-resolved CPL equipment. This measurement involves determining glum

at a series of times after the excitation pulse. The time measurement window needs to be
some multiple of the phase modulation. In order to ensure equal sampling of the two half-
cycles of modulation, corresponding to emission of left- and right-circular polarization,
the excitation pulses must be coupled to the polarization modulation cycle [21] or be set
to occur randomly throughout the modulation cycle [22].

Until very recently, all CPL measurements published in the literature were performed
with custom-made instruments. The technique has developed to a point where the detec-
tion of CPL for moderately luminescent chiral systems can now be performed with a
high degree of sensitivity (∼1 part in 104 –105) and reliability. There is some emerging
interest in the development of chiral optical probes that take advantage of the inherent
sensitivity of luminescence, especially involving lanthanide (III) ions, and this has led to
the advertising and some availability of commercial instrumentation. The first commer-
cial CPL spectrometer for which published data has appeared [23] is manufactured by
JASCO Inc., one of the leading suppliers of commercial CD instruments. The JASCO
CPL-200 instrument essentially consists of two CD spectrometers, with the second one
used as the emission spectrometer. More recently, OLIS Inc. developed its Polarization
Toolbox to support fluorescence, polarization of fluorescence, anisotropy, CPL, CD, and
FDCD measurements for its CD instrumentation. As of August 2010, no CPL-based stud-
ies using the OLIS instrument has appeared in the literature, although several instruments
have been sold.

3.3.2. The Measurement of Emission-Detected Circular Dichroism

In some aspects, an instrument capable of measuring EDCD (or FDCD) is the exact
reverse of a CPL instrument. In this case, the excitation is modulated between left- and
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Figure 3.6. Schematic diagram showing instrumentation used for the measurement of EDCD.

right-circular polarization, and the total luminescence is detected in phase with the mod-
ulation and used to determine any difference in absorption. A schematic diagram of an
EDCD instrument is given in Figure 3.6. As described earlier, there are some complica-
tions with the measurement of EDCD if one is interested in using this technique to report
on the CD of a sample. The intrinsic problem of self-absorption has no consequence in
terms of experimental design; one simply needs to take this into account during data
analysis [17]. However, the problems associated with the presence of linear polarization
in the luminescence do require the use of special experimental geometries or techniques
to minimize or eliminate the unwanted effects. This phenomenon will be discussed in
more detail in Section 3.5. In this section we will simply describe ways to eliminate the
linear polarization in the direction of emission detection.

As can be seen in Figure 3.6, the incident excitation beam is passed through a polar-
ization modulator before entering the sample compartment. Circularly polarized light is
generated by first converting an excitation source to linear polarization before passing
through the polarization modulator. It is obviously important that the modulation cycle
time be much longer than the emission lifetime of the species under study if one is
interested in associating the emission measured in phase with the circularly polarized
excitation with the absorption event. For ordinary organic fluorescence with emission
lifetimes on the order of nanoseconds, the PEM device described previously is the mod-
ulator of choice, since the cycle time is typically 20 μs. Earlier instruments employed
Pockels cells for the generation of circularly polarized excitation. However, for organic
phosphorescence, or for the usually long-lived lifetimes of luminescent lanthanide ions
with lifetimes on the order of msec, we have employed a liquid crystal polarizer (LCP)
operating as a quarter-wave device which can be programmed to modulate with a cycle
time as slow as 1 s or longer [24]. It is important that the orientation of the linear polar-
izer be at 45◦ relative to the crystal axis of the PEM or vertical (or horizontal) axis of the
LCP. As in CPL instrumentation, the computer controls the amplitude of the PEM or the
alignment of the LCP to track with the wavelength of excitation. The LCP is switched
between circular polarizations by the computer; and unlike the PEM, it is nearly exact
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square-wave modulation. All the photons collected in phase with this square-wave mod-
ulation are counted, except for a small time period around the switching points that are
excluded.

The luminescence is typically collected at 90◦ with respect to the excitation direc-
tion, and therefore, for nonisotropic emitters that do not have sufficient time between
absorption and emission to randomize their orientational distribution, there will be linear
polarization in the luminescence. There have been a number of suggestions to eliminate
linear polarization. In principle, one can employ “magic angle” orientations for a linear
polarizer/detector system [25], or orient two linear polarizer/detectors at specific angles
[26, 27]. Applications of these techniques may be problematic due to the precise align-
ments that are necessary. More recently, the use of a carefully constructed ellipsoidal
mirror has been employed to essentially collect all of the luminescence from a sample
[28]. This has the result of eliminating any effects due to linear polarization.

3.4. STANDARDS FOR CPL

In the analog detection of CPL, the differential emission intensity, �I , is assumed to be
proportional to the output of the lock-in amplifier, and the total emission intensity, I , is
proportional to a DC output voltage. These are generally independent measurements, so
that a determination of glum requires the use of a calibration standard. One of the main
advantages of the photon counting method is that glum is determined directly, so that, in
principal, no independent calibration is necessary.

It is obviously important that one be sure that the magnitude and sign of the CPL sig-
nal are being measured accurately. Although there have been efforts at standardization and
calibration using variable quarter-wave plates [5], or passing unpolarized light through
solutions of known CD [29], the most common approach is to use a solution containing
a chiral species of known CPL. Brittain was the first to suggest the use of the commer-
cially available NMR chiral shift reagent tris(3-trifluoroacetyl-d -camphorato)europium
(III), Eu(facam)3, as a CPL standard [30]. This complex is available in high purity, is
readily soluble in DMSO, and may be excited either by a UV source at around 350 nm or
by an Ar-ion laser excitation at 345 nm. This complex has also been used by Schippers
[18]; three different Eu(III) transitions are observed with variable signs and magnitudes.
It should be noted that Maupin has noted that the chirality of lanthanide facam com-
plexes in DMSO are quite sensitive to the presence of water, so that care should be
taken to ensure dry complex and dry solvent when using this species as a CPL standard
[31]. In addition to the water sensitivity, the high cost of Eu((−)-facam)3 with the other
enantiomeric form of facam limits its use as an effective and reliable CPL standard for
routine tests. Indeed, any CPL instrument needs to be regularly tested and calibrated for
the accurate detection of small degrees of circular polarization in the total emitted light
intensity.

Working along these lines, Bonsall et al. [32] reported on the use of an alterna-
tive CPL calibrating agent based on optical isomers of N ,N ′-bis(1-phenylethyl)-2,6-
pyridinedicarboxamide (1) coordinated to Eu(III) ions in a Eu:1 ratio of 1:3 (Figure 3.7).
In particular, the advantages of these systems are (i) the ease of the ligand synthesis, (ii)
their complex solution stability (i.e., several months), and (iii) the lack of a noticeable
photochemical degradation under continuous UV excitation (i.e. 70 h, λexc = 308 nm).
A glum (595.3 nm) value amounted to −0.18 for a [Eu((R, R)-1)3]3+ complex solution
in MeCN left on the shelf and measured seven months apart.
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It is important that standard samples be used in an appropriate manner. Due to the
nature of the custom-built instruments that are used for this technique, some routine
testing should be performed on a regular basis. If the values obtained for the particular
standard are not obtained, then the source of the error needs to be identified and nec-
essary modifications made to the instrument to get the accepted values. In general, it
is not proper to compensate for any experimental and/or instrumental uncertainties that
are evident by comparison with an accepted standard by applying a simple additive or
multiplicative correction factor without some justification. Two recent reports of CPL
measurements need to be examined in the light of the discussion in the previous para-
graph. Coughlin et al. assumed that any instrumental and experimental errors could be
corrected by adjusting the experimental values of �I and I for their CPL measurements
with an additive factor determined from the measurement of the glum value of a racemic
mixture of a luminescent bipyridyl hemicage complex [33]. The idea was that one would
expect that a compound existing as a racemic mixture of both of its isomers in solution
would result in no emitted circular polarization (a glum value of 0 should be obtained)
assuming perfect operating conditions for the instrumentation. Since the authors recorded
a glum value of −7.9 × 10−5, they concluded that all of their CPL measurements should
be corrected by this amount. This might be a valid approach, for example, if there
was a slight phase offset from the modulation phase and the gated counter time win-
dows. However, the accuracy and precision of CPL measurements are sample-specific
and wavelength-dependent, since each compound may respond differently to the various
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sources of error in polarization measurements that one may encounter. Note also the
discussion in the next section concerning the presence of linear polarization. A similar
concern is appropriate for experimental determination of glum values in the CPL study by
Matsumoto et al. [34]. The experimental glum values of their Eu(III)-containing systems
were corrected with a multiplication factor that was determined using the known glum

value of the Eu(facam)3 standard.

3.5. ARTIFACTS

3.5.1. Artifacts in CPL measurements

The principal source of artifacts in CPL spectroscopy is linear polarization in the lumi-
nescence beam. These effects should not be confused with the presence of a nonisotropic
orientational distribution of luminescing species. In this latter case, one might be mea-
suring the CPL of an oriented system that will most probably give different results than
one would get from an isotropic system [35]; however, as long as the sample is isotropic
in the plane perpendicular to the direction of emission detection, there will be no linear
polarization in the 12 plane, and one would see no associated artifact signal. This, for
example, is the situation encountered in the measurement of the CPL from chiral triary-
lamine helicenes by Field et al. [36] in which the authors used an excitation beam that
was linearly polarized along the laboratory 3 axis to ensure no linear polarization in the
12 plane. Another approach was taken by Tsumatori et al., who excited their samples
of chiral derivatized perylene aggregates at 0◦ in an epiluminescence measurement [37].
These authors depolarized the Ar-ion laser beam used for excitation to ensure no linear
polarization in the luminescence.

It has long been recognized that the main source of artifacts in CPL measurements is
the passing of linearly polarized light through the very slightly birefringent PEM [7, 38].
Even though this birefringence is usually small (<5%), it may lead to a signal of com-
parable magnitude to many true CPL signals, since the extent of linear polarization is
usually very much larger. Some success has been obtained in eliminating linear polar-
ization effects by rotating the PEM and linear polarizer such that the birefringent axis of
the PEM is parallel to the plane of polarization of the emitted light, or by using specific
combinations of excitation/emission geometries and linear polarizers, for example, situ-
ated at so-called “magic angles” [25]. However, it is our experience that one can only
be confident of the accuracy of a CPL measurement by verifying by experiment that
the emitted light contains no linearly polarized component in the plane perpendicular to
the emission direction. It is unfortunate that some of the earliest reports of CPL are the
consequences of this artifact, and not due to molecular chirality.

The experimental consequences of the presence of linear polarization has limited
the usefulness of CPL spectroscopy in studies involving fluorescence from chiral organic
luminophores. Our attempts to overcome some of these problems through preparation of
isotropic samples have had limited success. We have been able to measure CPL from
lanthanide complexes dissolved in sol–gels [39], but all attempts to work with chiral
molecules in KBr matrices have been unsuccessful. There have, in fact, been two recent
reports of CPL from chiral organic molecules prepared in KBr, but these results have not
been confirmed with racemic mixtures or by comparison with known solution samples
[40, 41].

It is the case, however, that to date, no one has observed linear polarization in the
luminescence from lanthanide (III) ions in ordinary solutions. This is due to the nature
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of the electronic transitions involved and the fact that the lifetimes of the luminescent
lanthanide (III) ions are long, allowing for any initial photoselected orientational distri-
bution to randomize in the time between excitation and emission. It should be noted that
Meskers et al. did report linear polarization in the individual crystal field components of
an Eu(III) complex that had been prepared in a very viscous solution [42].

3.5.2. Artifacts in EDCD measurements

As mentioned earlier in this chapter, one of the difficulties that has impeded the use
of EDCD spectroscopy is the artifacts caused by linear polarization. Again, here we
should distinguish the normal effect of photoselection from the consequences of imperfect
optical devices. Luminescence collected at right angles to the direction (1) of circularly
polarized excitation by a single detector will lead to intensities that reflect differences
in the distribution of emitting molecules that are oriented parallel versus perpendicular
to the plane (23) of excitation. In the case of perfect alignment and optics, there should
be no modulation of the total luminescence caused by this orientational distribution, but
one would need to interpret the results as being from a nonisotropic sample. Comparison
to CD results from isotropic solution would be somewhat problematic.

The polarization-induced artifact in EDCD measurements is caused by imperfections
in the incident circular polarization modulation leading to some residual linear polariza-
tion [26, 43]. In principle, this artifact can be eliminated with the use of the two-detector
scheme of Hug [26] that was effectively utilized by Lobenstein and Turner [43], or with
the use of the ellipsoidal mirror configuration employed in the JASCO instrument [28].

3.6. EXAMPLE APPLICATIONS

The example applications presented in this section have been chosen to highlight the
utility of CPL and EDCD to provide unique information concerning the chiral structure
or structural changes to a range of molecular and biomolecular systems. For a more
thorough treatment of the variety of applications of this chiroptical measurement, the
reader is referred to the several reviews of CPL spectroscopy that have been published
in recent years [7, 9, 12].

3.6.1. CPL

Although CPL spectroscopy has been a useful probe of some luminescent chiral organic
molecules, liquid crystals, and polymers, the literature in the last 20 years is dominated by
applications involving luminescent lanthanide (III) ions, particularly Eu(III) and Tb(III).
These species are especially suited for CPL because of their long excited-state lifetimes,
extremely narrow emission and absorption bands that are easily recognizable and well
separated from the broad fluorescence bands of any organic fluorophores that may be
present in the solution, the usually large Stokes shift, and, probably most importantly,
the presence of formally forbidden intraconfigurational f – f transitions that often show
large circular polarization.

Many of the most recent applications of CPL from chiral lanthanide (III) contain-
ing systems have been driven by efforts to develop selective and sensitive probes of
biomolecular structure [9, 12, 44]. Some of this work has involved the characterization
of the structure, spectroscopic properties, and excited-state energetics of new chiral lan-
thanide (III) complexes, and other work has focused on the use of these chiral sensors
as probes of specific biomolecular structure and dynamics.
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3.6.1.1. CPL and Luminescence Selectivity. Unlike CD spectroscopy where all
the absorbing chromophores contribute to the observed differential absorption measure-
ment, CPL spectroscopy is limited to luminescent species. For example, in proteins the
CD must be interpreted in terms of an average structure over the entire macromolecule
reflecting a large number of chromophores in a multitude of different chiral environments.
On the other hand, CPL measurements involving intrinsic fluorescence reflect the chiral
environment surrounding the very few aromatic residues that emit [4]. In a similar way,
the CPL from lanthanide (III) ions used as substitutional replacements for Ca(II) reflect
the chiral structure surrounding the metal-ion binding sites [45, 46]. This selectivity has
also been observed in small-molecule studies. For instance, Lunkley et al. recently showed
the importance of using CPL for studying only luminescent chromophores present in solu-
tions containing cesium and sodium tetrakis(3-heptafluoro-butylryl-(+)-camphorato =
(+)-hfbc) Eu(III) complex solutions, MI[Eu · (+)-hfbc4] (MI = Na or Cs), in EtOH.
These authors showed a concentration-dependent exciton CD due to the dissociation of
the tetrakis (+)-hfbc Eu(III) compound into the tris (+)-hfbc Eu(III) complex. The for-
mer species exhibited a strong CPL activity in solution, whereas the CPL activity of the
latter compound was negligible [47].

It is obviously important to interpret CPL results in light of the selectivity of this
technique and the manner of detection. Hilmes and Riehl have shown, for example, that
the total luminescence intensity and CPL from a so-called “mixed” solution of Tb(III)
with dipicolinic acid (DPA) and l-malic acid come from different species [48]. The total
luminescence comes almost exclusively from tris Tb(DPA)3

3− and the CPL comes from
some unknown mixture of Tb(III), l-malic acid, DPA and water. One must not simply
divide �I by I in this system and interpret the result in terms of a single solution species.

3.6.1.2. CPL as a Chiral Structural Probe. Although the development of useful
correlation between the CPL spectrum and chiral structure is still limited, there has been
some useful information obtained. Bruce et al., for example, have studied well-defined
DOTA-based macrocyclic Eu(III) complexes and showed that the sign and magnitude
of CPL are affected by the degree of helical twist of the complex, the nature of the
ligand field, and the axial donor group solvation [49]. These authors showed that the
local helicity at the Ln(III) center is related to the angle, φgn , between the electric-dipole
(|Pgn |) and magnetic-dipole (|Mng |) transition moment vectors and, therefore, the rotatory
strength, Rgn , associated with a given transition between two states g and n as described
below.

Rgn = |Pgn ||M ng | cos φgn . (3.24)

The rotatory strength can be shown to have a sin 2θcos 2θ (or sin 4θ ) dependence, where
θ is the twist angle between the N4 and O4 planes of the DOTA ring. It is, therefore,
predicted to vanish at 0◦, 45◦, or 90◦ and to be a maximum at ±22.5◦ for square-
antiprismatic complexes (SAPR) (see Figure 3.8). This latter value is closer to twist
angles determined by crystallographic analysis for twisted square antiprismatic isomers
(∼28◦) than those associated with regular square antiprismatic species (∼40◦).

Working along these lines, Lunkley et al., who reported the largest glum value
(glum (595 nm) of +1.38) ever observed for any CPL studies of Ln(III)-containing com-
pound solutions described in the literature, explained that the constant CPL activity of
the tetrakis (+)-hfbc Eu(III) complex was due to the helical �-SAPR(C4) arrangement
of the four (+)-hfbc ligands in the compound of interest [47]. This result is shown in
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Figure 3.9. In addition, they also showed that the solvent and alkali metal ion effects
were due to the difference in susceptibility to solvation toward the alkali metal ion, but
not toward the Eu(III) ion, unlike the case of axially symmetric DOTA-type complexes
described by Bruce et al [49]. This conclusion was corroborated by the observation that
the helical �-SAPR(C4) arrangement of the four (+)-hfbc ligands in CH3Cl and EtOH
accounted for the CPL pattern of the MI-Ln complexes, which in turn was controlled
by the alkali metal ion sizes. The ninefold decrease in the magnitude of the CPL signal
of the Na–Eu compound resulted from a less chiral environment for the Eu(III) ion
in the Na–Eu compared to Cs–Eu. In addition, the authors indicated that the constant
and large CPL activity substantiated the stereospecific formation of chiral �-SAPR-(C4)
configurations with the aid of MI · · · FC (fluorocarbon) interactions as revealed by the
X-ray analysis more clearly than the exciton CD spectra.

CPL has also been proven useful to monitor the formation of luminescent chi-
ral aggregates from chiral monomers. A considerable amount of this work is aimed at
developing a controllable molecular source for circularly polarized light. Tsumatori et al.
have shown aggregation of chiral perylene derivatives as a function of concentration by
observing increasing glum values as large as +0.006 for the excimer transition of these
coupled aromatic systems [37]. Kawagoe et al. have employed CPL and CD to monitor
the formation of chiral polymer structures by the addition of (R)- and (S )-limonene to
achiral polymers [50]. In another interesting application, Goto and Akagi used CPL to
monitor the formation of optically active conjugated polymers containing thiophene sub-
units prepared from achiral starting material in a chiral nematic solvent [51]. Especially
for weakly luminescent organic systems, care must be taken to avoid photodegradation
and photoracemization due to extended excitation exposure. This was seen, for example,
by Solntsev et al. in a study involving chiral BINOLs [52]. In a more indirect approach,
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Montgomery et al. used CPL from lanthanide complexes to probe certain aspects of
protein structure; this work resulted in the discovery of a very unique chiroptical probe
for serum albumin binding [53]. They showed that the �-conformer of the Ln(III) com-
plexes with the enantiopure ligand (SSS )-1 (Figure 3.10) bound selectively to “drug site
II” in serum albumin. The novelty was that this binding process resulted in an inversion
of the complex helicity (� to �), as signaled by a sign change in the CPL spectra, and
was only observed for the Eu(III) and Tb(III) compounds with (SSS )-1 and its analogues.
No dynamic helicity inversion was observed for the related complexes with (RRR)-1, nor
in the presence of excess of various substrates such as B - or Z -DNA, chiral anions (i.e.,
tartrate, lactate), (S )- or (R)-α-phenylsuccinate, or cyclodextrins. These findings were
corroborated by the lack of changes in the sign and form of the measured CPL signals.

3.6.1.3. CPL from Racemic Mixtures. One of the unique aspects of CPL spec-
troscopy is the ability to study racemic mixtures. In this application, a circularly polarized
excitation source is used to generate a nonracemic excited (emitting) state from a racemic
ground sate by polarization-selective excitation. These experiments are successful only
if the nonracemic excited state is shorter than the time required for racemization. Hilmes
and Riehl [54] have shown that the measured glum value for the racemate is related to
the CD and CPL of the individual enantiomer as follows:

gL
lum(λ) = −1

2
gR

abs(λ
′)gR

lum(λ) (3.25)
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where we have designated the excitation wavelength as λ′. Because this measurement
depends on the product gabs glum , and the detection limits of CPL are usually >10−4,
the experiment is limited to transitions with large dissymmetry values. Perhaps, the best
example of this kind of experimental study are the numerous reports involving the 9-
coordinate tris-terdentate complex of Ln(III) ions with 2,6-pyridine-dicarboxylate (DPA)
derivatives. For example, CPL following circularly polarized excitation confirmed that the
[Eu(DPA)3]3− complex species exists as a racemic mixture of structural enantiomers, �

and �, in basic aqueous solution that do not racemize significantly during the excited state
lifetime at room temperature, but have been observed to racemize at higher temperatures
from steady-state [55] and time-resolved [56] CPL measurements.

3.6.1.4. CPL as a Probe of Specific Molecular Chirality. Perturbation of the
well-studied racemic equilibrium between the � and � enantiomers of the tris-terdentate
complexes of lanthanides with DPA and related ligands through the addition of chiral
“environment” compounds (the so-called Pfeiffer effect) has been exploited as a means
of probing specific chiral structural aspects of the chiral additive. This work has involved
a variety of optically active organic molecules such as tartrate substrates, amino acid, or
sugar derivatives that are presumed to be involved in outer-sphere coordination [9, 44,
54, 57–69]. In these studies it is assumed here that the effect of adding chiral species (C∗)
results in the preferential formation of diastereomeric outer-sphere association complexes
[66]. The three relevant equilibrium expressions are defined as follows:

�-Ln(DPA)3
3− � �-Ln(DPA)3

3− (Krac = 1) (3.26)

�-Ln(DPA)3
3− + C ∗ � �-Ln(DPA)3

3− : C ∗ (K1) (3.27)

�-Ln(DPA)3
3− + C ∗ � �-Ln(DPA)3

3− : C ∗ (K2) (3.28)

where the outersphere association complex is denoted by a colon (:). Any success in
using the direction of perturbation to determine chiral structure hinges on the ability
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to understand the complex interactions between the chiral adduct and the enantiomeric
metal complexes.

A significant amount of work has been focused on using this technique to probe
chiral aspects of amino acid structure. For example, Muller et al. showed that the CPL
sign and magnitude of specific Ln(III) transitions are dependent upon several factors
and not simply the chiral identity of the enantiomerically pure amino acid [59]. They
observed that (i) some simple modifications in the chiral adducts did not change the
sign of the CPL signal (the same enantiomeric form was favored) and (ii) the magnitude
of the CPL signal was influenced by the presence of additional aromatic groups in the
perturbing molecule. It is clearly important in these systems to understand the effect
of the various noncovalent chiral discriminatory interactions such as hydrogen bonding,
coulombic forces, π -stacking, hydrophobic effects, experimental conditions (i.e., pH,
temperature, ratio of system of interest to amino acid), and steric effects on the CPL sign
and magnitude.

Working along these lines, Moussa et al. recently demonstrated that the chiral
recognition of l-amino acids can be modulated by the nature of the ligand interface
of the racemic 9-coordinate terbium(III) complexes and, in particular, by varying the
substituent in the para-position of the pyridine ring of DPA [70]. For instance, the
hydrogen-bond character of the negatively charged hydroxyl group in chelidamic acid,
the para-hydroxylated derivative of DPA, led to a larger “Pfeiffer effect” with l-amino
acids (i.e., l-proline or l-arginine) susceptible to form hydrogen bonds with negatively
charged groups, while these hydrogen-bonding effects were less important with DPA. In
another recent study, Kosareff et al. examined the chiral recognition of solutions con-
taining various equivalents of l- and d-serine. Although their qualitative results are of
a preliminary nature, they confirmed that CPL spectroscopy has potential for the chiral
recognition of optical isomers of a given amino acid [12, 71].

3.6.1.5. CPL from Ln(III) Complexes with Chiral Ligands. One common use
of CPL spectroscopy is to investigate solutions containing luminescent complexes to
determine whether or not the source of the luminescence is one particular complex or a
mixture of species. If only one emitting species contributes to the luminescence observed
in the sample, then the CPL results should be independent of excitation polarization
(i.e., left-, right-, or plane-polarized light). On the other hand, had the complex solution
contained a mixture of species, the CPL signal would be dependent on the polarization
of the excitation beam and, also, whether direct or indirect excitation would have be used.
The usefulness of such experiments has recently being proven. Samuel et al. confirmed
the diastereopurity of Tb(III)-containing compounds with chiral tetrapodal octadentate
ligands containing 2-hydroxyisophtalamide (IAM) antenna chromophores and utilizing
diaminocyclohexane (cYLI) and diphenylethylenediamine (dpenLI) backbones [72]. The
CPL measurements confirmed the presence of a single and multiple emissive species in
solution for the 2:1 cyLI-Tb and dpenLI-Tb compounds, respectively. The CPL signal of
the former complex solution was similar whether direct or indirect excitation was used
(consistent with one single emitting species in solution), whereas the glum values of the
dpenLI-Tb solution were dependent on the polarization of the excitation beam and on
whether direct or indirect excitation was used. These findings were confirmed by the
lifetime data, which indicated the presence of two emitting species for dpenLI-Tb that
differed in their hydration number, and, consequently, in their coordination environment.
It should be noted that NMR is often used for assessing the diastereopurity of chiral
systems. In addition to the sample requirement for NMR measurements, it is often the
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case that Ln(III) complexes, namely Eu(III) and Tb(III), cannot be investigated in this
way due to their strong paramagnetic nature. This is the reason why the CPL technique
is suitable for a detailed examination of the diastereopurity of chiral Ln(III) systems, as
demonstrated in this study.

3.6.2. EDCD

The measurement of the CD through the measurement of differential luminescence inten-
sity is most suited for situations in which one is interested in exploiting the enhanced
sensitivity and selectivity of luminescence methods. In the best cases, specific local chiral
information may be obtained concerning the structure and environment of a luminescent
chromophore without the presence of overlapping absorption CD bands that in large sys-
tems need to be interpreted in terms of an average structure. In other situations, EDCD
(or FDCD) gives one the ability to probe chirality of substances only available in minute
quantities.

Early applications of this technique focused on the selectivity. For example, Lobens-
tine et al. reported on the chirality of single fluorescent tryptophans in a series of proteins
[27]. Although exploitation of EDCD has been limited due to data analysis and linear
polarization caused artifacts, there has been some recent success in studying luminescent
chiral systems composed of interacting transition dipoles [73, 74]. Applications of this
type, in which so-called exciton coupling theory may be applied, have been shown to
provide accurate chiral structures with a large increase in sensitivity than conventional
electronic CD when using the ellipsoidal mirror attachment available from JASCO [75].

Until recently, all of the measurements of this type could properly be classified as
based on fluorescence detection. The transitions involved all had very short lifetimes
(fluorescence), and as a result the modulation frequency for the exciting beam (typically
50 kHz) for a photoelastic modulator was slow enough compared to the excited-state life-
time that the emission detected within the polarization time window could be associated
with the excitation event in the identical window. Transitions with long-lived emitting
states, such as those observed with many luminescent lanthanide (III) species, present
a challenge because of the fact that widely used PEM devices are changing incident
modulation every 10 μs whereas the lifetime of many complexes are on the order of mil-
liseconds. Muller et al. have recently showed how a liquid crystal polarization modulator
with a cycle time of seconds could be used to measure the EDCD of an aqueous solution
of Eu(DPA)3

3− in which a chiral excess had been generated through the addition of a
large excess of the noncoordinating chiral environment compound (+)-dimethyltartrate.
These authors compared their results to the CD and CPL of the same transition as is
illustrated in Figure 3.11 [24, 76]. The CD and EDCD spectra correspond to the intra-
configurational f ↔ f transition from the thermally excited 7F1 state to the nondegenerate
5D0 excited state, and the CPL spectrum is for the reverse transition. The differences
in relative height between absorption and emission of the two crystal field components,
corresponding to the splitting of the 7F1 state, reflect the fact that in absorption the two
states (in D3 symmetry) have a Boltzmann distribution.

Very recently there have been several reports on the ultimate sensitivity of measuring
the EDCD from a single chiral helicenes molecule [77–79]. The authors report a distri-
bution of dissymmetry ratios, along with an average dissymmetry that was significantly
different from that determined from a bulk solution. They have interpreted this result as
reflecting the CD of an oriented single luminescent chiral molecule [78]. This is obviously
a difficult measurement, especially considering the artifacts associated with the presence
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of linear polarization that have plagued the measurement of EDCD in normal solutions.
Tang et al. have commented that they were unable to reproduce theses single molecule
chiroptical results, and concluded that Hassey et al. had not properly accounted for the
effects of linear polarization [80]. This is currently an area of some dispute [81, 82].

3.7. SUMMARY

The measurement of the circularly polarized component in the luminescence from chiral
molecules, along with the use of luminescence to monitor the differences in absorption
of circularly polarized light, may provide unique information concerning chiral structure
in certain applications. Advances in EDCD instrumentation, especially the commercial
availability of the ellipsoidal mirror to both eliminate polarization artifacts and collect
more of the luminescence, should lead to more applications of this technique especially
for chiral samples only available in small quantities that can be chemically derivatized
with luminescent chromophores that lend themselves to exciton coupling analysis. The
continued development of EDCD involving long-lived lanthanide (III) species also shows
promise to be an important chiral structural probe due to the large dissymmetry ratios
that can be observed from these ions.

CPL applications in recent years have been dominated by applications involving
luminescent lanthanide (III) ions, and there is no indication that this will change in
the near future. Instrumentation for this measurement is becoming more available or
easier to construct in one’s own laboratory. What is most needed is the development of
reliable correlations between CPL spectra and absolute chiral structure. The nature of
the f electronic state makes this effort quite difficult, although some progress has been
made in relatively high-symmetry species [66]. The lanthanide complexes that are being
used as chiral structural probes tend to be very labile, so the experimental determination
of the absolute structure from the sign of the CPL measurement is often not possible.
There has been one recent example, however, in which this correlation has been made
[83]. Applications of CPL involving carefully constructed racemic or chiral luminescent
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complexes designed to probe specific aspects of biomolecular structure appears to be
a potentially fruitful area of research. Continued development of time-resolved CPL
instrumentation involving lanthanide (III) ions should also lead to interesting studies of
biomolecules on a time scale (0.1–10 ms) reflecting structural changes associated with
important biological processes.
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45. N. Çoruh, G. L. Hilmes, J. P. Riehl, J. Luminesc. 1988, 40–41 , 227–228.
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4
SOLID-STATE CHIROPTICAL

SPECTROSCOPY: PRINCIPLES AND
APPLICATIONS

Reiko Kuroda and Takunori Harada

4.1. INTRODUCTION

Chirality is generally measured in solution state, and the chiroptical spectra provide
useful information on the conformation and handedness of the constituent molecules as
well as their interactions with solvent. Historically, however, the phenomenon of optical
activity was first discovered in quarts crystals. As early as in 1811, Arago inserted a
quartz plate, which was cut perpendicular to the optic axis, between a polarizer and an
analyzer. When he rotated the polarizer or analyzer, he observed a spectrum of colored
image [1]. His colleague Biot showed [2] that this effect arises from the rotation of the
plane of polarization by the quartz crystal and that there are two forms of quarts, one
dextrorotatory and the other levorotatory, which induces the right-handed and left-handed
rotation of the plane, respectively. Quartz crystals are made up of Si and O atoms and
contain no chiral molecules. The helical arrangement of the Si and O atoms in the crystal
generates chirality.

Chiroptical spectroscopy, thus started in the solid state, has soon extended to the
liquid phase, first to chiral natural organic compounds such as turpentine oil and sucrose
solution. Chirality as a molecular characteristic was first revealed by Pasteur [3]. Now
the technique is extensively used in the field of organic chemistry, inorganic chemistry,
and biochemistry, but the measurements are carried out almost all in solution.

Recently, solid-state chemistry is flourishing as one of the frontier areas in chem-
istry and bringing new aspects. For example, solid-state crystallization often produces
crystals that are different from those obtained by solution crystallization [4–12]. We
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Simulations, First Edition. Edited by N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

91



92 COMPREHENSIVE CHIROPTICAL SPECTROSCOPY, VOLUME 1

have observed that co-grinding of crystals of benzoquinone (BQ) and rac-1,1′-bis-β-
naphthol (rac-BN) in the total absence of liquid produces a novel crystal adduct through
crystal sheering and molecular diffusion processes in the solid state [11a]. The crystal
thus obtained is structurally distinct from adducts obtained from solution, particularly
in terms of chiral discrimination. In both crystals, the triplet structure is found, where
BQ is sandwiched by the naphthol rings of the two BN molecules in a near-parallel
manner; however, in the crystals obtained in the solid phase, a racemic pair of BN forms
the triplet, whereas, in the crystals produced in solution, a chiral pair of BN does. The
hydrogen bonds which are present between the neighboring homochiral BN molecules
within a helix in the rac-BN crystals are severed and new hydrogen bonds are formed
among two BN of neighboring opposite-handed helices and an incoming BQ molecule.
We have found many more examples of phase-dependent crystal formation in the series
of charge transfer complexes [11b–f]. We envisage that the different behavior arises from
the memory of the partial structure of the original crystal, and hence the phenomenon is
conceptually very interesting [11f].

Photoreaction in the solid state sometimes achieves what solution chemistry cannot
afford in terms of stereoselectivity and reaction yield [13–15]. Recently, we have found
that molecules under the strong influence of neighboring molecules in a fixed orientation
can adopt different reaction pathways and hence produce different reaction product from
those of solution reactions [16]. Enantioselective reactions can be achieved sometimes
only in chiral crystals. Furthermore, biomolecules in vivo may adopt structures that are
different from those observed in aqueous buffered solutions in vitro. Particularly, for
proteins/peptides such as β-amyloids whose aggregation is relevant to neurodegenerative
diseases [17], the difference is expected to be big, and hence structural information in
condensed phase is of necessity.

Thus, solid-state spectroscopy provides indispensable information on solid-state
structures, supramolecular properties, and dynamics which is not obtainable from the
conventional solution spectroscopy. However, very few solid-state chirality measure-
ments have been reported to date [18–26]. This is because measurement of chiroptical
properties in the solid state using commercially available circular dichroism (CD) and
circular birefringence (CB = optical rotatory dispersion (ORD)) spectrophotometers is
extremely difficult [27–29]. Chiroptical spectra are necessarily accompanied by artifacts
that originate from the interaction between the macroscopic anisotropies of a sample
such as linear birefringence (LB) and linear dichroism (LD) which are unique to the
solid state, and the non-ideal characteristics of polarization–modulation instruments
[28–30]. One exception is the measurement of a crystal along its unique optic axis,
wherein the chiroptical signals are free from anisotropic effects [18, 19, 24, 25, 29, 30].
Taking the advantage of the fact, Mason [24], Judkins [26], and Kuroda [18, 19] studied
transition metal complexes of D3 symmetry which often crystallize in trigonal space
groups with their molecular C3 axis parallel to the crystal optic axis. By combining
single-crystal CD and microcrystalline CD in a KBr matrix, Kuroda assigned the two
components of the first d –d transition band of Co(III) and evaluated the rotatory
strengths, which cannot be achieved with solution spectra because the two components
are opposite in sign and overlap substantially resulting in severe cancellation of the
peaks [18, 19, 29].

These uniaxial crystals are an exception where optic and crystal axes are common. In
the case of biaxial crystals in which most compounds are crystallized, there is no simple
relationship between the two axes, and thus it is almost impossible to find optic axis and
polish crystals perpendicular to the axes. Thus, to obtain true CD and CB spectra of solid
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samples in general, we must either take away the parasitic artifacts from the observed
spectra or devise a very special technique to detect artifact-free signals. Currently we are
challenging the latter approach, developing a MC (multichannel) CD spectrophotomer
[31] as well, which we shall discuss only briefly in Section 4.5. In this review, we shall
mainly focus on the former technique we have been working on for a long time. By
using the Stokes–Mueller matrix method that is particularly effective in understanding
the physical meaning of signals observed in polarization–modulation spectroscopy, and
in evaluating an instrument’s performance, we have succeeded in designing and con-
structing a solid-state applicable chiroptical spectrophotometer (UCS-1:J-800KCM) [32].
Although it is based on the electrical and optical systems of a commercially available
CD spectrophotometer (JASCO: J-820), the instrument is unique with two lock-in ampli-
fiers (50 and 100 kHz) and an analyzer and is capable of measuring all polarization
phenomena (i.e., LB, LD, CB, and CD) simultaneously.

UCS-1 is highly useful for measuring true CD and CB spectra of single crystals;
however, we cannot always obtain single crystals big enough for the UCS-1 measure-
ment. Furthermore, as described above, co-grinding of two kinds of crystals may produce
microcrystallines of a new phase, which is different from crystals obtained from solution
crystallization [4–12]. In these cases, chiroptical measurements must be carried out on
the microcrystallines using either the KBr disk or the nujol-mull method. However, the
methods sometimes suffer from reactions with the matrix material as reported by Braga
[33] or dissolution of samples in nujol. We ourselves have noticed the collapse of crystal
lattices by simple grinding of microcrystallines [34]. Thus, it is ideal to measure CD
spectra of microcrystallines in situ . For this purpose, diffuse reflectance (DR) spec-
troscopy is the most suited. It is applicable to all crystallines irrespective of the size as
well as to noncrystalline materials. The DRCD spectrophotometer was first developed
by Biscarini and Kuroda et al. in 2002 [35]. However, due to the arrangement of the
optical trains in the instrument and the low grade of the optical elements used, the CD
measurement was limited to the visible wavelength range and the sensitivity was low.

To achieve high-quality in situ chirality measurements over a wide wavelength range
with a higher sensitivity, we have designed and built UCS-2 (J-800KCMF) [36]. In fact,
UCS-2 is designed as a dual-purpose spectrophotometer to measure not only DRCD
but transmittance CD as well. It has a right-angle prism that makes it possible to set a
sample on a horizontal stage, ideal to carry out measurement of loose powders and soft
materials that suffer from gravity, or time-dependent measurements of liquid, mesophase,
and condensed phases. Like UCS-1, UCS-2 is also equipped with two lock-in amplifiers
(50 and 100 kHz) and an analyzer to measure LB, LD, CB, and CD simultaneously in
the transmittance mode.

Although UCS-2 spectrophotometer is versatile and powerful for the measurement
of DRCD spectra of powdered materials in situ , it has a limited spectral region of
250–800 nm, as the light intensity decreases sharply below 250 nm. To expand DRCD
measurements down to 190 nm with high efficiency, we have improved UCS-2 and
constructed UCS-3 (J-800KCMFII) [37].

In this chapter, theoretical background and instrumentation of UCS-1, -2, and -3,
and their applications to organic, inorganic, and bio-related materials will be described.

4.2. THEORETICAL BACKGROUND [32]

For designing spectrophotometers and analyzing signals observed, we employed the
Stokes–Mueller matrix method [38] and the Storks vector, S = [S0, S1, S2, S3], which
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expresses the polarized light. S0, S1, S2, and S3 indicate the total intensity, plus 45◦

preference, right-circular preference, and horizontal preference, respectively. By investi-
gating the changes of the Storks vector after passing through the optical elements and
a sample, we can easily find a polarization state of the coming out light. The Mueller
matrix is the 4 × 4 matrices that was devised to express the optical characteristics of
optical elements and a sample. Using the matrix calculation of D̂ · Ŝ(θ) · M̂ · P̂ · Î0, (D ,
photomultiplier; S , sample; M , photoelastic modulator; P , polarizer; and I0, incident
light), the signals observed of a sample having CD, CB, LD, and LB can be expressed
as

Id = D̂ · Ŝ(θ) · M̂ · P̂ · Î0

= 1

2
e−AeI0(P

2
x + Py

2){1 + 1

2
(LD′2 + LD2) + [CD + 1

2
(LD′LB − LB′LD)] sin(δ + α)

+ (LD′ sin 2θ + LDcos 2θ) cos(δ + α)} + 1

2
I0(Px

2 − Py
2) sin 2a{−LD′ cos 2θ

+ LDsin 2θ + (LB′ sin 2θ − LBcos 2θ) sin(δ + α) + [−CB

+ 1

4
(LD2 + LB2 − LD′2 − LB′2) sin 4θ + (LD′LD + LB′LB) cos 4θ ] cos(δ + α)}

+ 1

2
I0(Px

2 − Py
2) cos 2a{(−LD′ sin 2θ − LDcos 2θ)

+ (LB′ cos 2θ − LBsin 2θ) sin(δ + α) − [1 + 1

4
(LD2 − LB′2 − LD′2 + LB2) cos 4θ

+ 1

2
(LD′LD + LB′LB) sin 4θ ] cos(δ + α)}. (4.1)

Here, CB, LD, LD′, LB, and LB′ are circular birefringence, (x –y) linear dichroism, 45◦

linear dichroism, (x –y) linear birefringence, and 45◦ linear birefringence, respectively.
Px

2 and Py
2 are the transmittance of the photomultiplier along the x and y directions,

and “a” is the azimuth angle of its optical axis with respect to the x axis. θ is the
rotation angle of the sample, and α is the residual static birefringence of the photoelastic
modulator (PEM). δ is the periodic phase difference between the x and y axes of the
PEM operating frequency ω/2π and is adjusted so as to act as a quarter-wave plate,

δ = δm
0 sin ωmt , (4.2)

where δm
0 is the peak modulator retardation and in ordinal cases, ω/2π is 50 kHz. We

can expand cos δ and sin δ in a Fourier series,

sin(δm
0 sin ωmt) = 2J1(δm

0) sin ωmt + 2J3(δm
0) sin 3ωmt + . . . , (4.3)

cos(δm
0 sin ωmt) = J0(δm

0) + 2J2(δm
0) cos 2ωmt + . . . , (4.4)

where

cos(δ + α) = 2J2(δm
0) cos 2ωmt · cos α − 2J1(δm

0) sin ωmt · sin α + J0(δm
0) cos α . . . ,

(4.5)

sin(δ + α) = 2J1(δm
0) sin ωmt · cos α + 2J2(δm

0) cos 2ωmt · sin α + J0(δm
0) sin α . . . .

(4.6)
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Jn(δm
0) are Bessel functions of nth order. Hence, the 50-kHz signal detected at the

photocurrent detected by the lock-in amplifier can be expressed as

Signal50 kHz = G1(Px
2 + Py

2)[CD + 1/2(LD′LB − LB′LD)

+ (LD′ sin 2θ − LDcos 2θ) sin α]

+ G1(Px
2 − Py

2) sin 2a{LB′ sin 2θ − LBcos2θ

+ [−CB + 1

2
(LD2 + LB2 − LD′2 − LB′2) sin 4θ

+ (LD′LD + LB′LB) cos 4θ ] sin α}
+ G1(Px

2 − Py
2) cos 2a{LB′ cos 2θ − LBsin 2θ

− [1 + 1

4
(LD2 − LB′2 − LD′2 + LB2) cos 4θ

+ 1/2(LD′LD + LB′LB) sin 4θ ] sin α}, (4.7)

where G1 is the apparatus constant related to the sensitivity of the spectrometer. Terms
multiplied by sin α are negligibly small because a PEM having a smaller residual static
birefringence (α = 0.2) was used in our CD spectrophotometer. We can also neglect the
contribution of the term containing cos 2a , because the photomultiplier (PM)’s azimuth
angle was set so as to make cos 2a ≈ 0 in the baseline calibration. Thus, a 50-kHz signal
is written as

Signal50 kHz = G1(Px
2 + Py

2)[CD + 1

2
(LD′LB − LB′LD)]

+ G1(Px
2 − Py

2) sin 2a(LB′ sin 2θ − LBcos2θ). (4.8)

Similarly, the 100-kHz component of the photocurrent detected by the lock-in amplifier
is given as

Signal100 kHz = G2(Px
2 + Py

2){LD′ sin 2θ − LDcos 2θ

+ [CD + 1

2
(LD′LB − LB′LD)] sin α}

+ G2(Px
2 − Py

2) sin 2a{−CB + 1/4(LD2 + LB2 − LD′2 − LB′2) sin 4θ

+ (LD′LD + LB′LB) cos 4θ + (LB′ sin 2θ − LBcos2θ) sin α}

+ G2(Px
2 − Py

2) cos 2a{1 + 1

4
(LD2 − LB′2 − LD′2 + LB2) cos 4θ

+ 1

2
(LD′LD + LB′LB) sin 4θ + (LB′ cos 2θ − LBsin 2θ) sin α}. (4.9)

In the same way as the 50-kHz signal, the above equation can be expressed as

Signal100 kHz = G2(Px
2 + Py

2)(LD′ sin 2θ − LDcos 2θ)

+ G2(Px
2 − Py

2) sin 2a{−CB + 1

4
(LD2 + LB2 − LD′2 − LB′2) sin 4θ

+ (LD′LD + LB′LB) cos 4θ}. (4.10)

Here G2 is the apparatus constant related to the sensitivity of the spectrometer at 100 kHz.
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When an analyzer with 45-degree optical axis was inserted into optical path, from
a matrix calculation of D̂ · Â · Ŝ(θ) · M̂ · P̂ · Î0, the light intensity, Id , detected by photo-
multiplier can be expressed as

Id = D̂ · Â · Ŝ(θ) · M̂ · P̂ · Î0

= 1

4
e−AeI0{(Px

2 + Py
2) + (Px

2 − Py
2) sin 2a}{1 + 1

2
(LD2 + LD′2)

− (LD′ cos 2θ + LDsin2θ) + [CD + 1

2
(LD′LB − LDLB′)

− (LBcos2θ + LB′ sin 2θ)] sin(δ + α) − [(LD′ sin 2θ + LDcos 2θ) − CB

+ 1

2
(LD2 + LB2 − LD′2 − LB′2) sin 4θ

+ (LDLD′ + LBLB′) cos 4θ ] cos(δ + α)}. (4.11)

In the same way as without an analyzer, the 50-kHz signal detected at the photocur-
rent detected by the lock-in amplifier can be expressed as

Signal50 kHz = G3{CD + 1

2
(LD′LB − LDLB′) − LBcos2θ + LB′ sin 2θ}. (4.12)

where G3 is the apparatus constant related to the sensitivity of the spectrometer with the
analyzer inserted at 50 kHz. Similarly, the 100-kHz signal also can be expressed as

Signal100 kHz = G4{−LD′ sin 2θ + LDcos 2θ + CB

− 1/2(LD2 + LB2 − LD′2 − LB′2) sin 4θ

− (LDLD′ + LBLB′) cos 4θ}
= G4{CB + (LD2 + LD′2)1/2 cos(2θ + η)

− 1/2[(LB2 + LB′2) sin(4θ + γ )

+ (LD2 + LD′2) sin(4θ + ζ )]}. (4.13)

where η = tan−1[LD/LD′], γ = tan−1[LBLB′/ 1
2 (LB2 + LB′2)], and ζ = tan−1[LDLD′/

1/2(LD2 − LD′2)]. Here G4 is the apparatus constant related to the sensitivity of the
spectrometer with the analyzer inserted at 100 kHz. The 100-kHz signal contains not
only CB but also LD and LB terms and changes with θ during the sample rotation at
an arbitrary wavelength. If the contribution of LD is much larger than LB, the signal
changes with cos 2θ periodicity, whereas if the contribution of LB is much larger than
LD, the change follows sin 4θ periodicity [Eq. (4.13)]. Generally, LD is 10 times smaller
than LB, and thus Eq. (4.13) can be approximated as

Signal100 kHz = G4{CB − 1

2
(LB2 + LB′2) sin(4θ + γ )}. (4.14)

If there is no macroscopic anisotropy, Eqs. (4.8) and (4.14) give CD and CB, respectively,
and this is the case of solution experiments. In other cases, polarization phenomena, LB,
LD, CB, and CD, are intermingled with each other in several detecting modes. Based on
these analyses, apparatuses UCS-1, −2, and −3 have been developed.
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4.3. DEVELOPMENT OF NEW APPARATUSES

4.3.1. Universal Chiroptical Spectrophotometer UCS-1

To obtain true chiroptical signals by removing the parasitic artifacts from the observed
spectra, we have designed and constructed a solid-state applicable universal chiroptical
spectrophotometer (UCS-1: J-800KCM) based on the Stokes–Mueller matrix analyses
as described in Section 4.2.

Figure 4.1 shows the block diagram of the optical system of J-800KCM together
with the axis orientations of the optical and electric components. UCS-1 has the following
components: 450-W xenon lamp, pile of plate and PEM of JASCO J-820 CD spectrome-
ter, sample stage, sample holder, Halle Glan-Taylor polarizing prism (ZETA International
Corporation, TY-LS-10), Hamamatsu R-376 head-on type photomultiplier, lamp and pho-
tomultiplier power supply of JASCO, two lock-in amplifiers (SRS SR830 and JASCO),
two-pen recorder SS 250F (SECONIC), and phase-locked-loop (PLL) circuit.

Light emitted from a 450-W xenon lamp is monochromatized by a double-prism
monochrometor. The monochromatic light is converted to plane-polarized radiation hav-
ing an electric vector parallel to the Y axis by the polarizer. The linearly polarized light
passes through a PEM whose optic axis is at 45 degrees with respect to X and Y axis.
The PEM is modulated by the ac voltage V0 sin ωmt with the frequency ωm = 50 kHz
so as to act as a quarter-wave plate at arbitrary wavelength. Here, note that the linearly
polarized light modulated at 50 kHz and 100 kHz is converted into various unmodulated
and modulated polarized light [27]. After passing through a sample, the light emitted
from the sample passes through the analyzer and then falls on the photomultiplier. The
output from the photomultiplier is a dc signal superimposed by ac components modu-
lated. The dc level is kept at a constant value Vdc = 500 mV, independent of the total
amount of the light, by a servo control of a photomultiplier power supply through the
feedback of the dc component. The ac components are processed by using two lock-in
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Figure 4.1. Block diagram of the universal chiroptical spectrophotometer (UCS-1).
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amplifiers of JASCO and Stanford Research Systems. The signal processing is set up to
take the ratio of the ac to the dc signals. Electric signals processing by lock-in amplifiers
are transmitted into a two-pen recorder and a personal computer.

Using this instrument, we have measured several solid samples such as single crys-
tals of α-Ni(H2O)6 · SO4 [32, 39, 40], NaClO3 [40], and CaF2 [40], films of a polymer
(polyvinyl alcohol [39, 42]) and biopolymers (bovine serum albumin [43] and β-amyloid
peptides [44]), microcrystallines of porphyrin derivatives [45], chiral supramolecular flu-
orophores [46], and metal complexes [47], and obtained physicochemical information
that was not obtainable on commercially available CD spectrophotometers.

4.3.2. Dual-Purpose transmittance CD and Diffuse Reflectance CD
Spectrophotometers (UCS-2 and -3)

UCS-2 (J-800KCMF) [36] and UCS-3 (J-800KCMFII) [37] are designed as dual-purpose
spectrophotometers to measure DRCD as well as transmittance CD to achieve high-
quality in situ chirality measurements with high sensitivity over a wide wavelength range.
Because of this purpose, they have a unique design distinct from that of commercially
available CD instruments. A block diagram of UCS-2 is shown in Figure 4.2. UCS-2/3
have the following characteristics: (1) They can measure both DRCD and transmittance
CD, and for that purpose they house two photomultipliers; (2) they equip with two lock-
in amplifiers (50 and 100 kHz) and an analyzer so that it is capable of measuring all
polarization phenomena (i.e., LB, LD, CB, and CD) simultaneously in the transmittance
mode; and (3) they equip with an integrating sphere for the measurement of DRCD.
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45° Photoelastic modulator

Condenser lens

Collimator lens
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Lock-in amplifiers

Reference signal

PEM driver

2ω kHzω kHz

45°

A
Xe lamp Polarizer

90°

Stage contrller
Sample rotation
holder

Figure 4.2. Block diagram of a dual-purpose universal chiroptical spectrophotometer (UCS-2).
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The integrating sphere is a highly reflective enclosure that is placed in close proximity
to the sample, so that the incident light enters the sphere, bounces around the highly
reflective diffuse surface of the sphere wall, is reemitted after incident on samples, and
finally impinges upon the detector part of the integrating sphere assembly. (4) In situ
chirality measurement without any pretreatment can be carried out as a right-angle prism
is installed in the instrument, which makes it possible to set a sample on a horizontal
plane. This is ideal to carry out not only in situ measurements of solid samples including
loose powders without any pretreatment, but also time-dependent measurements of liquid,
mesophase, and fluid-type condensed phases.

By investigating the PEM position and selecting high-quality optical elements, we
could overcome the defect of the prototype DRCD spectrophotometer [35] and succeed
in developing a UCS-2 that can measure signals over the UV–Vis regions, 250–800 nm.
However, the spectral region is not satisfactory. The limit is mainly due to the large
decrease in the intensity of the light below 250 nm because of the size of the integrating
sphere (φ 120 mm in diameter) and the inappropriate material used for coating the inner
side of the sphere. BaSO4 used in UCS-2 shows a relatively high diffuse reflectance only
above 250 nm.

Thus, we have constructed UCS-3 [37], the substantially upgraded version of UCS-2
in the DR mode, which enables the DRCD measurements down to 190 nm with high
reflectivity and sensitivity. Optical components newly used in UCS-3 are the integrating
sphere of optimum size and material to achieve high performance, particularly in the
shorter-wavelength region. An integrating sphere (Labsphere Co. Ltd. Sutton, NH; IS-
020-SL; φ 2 inches (≈51 mm) in diameter) was adopted which is made of thermoplastic
resin spectralon, a material with reflectance higher than 95% for UV–vis wavelength
region. A baffle made of spectralon was installed to reduce the first specular reflection
signals, and a condenser lens was used to increase light intensity per area for small
samples. As a result, UCS-3 has become a very powerful instrument to measure DRCD
spectra of powdered samples in situ , with ≈20 times sensitivity of UCS-2. We could show
that to achieve similar-quality DRCD spectra, only 50 μg of (S )-(+)-1,1′-binaphthyl-2,2′-
diyl hydrogen phosphate is required on UCS-3, as compared with 1.12 mg for UCS-2 [37].

DRCD measurement mode can remove artifact signals arising from an LD that is not
coupled with LB. LB contribution cannot be measured on UCS-2/3 at the moment. Using
UCS-2/3, we have measured artifact-signal-free CD and DRCD spectra of several solid
samples such as microcrystallines and a co-grinding complex that exhibit supramolecular
chirality, [48] as well as β-amyloid peptides related to the neurodegenerative Alzheimer’s
disease, [44] to understand the molecular events underlying the protein aggregation.

4.4. APPLICATION TO SOLID SAMPLES

4.4.1. Method for True CD Measurement

As seen in Eq. (4.8), the apparent CD component of 1/2(LD′LB − LDLB′) is independent
of the rotation of the sample, whereas terms including the coupling of LB with the polar-
ization characteristic of the photomultiplier change with rotation of the sample. Taking
into consideration this fact, we have developed a set of procedures for the measurement
of true CD, as follows: (1) With an analyzer, LB measurement was carried out by rotat-
ing the sample 360◦ in the (X –Y ) plane at the wavelength of an absorption maximum.
Then, the LB spectrum was obtained by the wavelength scanning at the LBmax position.
(2) Without an analyzer, LD was measured by rotating the sample at the absorption
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maximum. Then, LD spectrum was obtained by the wavelength scanning at the LDmax

position. (3) Similarly, CD measurement was carried out by rotating the sample at the
absorption maximum. If the CD value changes on rotating the sample 360◦ around the z
axis, it is clear that the macroscopic anisotropies contribute to the CD spectrum. From
the measurements, we can tell the extent of contribution of LD and LB signals to the
observed CD signals. As is obvious from Eq. (4.8), if LB and LD signals are negligi-
bly small compared with CD, or if there are no macroscopic anisotropies like solution
samples, the signal observed is a true CD. If the two 50-kHz spectra obtained with and
without the analyzer are different, the 50-kHz signal detected without the analyzer con-
tains an apparent CD signal, and the signal detected with the analyzer is an LB signal.
(4) From the data obtained in step 1, we can locate the LBmax and LBmin positions. The
sample was rotated 45◦ from the LBmax position, wherein the LB value becomes 0 and
the LB′ value maximum. The wavelength scan was then carried out without an analyzer.
From Eq. (4.8), the apparent CD signal of the face side is given as

[appCD]face = G1{(Px
2 + Py

2)(CD − 1

2
LB′LD) + (Px

2 − Py
2) sin 2a(LB′)}. (4.15)

(5) The sample was then rotated by 180◦ about the Y axis, and the wavelength scan was
carried out. This corresponds to the back-side measurement. By this rotation, the CD and
LD do not change their signs, but LB′ becomes −LB′. Hence, the apparent CD signal
of the back side becomes

[appCD]back = G1{(Px
2 + Py

2)(CD + 1

2
LB′LD) − (Px

2 − Py
2) sin 2a(LB′)}. (4.16)

It is obvious that the addition of Eqs. (4.15) and (4.16) gives Eq. (4.17):

2G1(Px
2 + Py

2)CD. (4.17)

Thus, measurement of [appCD]face and [appCD]back spectra using our special sample
holder, the addition of the two spectra and division by a factor of 2 should give the true
CD spectrum. The method is best applied when the LB value is not too large, that is,
less than ∼30◦.

4.4.2. Method for True CB measurement [41]

Because the CB signal is usually 102 to 103 times smaller compared with LB and LB′
signals and thus is buried under large macroscopic anisotropy signals, it is difficult to
detect. However, we have found that the following set of measurements makes this
possible. At (+) maximum position during sample rotation, a signal 2ω becomes

(+)max[Signal 2ω] = G4{CB + 1

2
(LB2 + LB′2)}. (4.18)

At the negative maximum position, or at the position rotated 45◦ from the positive
maximum position if the signal changes with sin 4θ periodicity, the signal detected is
given as

(−)max[Signal 2ω] = G4{CB − 1

2
(LB2 + LB′2)}. (4.19)

Thus, if we average the (+)max[Signal 2ω] and (−)max[Signal 2ω] spectra, we can
obtain CB. The method is best applied when the LB value is less than ∼30◦.
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4.4.3. Kramers–Kronig (K–K) Relationship

Correctness of the solid-state CD and CB spectra obtained by the set of procedures
described in Sections 4.4.1 and 4.4.2, respectively, were checked by the Kramers–Kronig
(K–K) relationship for a cast film having macroscopic anisotropies, LB and LD. The
numerical evaluation of K–K relationship was thoroughly studied for isotropic medium
previously [49]. It is well known that CD and CB are related by the K–K relationship,
which always holds between true CD and CB. However, if the solid-state CD and CB
spectra contain artifact signals of LB and LD, it cannot hold. Figure 4.3 shows that
K–K relationships holds well in the case of a cast film for β-amyloid(1–42) peptide
related to Alzheimer’s disease; that is, CB spectrum calculated from the observed true
CD spectrum based on the K–K relationship agrees well with the observed true CB
spectrum [44]. These prove the integrity of our instrumentation and procedures for the
study of solid-state chiroptical properties.

4.4.4. True CD Spectra of Achiral Films [32]

PVA (polyvinyl alcohol) film dyed with Congo red was used as an achiral sample. Thus,
the rather strong CD spectra observed must be due to artifact resulting from the coupling
of LB with the nonideal characteristics of the instrument. The LB value of a highly
stretched PVA film employed in this study was 1.9λ at 546 nm. We assumed that the
PVA film is optically homogeneous, and there is no face-side and back-side difference.
In the homogeneous case, the Mueller matrix of the sample can be expressed as

Ŝ = e−Ae

⎛
⎜⎜⎝

1 −LD′ 0 −LD
−LD′ 1 −LB 0

0 LB 1 −LB′
−LD 0 LB′ 1

⎞
⎟⎟⎠ ×

⎛
⎜⎜⎝

1 −LD′ 0 −LD
−LD′ 1 −LB 0

0 LB 1 −LB′
−LD 0 LB′ 1

⎞
⎟⎟⎠

(4.20)

Thus, from the simple Mueller matrix computation of D̂ · Ŝ · M̂ · P̂ · Î0, we can obtain
the light intensity at the detector Id as

Id = 1

2
e−AeI0(Px

2 + Py
2)[1 + LD′2 + LD2 + (LD′LB − LB′LD) sin(δ + α)

+ 2LDcos (δ + α)] + 1/2I0(Px
2 − Py

2) sin 2a[−LD′ − (LD′LD

+ LB′LB) cos(δ + α) − 2LBcos2θ) sin(δ + α)]
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+ 1/2I0(Px
2 − Py

2) cos 2a[−2LD − (LD2

− LB′2 + 1) cos(δ + α) + 2LB′ sin(δ + α)]. (4.21)

For simplicity and as we selected the best detector for UCS-1, we assumed that the detec-
tor is ideal, and hence the 50-kHz signal detected by the photomultiplier is expressed as

signalface
50 kHz = G1[LD′LB − LB′LD]. (4.22)

When we rotate the sample 180◦ with respect to the vertical (y) axis, LD and LB do not
change their signs, but LD′ and LB′ become −LD′ and −LB′, respectively. Therefore,
the 50-kHz signal of the back side detected by the photomultiplier is expressed as

signalback
50 kHz = G1[−LD′LB + LB′LD]. (4.23)

If we add up Eqs. (4.22) and (4.23), the sum becomes 0. Thus, the apparent CD spectra
due to macroscopic anisotropies should cancel out by this procedure.

This expectation is what we have actually observed. As shown in Figure 4.4, the
substantially strong CD spectra observed for the face and back of the film are almost
mirror images to each other, and they cancel out when added. This proves that the
observed CD for the PVA film is not a true CD but simply an artifact.

4.4.5. Assessing the Contribution of Macroscopic Anisotropies to CD
Spectra: Single Crystal of α-Ni(H2O)6 · SO4 [32]

α-Ni(H2O)6 · SO4 exhibits a chiral nature only in the crystalline state. Its single crys-
tal belongs to a uniaxial system with the enantiomorphic tetragonal space group of
P41212 or P43212 [50–52]. Solid-phase circular birefringence CB and CD spectra of
α-Ni(H2O)6 · SO4 were studied in the 250- to 600-nm region to investigate how macro-
scopic anisotropies affect CD spectra. Because the crystal belongs to a uniaxial crystal
system, there is no macroscopic anisotropies along the optic axis. By tilting the crystal
from the position, we introduced some macroscopic anisotropies on purpose. Following
the set of procedure we have developed, CD of two α-Ni(H2O)6 · SO4 single crystals,
one with large and the other with very small LB, were measured. In the case of a large
LB sample, by comparing LB, LD, and CD spectra (Figure 4.5a), we could recognize
that the LB signal was larger than the CD signal, and the second and third terms in Eq.
(4.12) contributed to the CD spectrum. By adopting the procedure described in Section
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4.4.1, we successfully eliminated these terms and obtained a true CD spectrum. The true
CD and an apparent CD spectra are compared in Figure 4.5a.

In the case of slight tilting from the unique orientation, both LD and LB signals
are negligibly small compared with the CD signal (Figure 4.5b). The figure shows that
the apparent and true CD spectra are virtually the same, and the LB spectrum is also
almost identical to the CD. Thus, we can regard the measured CD of a single crystal of
α-Ni(H2O)6 · SO4 as the true CD, when the LB value is less than 1◦ at 390 nm.

4.4.6. Cubic Crystal Is Not Optically Homogeneous: Presence
of LB Signal [41]

In almost all textbooks, cubic crystals are described to be optically isotropic from
whichever direction light travels. The crystal of NaClO3 belongs to the chiral cubic
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tetrahedral class (T -23) with the space group P213 [53]. Cubic shape crystals of NaClO3

having [1 0 0] facets were usually obtained from the solution, whereas tetrahedral shape
crystals with [1 1 1] facets were grown by adding sodium thiosulfate into the solution
[54]. The polished single crystals having faces parallel to either the (1 0 0) or (1 1 1)
were mounted with the plane perpendicular to the light, and their chiroptical spectra
were measured for both (d )- and (l )-crystals of NaClO3. Figure 4.6a shows rotational
measurements of 50-kHz (LB) and 100-kHz (CB) signals at 250 nm on rotating a single
crystal of (l )-NaClO3 placed with the (1 1 1) face perpendicular to the incident light.
As expected, when light beam was incident to the crystal almost exactly normal to the
(1 1 1) face, hardly any LB signal appeared (Figure 4.6a, solid line). In contrast, when
the crystal was mounted slightly tilted from the perpendicular orientation, a weak LB
and CB signals both with sin 2θ periodicity were detected in the rotational measurements
(Fig. 4.6a, dotted line). From Eq. (4.13), it is found that the contribution of LD is much
bigger than LB, because the CB signal changes with cos 2θ periodicity.

Figure 4.6b shows a typical LB rotational measurement at 250 nm of a (l )-NaClO3

crystal that was mounted with the (1 0 0) plane perpendicular to the light beam (polished
with 1.85-mm thickness). The signals are much stronger than in the slightly tilted (1 1 1)
cases (Figure 4.6a dotted line), and LB and CB changed with sin 2θ and sin 4θ periodicity
on rotating the sample, respectively (Figure 4.6b). In this case, the contribution of LB is
much bigger than LD. Contrary to the common belief that cubic crystal is homogeneous
in all directions, we could prove experimentally that chiral cubic crystal of NaClO3 has
intrinsic LB in any direction except for the along the [1 1 1] axes [41].

Based on the set of procedures described in Section 4.4.2. Artifact-free CB spectra
of NaClO3 crystals were measured with the (1 0 0) plane perpendicular to the light beam
for both of the enantiomers and with various thicknesses. Figure 4.6c plots absolute
values of artifact-free CB signals at 250 nm against the sample thickness. Calculation of
a least-squared linear line shows that the linear relationship holds well, including the CB
value previously reported by Chandrasekhar [55]. This indicates that even in the cases
where LB is substantial, the true CB spectra can be obtained on UCS-1 by our set of
procedures.

4.4.7. Cast Film CD of Bovine Serum Albumin (BSA) [43]

Solid-state spectroscopy provides valuable information on solid-state structure and
supramolecular properties. This applies not only to organic or inorganic compounds but
also to biological substances. CD spectroscopy of proteins in dry thin films may provide
useful information on their unique conformation in an aggregate or in the condensed
phase. The information may be particularly relevant to some neurodegenerative
disorders, such as Alzheimer’s and prion diseases, in which the production of abnormal
aggregates of α-amyloid peptide or prion protein seems to constitute an important step
[56, 57]. Relating to this, CD spectra of nine proteins/peptides in both solution and in
dry films were published [23]. For one class of proteins (e.g., BSA and α-synuclein),
their CD spectra in the solid and solution states were different, whereas for the other
class of proteins (e.g., insulin, lysozyme, and luciferase), the two CD spectra were
similar. Based on these findings, it was claimed [23] that first-class proteins undergo
structural transformation from native structures in solution into β-sheet predominant
structures in the solid state. In their work, no macroscopic anisotropies of solid samples
were considered. Thus, we have independently studied CD of BSA on UCS-1.

We made a BSA cast film by slow evaporation (24 h) to obtain a relatively strain-
free film of even thickness. The LB and the LD signals were small, and photomultiplier
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voltage was almost constant throughout the rotation of the sample 360◦ in the plane
perpendicular to the light beam at 210 nm, to ensure the even thickness and strain-
free nature of the sample. We could obtain true CD spectrum of the film by using the
procedures of removing artifact signals as described in Section 4.4.1. The solid-state
spectrum is similar to the solution CD spectrum, which presents a double-negative broad
spectrum with a peak at 209 nm and a shoulder at 222 nm (Figure 4.7), typical of proteins
with a high α-helical content.

Experiments were also carried out by making BSA cast film very fast (10 min)
on purpose. From the CD rotation measurement, we can locate the CDmax and CDmin
positions where the CD signal becomes the maximum and minimum values, respectively.
The wavelength scans carried out at these positions are quite different from each other:
CDmax spectrum exhibits a negative peak at 223 nm, while CDmin spectrum shows a
broader negative band (Figure 4.7). Thus, the CD spectra differed substantially, depending
on the sample rotational positioning, θ . The solid-state CD at the CDmax position is
incidentally similar to what was reported in the literature [23]. The CD was interpreted
as the structure containing β-sheets, and it was claimed that BSA transforms to a β-sheet
aggregate in the condensed phase as it exhibited different CD from that in the solution.
Our results unambiguously deny their statement. We can conclude that the structural
change of BSA does not occur in the process of film formation. The spectral difference
is simply due to the artifacts arising from the substantial macroscopic anisotropies, mainly
LB and its coupling with LD.

If LB and LD signals are mixed into the CD signals, different CD spectra are obtained
for films made with different evaporation speed, although they are made from the same
stock solution, or for films at different rotation positions even for the same film. If sam-
ples are homogeneous, the procedures for obtaining true CD can be applied; however,
inhomogeneous cases (e.g., uneven thickness) cannot be dealt with. For the CD measure-
ment of samples with possible macroscopic anisotropies such as films, gels, micells, and
liquid crystals, it is necessary to measure the anisotropies using specially designed spec-
trophotometer such as our UCS’s. Only with this consideration, important information
on protein and peptide characteristics in the condensed phase will be elucidated.

In the case of β-amyloid (1–40) and (1–42) peptides, we could show a clear structure
transition from α-helix dominant structure in solution to β-sheet dominant one in cast
films [44]. Figure 4.3 shows a representative true CD of β-amyloid (1–42) peptide in a
cast film.
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4.4.8. Diffuse Reflectance CD (DRCD): Specular Component

In order to evaluate the performance of DRCD mode of dual-purpose UCS-2 or UCS-3,
we measured powdered ammonium-10-camphorsulfonate (ACS), which is usually used
as a standard sample for CD spectrophotometer calibration in UV wavelength region [58,
59]. As shown in Figure 4.8, DRCD spectra of the microcrystalline ACS enantiomers are
mirror images of each other, indicating that all the equipments, both optical and electric,
work well. The spectra are compared with the solution spectra (Figure 4.8 inset). The
agreement in general is quite good, but slight red shifts of the peak maximum, 9 and
6 nm, were observed compared to the transmission CD in solution and in the solid state
(KBr matrix method, data not shown), respectively. The observed slight red shift (∼3 nm)
in transmission CD of the KBr disk as compared with the solution CD may be due to the
effect originated from the densely packed neighboring molecules in crystals, although
dispersion effect cannot be ignored completely. The depolarization at grain boundaries
of a sample may cause serious experimental problems. We have noticed that even with
an apparently translucent KBr disk there may be a large depolarization of the light beam
due to reflection and refraction at the grain boundaries which influence transmittance
CD as well [18, 19, 60]. The dispersion effect on the transmittance CD was first studied
by Kuroda when she calculated the rotatory strengths of d –d transition by using the
microcrystalline CD as a KBr disk quantitatively [18, 19]. In the case of nujol mull
method, generally the particle size cannot be made smaller than the KBr matrix and
hence cause bigger red shift of the CD peak maxima [18, 60].

The red shifts in the DRCD measuremnts is due to the intrinsic nature of solid
samples. It has been reported that the red shifts in DR spectra depend on specular
reflectance [61–66], which is defined as the reflected radiation that reaches the detector
but never penetrates the sample particles. In contrast, DR is defined as the reflected
radiation that is transmitted and/or refracted through one or more sample particles and
finally reflected onto the detector. Thus, it might be suggested that the observed DRCD
signal contains both specular and DR lights. It is exremely difficult to segregate specular
and diffuse reflectance components and to remove the specular component from the
obtained spectra completely. In UCS-3, a baffle made of spectralon was installed to
reduce the first specular reflection signals.
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The effect of specular reflections on the DRCD spectra was experimentally studied
by comparing DRCD of neat microcrystallines with various grinding time, that of samples
diluted with KBr, and nujol mull methods [36, 48]. These results indicate that the effect
of specular reflections in the detected signal can be reduced by using small-particle-size
microcrystallines and diluting the light-absorbing sample with an inert low-absorbing
matrix such as KCl, KBr, and MgO microcrystalline [35, 48].

4.4.9. DRCD: First CD Measurement of 1:1 BQ–PYR Complex [48]

The 1:1 complex (1) of BQ and PYR(pyrene) exhibits optical activity only in the crys-
talline state due to the chiral supramolecular arrangement of the nonchiral components.
But, its chirality has never been studied. It crystallizes in a chiral uniaxial crystal system
with the space group of either P41 or P43. The CD measurement method for uniaxial
crystals with the light propagated along the unique axis to avoid the effect of macro-
scopic anisotropies is, however, hampered by the strong absorption (ε = 104 –105) in the
UV–vis wavelength range. It is difficult to prepare extremely thin-plate-like specimens
appropriate for the direct transmittance CD measurement. Alternative matrix methods
[18, 19, 26], that are now widely used in the solid-state chirality measurements can-
not be applied to this complex, because BQ sublimes easily from the complex crystals,
especially during the KBr disk formation processes (due to increased surface areas and
under vacuum condition). The nujol mull method is also not applicable to 1 because it
dissolves in nujol.

DRCD measurement [35] is most suitable for this type of samples. A single crystal of
1 was co-ground with KBr (or separately ground) to microcrystalline powders (grain size:
20–53 μm, dilution: 10–20 wt%) in order to decrease the specular reflection [63–66] and
the parasitic signals originating from the intrinsic macroscopic anisotropies (LB and LD)
as well as to reduce the large absorption coefficient. X-ray powder diffraction (XRPD)
analysis showed that the grinding process does not alter the crystal lattice. To avoid
the sublimation of BQ, the sample holder was covered with a quartz plate. Figure 4.9a
shows DRCD spectra of 1 measured on UCS-3 for both of the enantiomeric crystals.
They are almost mirror images of each other. Because the absorption coefficient of a
charge transfer (CT) band at around 450 nm is very small (ε453 = 323) [67], spectra in
the 400- to 250-nm wavelength region are shown. Absolute configuration of crystal 1
cannot be determined by X-ray anomalous dispersion method as it contains no heavy
atom. Thus, we made a 1:1 complex crystal, 2, with 2-chloro-1,4-benzoquinone (2-ClQ)
and PYR, and determined the absolute crystal configuration. Crystal 2 is isomorphous to
1 and exhibits similar DRCD to 1. Thus, we could correlate the sign of DRCD spectra
of 1 and 2 with the absolute configuration of the crystals: P41 crystals exhibit negative
peaks at the 350-325 nm wavelength range, whereas P43 crystals positive peaks.

The DRCD spectra were checked for the effect of artifact signals which arise from
the interaction between the macroscopic anisotropies of the sample and the non-ideal
characteristics of the polarization-modulation instruments [32]. UCS-2/3 cannot record
signals with analyzer inserted in the DRCD mode, thus only the aritifact signals arising
from LD which does not couple with LB can be taken care of. Thus, we have estimated
the contribution of LB as follows. The artifact signals have terms dependent as well as
independent on the sample rotation in the plane perpendicular to the light beam [32].
DRCD signals of 1 hardly changed with sample rotation, and hence the angular-dependent
terms multiplied by the polarization characteristics of the detector, P , are negligible. Here
the polarization characteristics, P , of the detector is expressed as (Px

2 − Py
2) sin 2a ,
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where Px
2 and Py

2 are the transmittance of the detector along the x and y directions and
a is the azimuth angle of its optical axis with respect to the x axis. LB values of the
sample were expected to be less than 10−3 OD because the value of P of UCS-3 was
estimated to be on the order of 10−3 at 350 nm [68]. LD signals of current samples were
measured to be on the order of 10−3 –10−4 OD (Figure 4.9b), and hence the angular-
independent terms are 10–100 times smaller than the true DRCD signal. Thus, we can
conclude that the DRCD spectra of 1 recorded on UCS-3 are free from LD and LB effects.

We observed time-dependent change of the DRCD spectra over 24 h (Figure 4.9c)
when the sample was left without a cover. The DRCD spectra for both of the enantiomeric
crystals decreased the absolute intensities, and after 24 h all the CD peaks disappeared
completely (Figure 4.9c). The absorption spectra after 24-h exposure coincided with that
of PYR crystal (Figure 4.9d). Thus, the absorption and the DRCD spectra observed at
the initial state originate from the supramolecular structure of 1.

This is the first measurement of CD spectra of crystals 1 and 2, which exhibit
optical activity only in the crystalline state due to chiral supramolecular arrangement
of nonchiral components. DRCD is the only available method for measuring CD of
sublimable samples, samples that react with KBr during the disk formation or that dissolve
in nujol.

4.5. MULTICHANNEL (MC) CD METHOD: A NOVEL METHOD
FOR DIRECT TRUE CD MEASUREMENT

So far we have succeeded in obtaining true CD and CB spectra of solid samples, by
developing a series of UCSs and devising a set of measuring/analyzing procedures for
UCSs. Many interesting results have been obtained on UCSs by investigating the struc-
tures of organic, inorganic, and bio samples in the condensed phase and the dynamics of
relatively slow structural change of peptides from solution to solid-phase transition. UCSs
adopt the method of taking away the parasitic artifacts signals from the observed spectra,
and hence cumbersome procedures as described in Sections 4.4.1 and 4.4.2 are necessary.

Alternative method adopts entirely novel concept/technique for measuring CD
spectra—that is, to detect only artifact-free signals. This is a MC (multichannel)
CD spectrophotometer we are currently developing in our laboratory [31]. The new
spectrophotometer is designed to subtract the absorption for the left-circularly polarized
light form that for the right-circularly polarized light directly, thus the spectra will not
be affected by the macroscopic anisotropies which are intrinsic to solid samples. It also
employs nonmonochromated white light and measures spectra like a snapshot with a
multichannel detector to provide simultaneous detection of whole wavelength ranges.
Because wavelength scan is unnecessary, high-speed data acquisition is possible. This
is ideal for studying dynamics of moderately fast structural changes if the molecules
are chiral, like proteins. We hope to improve in the near future the prototype we
are currently developing. Accuracy and S/N ratio of UCSs are expected to surpass
those of the MC CD spectrophotometer, and thus we believe that both techniques are
complementary to each other.

4.6. CONCLUDING REMARKS

This chapter discussed the principles and applications of chiroptical spectroscopy in the
solid state. As biological world is homochiral consisting of proteins made up of only
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l-amino acids and nucleic acids of only d-(deoxy)ribose, the effect of medicinal and
agricultural chemicals are quite different, depending on the handedness of the com-
pounds. For the development of new therapeutic drugs, agricultural chemicals, food etc,
which are related to many biological processes, the chiral recognition and resolution
must be considered. Also, because the biological world is homochiral, physical chem-
istry and biochemistry underlying many biological phenomena such as gene expression,
recombination, metabolism, disease development, organismal development, etc, may be
elucidated through chirality measurement. Thus, chirality is important in both basic and
applied sciences.

The solid-state chemistry is one of the most advancing frontiers because strong inter-
molecular interactions and fixed molecular conformations can open up unique areas of
research. Because solid-state reactions do not require environmentally damaging organic
solvents, it is regarded as green chemistry. Limiting to chirality, solid-state chiral chem-
istry offers unique chemistry, since chirality generation, transfer, and amplification occur
most strongly in the solid state. As we have seen in this chapter, the solid-state chiroptical
spectroscopy provides indispensable information on many molecular events underlying
many interesting phenomena. The most powerful chiroptical technique for the chiral-
ity measurements is the circular dichroism spectroscopy, and it is necessary to use
spectrophotometers that can handle solid-state measurements. We have designed and
constructed solid-state applicable CD spectrophotometers (UCS-1, UCS-2, and UCS-3)
and devised analytical procedures based on the Stokes–Mueller matrix. They can mea-
sure true CD and CB spectra of samples having macroscopic anisotropies such as gels,
films, and crystals. It can also carry out in situ measurement of solid samples without any
pretreatment, as well as dynamics of relatively slow structural changes. A new concept
of measuring only pure chiroptical signals rather than removing artifact from observed
signals is on its way. It is hoped that the versatile chiroptical spectroscopy becomes a
basic tool in the world to advance the frontier of science even further.
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5
INFRARED VIBRATIONAL OPTICAL

ACTIVITY: MEASUREMENT
AND INSTRUMENTATION

Laurence A. Nafie

5.1. INTRODUCTION

This chapter is devoted to the measurement and instrumentation associated with the
rapidly growing field of infrared vibrational optical activity (VOA) [1–8]. Preceding
chapters have focused on optical activity and linear dichroism associated with electronic
transitions, and this is the first of two chapters devoted to optical activity in vibrational
transitions, the second being the chapter on vibrational Raman optical activity (ROA)
instrumentation and measurement by Werner Hug. As a result, our primary focus will be
on vibrational circular dichroism (VCD), which is the central topic of infrared vibrational
optical activity. Nevertheless, a number of aspects of VCD will not be covered in this
chapter since they will be described elsewhere. The first is VCD measured with picosec-
ond or femtosecond time resolution, which will be covered in the chapter by Minhaeng
Cho, and in yet another chapter, Sergio Abbate will describe VCD in the near-infrared
spectral region where vibrational overtone and combination band transitions occur.

While it is beneficial to consider various forms of optical activity from different
perspectives, nature does not restrict herself to sharp divisions of topics. For example, in
both infrared VCD and visible-laser-excited ROA, spectra have been observed involving
electronic transitions, namely infrared electronic circular dichroism (IR-ECD) and elec-
tronic, as opposed to vibrational, Raman optical activity (EROA). In addition, the effects
of overtone and combination bands, normally observed in the near-IR region, can also
occur in the region of fundamental vibrational transitions arising from multiple mode
transitions of low-frequency vibrations. As a result of these overlaps and the growth in
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the forms and spectral regions covered by optical activity, it is becoming increasingly
important to distinguish the electronic and vibrational forms of optical activity as EOA
and VOA. If follows that the term CD should only be used when it can be applied
to both ECD and VCD. Furthermore, with the growth of research and application of
VCD in recent years, it is important to distinguish ECD and VCD explicitly as separate
phenomena. This will become even more important in future years when vibronically
resolved ECD can be measured and explicitly calculated. Such spectra are simultaneous
ECD and VCD spectra, perhaps to be called EVCD spectra.

In view of these overlaps, as well as the growing diversity of the field of optical
activity, there is value in considering the broader view of these various fields of optical
activity. Thus we begin with a short comprehensive description of the field of VOA so
that it is clear where the material of this chapter fits into the grander scheme of VOA,
in particular, and natural optical activity, in general.

5.1.1. Definition of Vibrational Optical Activity

Natural vibrational optical activity can be defined as the differential interaction of a chiral
molecule, or chiral assembly of molecules, with left- versus right-circularly polarized
radiation for a vibrational transition . It should be mentioned, but only once briefly
here, that there is the phenomenon of magnetic optical activity, including magnetic ECD
(MECD), magnetic VCD (MVCD), and magnetic Raman optical activity (MROA), that
follows a similar definition except that all molecules and assemblies, not just chiral
molecules and assemblies, can exhibit magnetic optical activity spectra where a magnetic
field must be applied either parallel or antiparallel to the beam propagation direction of
the circularly polarized radiation interacting with the sample. The definition of natural
VOA can be applied to any vibrational transition, fundamental, overtone or combination
tone, within any electronic state of a molecule. The foundations of VOA rest upon
two fundamental phenomena, namely (a) VCD associated with first-order one-photon
absorption processes and (b) vibrational ROA associated with a second-order two-photon
scattering processes. Besides these main phenomena, the circular polarization (CP) forms
of VOA, there are also linear polarization forms of VOA, namely vibrational optical
rotatory dispersion (VORD), also named vibrational circular birefringence (VCB), and
corresponding forms of linear polarization ROA. These involve the rotation of linearly
polarized radiation from its initial orientation before the sample to its final orientation
after the sample interaction. Linear polarization VOA also is contained within the general
definition of VOA since linear polarized radiation is the simultaneous in-phase occurrence
of left- and right-circular polarization (LCP and RCP) radiation. For example, for VCB,
differences in the speed of light for RCP and LCP radiation, even in the absence of
significant absorption, give rise to the rotation of plane polarized light as it passes through
the sample.

5.1.2. Forms of Infrared VOA

There are two forms of infrared vibrational optical activity, namely, vibrational circular
dichroism (VCD) and, most recently, as mentioned above, vibrational circular bire-
fringence (VCB). These two forms of infrared VOA are related by Kramers–Kronig
transformation as described formally below and share a common spectroscopic invariant,
namely the rotational strength. We begin by considering first the definition of VCD, �A,
as the difference in the absorbance of a molecule for LCP (L) versus RCP (R) radiation
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for a vibrational transition in electronic state e between vibrational sublevels υ and υ ′
of normal mode a:

(�A)a
eυ ′,eυ = (AL)

a
eυ ′,eυ − (AR)a

eυ ′,eυ , (5.1)

where the convention for the sign of the VCD intensity is left minus right. The corre-
sponding average of the LCP and RCP intensities is the ordinary vibrational absorbance
(VA) intensity, A, defined as

(A)a
eυ ′,eυ = 1

2
[(AL)

a
eυ ′,eυ + (AR)a

eυ ′,eυ]. (5.2)

These definitions apply only to a single transition that can be computed theoretically
or measured experimentally if one isolates the peak or band in the measured spectrum
corresponding to the particular vibrational mode of interest. The entire VCD or VA
spectrum can be described as a linear sum of intensities, (�A)a

eυ ′,eυ or (A)a
eυ ′,eυ , times a

lineshape function f ′
a(ν) which describes the frequency-dependent shape of the vibrational

band as well as the location of the vibrational peak frequency in the spectrum as

�A(ν) =
∑

a

(�A)a
eυ ′,eυ f ′

a(ν), (5.3)

A(ν) =
∑

a

(A)a
eυ ′,eυ f ′

a(ν). (5.4)

The most common bandshape function for individual vibrational transitions is the
Lorentzian lineshape given by the expression

f ′
a(ν) = 1

π

[
γa

(νa − ν)2 + γ 2
a

]
. (5.5)

This is a symmetric function centered with a maximum value 1/πγa at ν = νa , where
γa is the half-width of the Lorentzian band at its half-maximum value. This can be seen
by setting ν = νa ± γa in Eq. (5.5) and seeing that the band intensity there is 1/2πγa ,
half the peak value. The factor of 1/π in Eq. (5.5) provides a normalization property to
the Lorentzian lineshape such that the area under band is equal to unity, namely

∫ ∞

−∞
f ′
a(ν) dν = 1. (5.6)

The VCD and VA spectra, �A(ν) and A(ν), defined in Eqs. (5.3) and (5.4), are
instrument-independent quantities as we will explain in more detail later in this chapter;
however, they do depend on the choice of sampling, namely the pathlength, l , and molar
concentration, C , of the sample. This dependence on sampling conditions can be removed
by dividing �A(ν) and A(ν) by pathlength and concentration that yields definitions of
VCD and VA in terms of molar absorptivities, �ε(ν) and ε(ν):

�ε(ν) = �A(ν)/(ee)bC , (5.7)

ε(ν) = A(ν)/bC . (5.8)
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Here (ee) is the enantiomeric excess of the sample that is required to correct for the
possible deviation of the chiral sample from 100% pure chirality of the major enantiomer
of the molecule being measured. The (ee) can be defined as the concentration of the major
enantiomer, CM , minus that of the minor enantiomer, Cm , divided by their sum, the total
concentration C .

(ee) = CM − Cm

CM + Cm
= CM − Cm

C
. (5.9)

The value of (ee) can vary from 1 for a sample of only a single enantiomer to zero
for a racemic mixture of both enantiomers such that neither enantiomer is in excess.
Equations (5.7) and (5.8) assume Beer–Lambert’s law. This law breaks down if there are
significant levels of intermolecular interactions between solute molecules which usually
can be avoided at sufficiently low levels of concentration. These definitions of �ε(ν)

and ε(ν) are pure molecular properties and can be compared directly to the results of
theoretical calculations.

The theoretical expressions for VCD and VA intensities defined in Eqs. (5.1) and
(5.2) are given by the rotational strength, Ra

gυ ′,gυ , for VCD and the dipole strength,
Da

gυ ′,gυ , for VA as

Ra
eυ ′,eυ = Im[〈ψa

eυ |μ|ψa
eυ ′ 〉 · 〈ψa

eυ ′ |m|ψa
eυ〉], (5.10)

Da
eυ ′,eυ = |〈ψa

eυ |μ|ψa
eυ ′ 〉|2. (5.11)

Here μ is the electric dipole moment operator, and m is the magnetic dipole moment
operator given by

μ =
∑

j

ej r j , m =
∑

j

ej

2mj c
r j × p j , (5.12)

where the summation index j is over all electrons and nuclei in the molecule, and ej

is the charge, r j is the position, p j is the momentum, mj is the mass, and c is the
speed of light. From these definitions we can see that the dipole strength is always a
positive quantity, namely the absolute square of the electric dipole transition moment.
On the other hand, VCD is the scalar product of two vectors, the electric dipole and
the magnetic dipole transition moments. This product can be either positive or negative,
depending on whether the angle between the two vectors is less than 90◦ or between
90◦ and 180◦. Given these theoretical definitions for the rotational and dipole strengths,
we now can write the expressions for �ε(ν) and ε(ν) in terms rotational and dipole
strengths, respectively, in units is esu2-cm2 as

�ε(ν) = 32π3N ν

3000hc ln(10)

∑
a

Ra f ′
a(ν) = ν

2.236 × 10−39

∑
a

Ra f ′
a(ν), (5.13)

ε(ν) = 8π3N ν

3000hc ln(10)

∑
a

Daf ′
a(ν) = ν

9.184 × 10−39

∑
a

Daf ′
a(ν). (5.14)

Using Eqs. (5.7) and (5.13), one can compare measured and calculated VCD, and simi-
larly for comparing measured and calculated VA intensities using Eqs. (5.8) and (5.14).
Of particular interest in these comparisons is the dimensionless ratio of �εa(ν) to εa(ν)
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for a given transition called the anisotropy ratio, ga = �εa(ν)/εa(ν). This ratio is a
measure of VCD intensity relative to its parent VA intensity for a given transition. If
the definition of ga is applied to Eqs. (5.13) and (5.14), one obtains four times the rota-
tional strength divided by the dipole strength since all other factors cancel, including the
individual line shapes, which are equal for VCD and VA to a very good approximation.

ga = �εa(ν)

εa(ν)
= 4Ra

Da
(5.15)

The anisotropy ratio is a measure of the expected signal noise ratio of a VCD measure-
ment.

We next consider the other form of infrared VOA, vibrational circular birefringence
(VCB), which can also be called vibrational optical rotatory dispersion (VORD). It is
well known that CD and ORD are related mathematically by a transform pair called the
Kramers–Kronig transform. This transform states that any point in an ORD spectrum
can be specified by the entire CD spectrum over all frequencies and vice versa . This
means that if one has, for example, the complete CD spectrum of a molecule, there is
no new information in the corresponding ORD spectrum.

These ideas can be expressed in a simple way by considering the normalized complex
Lorentzian lineshape function:

f̃a(ν) = 1

π

[
1

(νa − ν) − iγa

]
= fa(ν) + if ′

a(ν). (5.16)

Here, the tilde signifies a complex quantity, and the real and imaginary parts are given
by Eqs. (5.17) and (5.5), respectively.

fa(ν) = 1

π

[
νa − ν

(νa − ν)2 + γ 2
a

]
. (5.17)

The imaginary part of the complex lineshape f̃a(ν) is designated by a prime f ′
a(ν)

whereas the real part is unprimed, fa(ν). The function fa(ν) is sometimes called a
dispersion lineshape function compared to the absorption lineshape, f ′

a(ν). These two
normalized lineshape functions are displayed in Figure 5.1. The dispersion lineshape has
a value of zero at the band center frequency, νa , and is negative on the high-frequency
side and positive on the low-frequency side. Far from the center frequency the
intensity for the dispersion lineshape diminishes toward zero as 1/(νa − ν) whereas
the absorption lineshape approaches zero much faster as 1/(νa − ν)2. For the complex
Lorentzian lineshape, the real and imaginary parts are Kramer–Kronig transforms of
one another. A result, VCD and VCB can be interconverted just by changing only
the lineshape function. To compare corresponding expressions for VCD and VCB
we make a minor change in notation involving primes and write the complex molar
absorptivity as

�ε̃(ν) = �ε(ν) + i�ε′(ν), (5.18)

�ε(ν) = 32π3N ν

3000hc ln(10)

∑
a

Ra fa(ν) = ν

2.236 × 10−39

∑
a

Ra fa(ν), (5.19)

�ε′(ν) = 32π3N ν

3000hc ln(10)

∑
a

Ra f ′
a(ν) = ν

2.236 × 10−39

∑
a

Ra f ′
a(ν), (5.20)
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other. The band center frequency is

chosen to be zero. (From reference 9,

reproduced with permission.)

where �ε(ν) is the VCB spectrum and �ε′(ν) is the VCD spectrum. From these expres-
sions it is clear how to calculate VCB given the means to calculate a VCD spectrum.
Later in this chapter we will provide a description of how to convert a VCD spectrometer
to one that can measure VCB spectra.

We conclude this section with an example of both the measured and calculated VA
and VCD spectra described theoretically with the preceding equations. In Figure 5.2
we present a comparison published recently of the measurement and calculations of the
two forms of infrared VOA as well as the parent VA for the molecule (−)-S -α-pinene
[9]. The experimental and theoretical expressions given in this section were used for
presenting these spectra on the same intensity scale without any adjustable parameters
except for the choice of lineshape for the individual vibrational bands including the
choice of bandwidth set at half-width at half-maximum to be 6 cm−1. The measured and
calculated spectra are offset from each other for clarity. The close agreement between
measured and calculated spectra attests to the overall accuracy of density functional theory
(DFT) to describe quantum mechanically the equilibrium geometry, vibrational force
field, nuclear displacements, vibrational frequencies, and response of electron density in
the molecule to changes in the nuclear positions and velocities. The triple zeta basis sets
(cc-pVTZ and TZVP) are very similar to one another, and both of these agree noticeably
better with the measured spectra than the double zeta basis set 6-31G(d). It was found
that TZVP required significantly less computational time than the cc-pVTZ basis set and
is recommended if improvement over the 6-31G(d) basis set is desired.

5.1.3. Overview of Infrared VOA

The scope of this chapter covers both the original dispersive VCD instrumentation and the
now established Fourier transform infrared (FT-IR) VCD instrumentation. The fundamen-
tal optical equations governing the measurement of VCD using a photoelastic modulator
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(PEM) oscillating with a sine wave modulation cycle is unchanged from the first papers
that reported the experimental discovery [10] and confirmation of the discovery [11] of
VCD. The first detailed description of a VCD spectrometer, including intensity calibra-
tion and polarization scrambling using a second PEM [12], was described in the first
full paper devoted to the measurement of VCD [13]. Subsequent advances in dispersive
VCD instrumentation included extension of the long-wavelength range into the mid-IR
region, first to the carbonyl stretching region [14] and then deeper into the mid-IR to
near 1250 cm−1 or 8 μm [15].

About this same time a new approach was being explored for the measurement
of VCD, a method that combined the band of Fourier frequency modulations of FT-
IR spectroscopy with the higher-frequency polarization modulation of the PEM needed
for VCD measurement. This approach is called double-modulation FT-IR spectroscopy
and was first described theoretically [16] with application to circular and linear dichroism
measurement. This was followed by the first report of FT-VCD in the hydrogen-stretching
region [17–19] and subsequently in the mid-IR for a wide variety of molecules [20].
FT-VCD using the double-modulation approach provided a striking advance in the
methodology of VCD measurement for two reasons. First, FT-VCD spectra realized
all of the advantages of FT-IR spectroscopy relative to dispersive IR technology for
which today there is no longer a standard, commercially available IR spectrometer. The
result was a breakthrough in spectral acquisition giving an unsurpassed combination of
spectral resolution, signal-to-noise ratio, and breadth of spectral coverage down to 14
μm or approximately 800 cm−1. The second reason is that a VCD instrument could be
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constructed from a modification of an existing, computer-controlled FT-IR spectrome-
ter that facilitates the construction of a VCD spectrometer and brings VCD technology
closer to commercial availability. The first detailed review of FT-VCD methodology in
the mid-IR region was published in 1988 and continues to be a good fundamental source
of knowledge about theory and practice of VCD measurement [21].

The next major development of FT-VCD instrumentation was the exploration by
two research groups of the polarization division interferometer. The group at Syracuse
University used a modification of a Bomem FT-IR spectrometer equipped with plane
mirrors [22], while the group at Vanderbilt University used the original Martin–Pupplet
design with rooftop mirrors [23]. Both groups reported circular dichroism results at
around the same time: The Syracuse group reported VCD measurement in the mid-IR
region [24], while the Vanderbilt group achieved CD measurements in the far-IR region
[23, 25]. The motivation for the development of the polarization division approach to
VCD is to bypass the need for a PEM that has optical limitation to lower vibrational
frequencies. The basic idea with polarization division FT-VCD measurement is to replace
the usual FT-IR beamsplitter with a wire grid polarizer at 45◦ to the incident linear
polarization state. The two arms of the interferometer carry IR beams with orthogonal
linear polarization. When the beams combine, they do not interfere in intensity but they
do recombine coherently to produce Fourier modulation cycles in relative polarization
phase starting from vertical polarization at 0 degrees, RCP at 90 degrees, horizontal
at 180 degrees, and LCP at 270 (or equivalently −90) degrees. The modulation cycle
with reference points at 0 and 180 degrees probes linear dichroism in the sample with
dichroic axes oriented vertical and horizontal as a cosine transform, whereas the cycle
with reference points at 90 and 270 degrees probes the circular dichroism of the sample.
After performing a phase correction on the measured interferogram, the real part of
the interferogram yields the linear dichroism spectrum and the imaginary part yields
the circular dichroism spectrum. The ordinary FT-IR interferogram can be measured
by inserting a vertical or horizontal polarizer into the polarization modulated beam,
thereby converting polarization modulation to the usual intensity modulation at the usual
Fourier frequencies of the instrument. Polarization division interferometry continued to
be explored by the Vanderbilt group [26–30], including a report of VCD observed below
600 cm−1 [30], but the technique has yet to be adopted for widespread use which would
require a commercially available instrument.

In the past decade, several reports of advances in FT-VCD instrumentation have
been reported aimed at increasing the signal-to-noise ratio and reducing spectral artifacts
that interfere with the measurement of the true VCD spectrum and reduce the stability
and reproducibility of VCD measurements. The first of these is the dual polarization
modulation (dual-PEM) methodology [31]. Here, a second PEM is placed after the sample
in an FT-VCD spectrometer, and by dynamically subtracting the output signal of the
second PEM, properly adjusted, from that of the first PEM, the bulk of the artifact
signal is eliminated, thus greatly enhancing the stability and reproducibility of VCD
measurements. A second improvement is the simultaneous use of two sources for VCD
measurements [32]. The two source beams enter the interferometer from orthogonal
directions, and the resulting IR beam is partially canceled by their opposite Fourier
phases. If in addition the two sources are equipped with linear polarizers of orthogonal
orientation, the two beams generate VCD intensities of opposite sign. But instead of
canceling the VCD intensities of the two beams, add because they also have opposite
Fourier phases. This lead to a near doubling of the signal-to-noise ratio for each scan of
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the interferometer, equivalent to several VCD spectrometers operating in parallel with
combined detector signals.

Parallel to these advances, the potential advantage of using digital signal processing
for interferogram digitization and demodulation were explored [33]. Also explored have
been a variety of methods for reducing artifacts including a rotating quarter-wave plate
[34], a rotating half-wave plate [35], and more recently a rotating sample cell [36]. The
potential benefits of the use of step-scan FT-IR instrumentation for VCD measurements
have been explored [37–40], but no significant benefits relative the more recent rapid-
scan instrumentation and detection were found, and hence the use of step-scan methods
for VCD measurement have not been pursued further. Another advance of FT-VCD
instrumentation in recent years has been extension of the spectral region into the near-IR
as far as 10, 000 cm−1 through the second overtone region [41]. More recently, Keiderling
and co-workers have described in detail and compared dispersive and Fourier transform
VCD as background for a review of applications of VCD to biological molecules [42].
Finally we note that the newest commercial VCD instrumentation from BioTools, Inc.
uses a new high-speed digital processing software that permits three interferograms to be
simultaneously measured, digitized, and processed without the use of any external lock-in
amplifiers or filters, thereby significantly reducing digitization noise associated the many
analog-to-digital and digital-to-analog steps that are required when using external digital
lock-in amplifiers and filters.

In this review, we will focus on the principles of VCD instrumentation and measure-
ment that lead directly instrumentation that is available today from commercial sources.
Dispersive instrumentation, although not widely used, will be covered for its pedagogical
value in seeing the process of VCD measurement in its simplest and purest form. The
review will be structured around the optical analysis tools of Stokes vectors and Mueller
matrices. Once familiar with these methods, the reader can easily check the various inten-
sity expressions presented in this chapter and, if desired, extend these optical analyses
to explore new approaches to VCD instrumentation and measurement.

5.2. STOKES–MUELLER REPRESENTATIONS OF INTENSITIES

5.2.1. Stokes Vectors and Mueller Matrices

A Stokes vector, S , is four-element column vector that empirically describes the polar-
ization state of any beam of electromagnetic radiation as follows:

S =

⎛
⎜⎜⎝

S0

S1

S2

S3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

ITotal

I0 − I90

I45 − I135

IR − IL

⎞
⎟⎟⎠ . (5.21)

The uppermost element of the Stokes vector, S0, represents the total intensity of the
radiation beam. This intensity is the combination of both the polarized and unpolarized
intensities. The next three elements describe the intensity balance of the beam between
two independent pairs of orthogonal linear polarization states, vertical (0◦) minus hor-
izontal (90◦) intensities and (+45◦) and (−45◦), and one pair of circular polarization
intensties, right and left. These three Stokes elements represent pure polarization states.
The following relation holds for the values of first element versus the other three elements.

S 2
0 ≥ S 2

1 + S 2
2 + S 2

3 . (5.22)
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The equality holds if there is no unpolarized intensity present in the beam, and the
inequality holds if some or all of the light is unpolarized. We assume here that no
unpolarized radiation is present, a condition that is easily met by initiating the optical
path with a linear polarizer. A few simple examples of Stokes vectors are

S 0 =

⎛
⎜⎜⎝

1
1
0
0

⎞
⎟⎟⎠ , S 90 =

⎛
⎜⎜⎝

1
−1
0
0

⎞
⎟⎟⎠ , S 45 =

⎛
⎜⎜⎝

1
0
1
0

⎞
⎟⎟⎠ ,

S 135 =

⎛
⎜⎜⎝

1
0

−1
0

⎞
⎟⎟⎠ , S R =

⎛
⎜⎜⎝

1
0
0
1

⎞
⎟⎟⎠ , S L =

⎛
⎜⎜⎝

1
0
0

−1

⎞
⎟⎟⎠ . (5.23)

A Mueller matrix, M , is a 4 × 4 matrix that operates on a the i th Stokes vector, S i , to
transform it to the j th Stokes vector, S j . The action of M operating on S i represents the
effect of an optical element on the beam which changes the Stokes vector before entering
the optical element to the Stokes vector after passing through the optical element. This
optical process is represented by S j = M · S i and is given in explicit expanded form by

⎛
⎜⎜⎝

Sj ,0

Sj ,1

Sj ,2

Sj ,3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

M00 M10 M20 M30

M01 M11 M21 M31

M02 M12 M22 M32

M03 M13 M23 M33

⎞
⎟⎟⎠

⎛
⎜⎜⎝

Si ,0

Si ,1

Si ,2

Si ,3

⎞
⎟⎟⎠ (5.24)

Four basic Mueller matrices are needed for the optical analyses to be presented in this
chapter. The first is the Mueller matrix of a linear polarizer M P (θ) orientated at an angle
of θ relative to the vertical direction.

M P (θ) = 1

2

⎛
⎜⎜⎝

1 cos 2θ sin 2θ 0
cos 2θ cos2 2θ sin 2θ cos 2θ 0
sin 2θ sin 2θ cos 2θ sin2 2θ 0

0 0 0 0

⎞
⎟⎟⎠ (5.25)

Here it is clear that all entries along the bottom row and fourth column, the ones involved
with states of circular polarization, are zero as is expected of a device that produces only
linearly polarized light. The second fundamental Mueller matrix that we need is the
linear birefringence (LB) retardation plate, M LB (θ , δ), such as a quarter-waveplate, a
half-waveplate, or even a PEM.

M LB (θ , δ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 cos2(δ/2) sin 4θ sin2(δ/2) − sin 2θ sin δ

+ cos 4θ sin2(δ/2)

0 sin 4θ sin2(δ/2) cos2(δ/2) cos 2θ sin δ

− cos 4θ sin2(δ/2)

0 sin 2θ sin δ − cos 2θ sin δ cos δ

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(5.26)
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Here the angle δ represents the retardation angle of the plate—for example, δ = π

for a half-wave plate—and θ represents the angle of the slow axis of the plate from
vertical. We assume a right-handed coordinate system in which the beam propagates
along the Z direction, vertical is the Y direction, and a positive angle of rotation of an
optical element is from the positive Y direction to the positive X direction. A simple but
important example of an LB plate is a retardation plate with a slow axis at +45◦ from
the vertical direction:

M LB (45◦, δ) =

⎛
⎜⎜⎝

1 0 0 0
0 cos δ 0 − sin δ

0 0 1 0
0 sin δ 0 cos δ

⎞
⎟⎟⎠ . (5.27)

Another important limiting case of Eq. (5.26) is a quarter-wave plate (QWP) obtained
by setting δ = π/2 and applying the half-angle trigonometric identities (1 + cos 4θ)/2 =
cos2 2θ , (1 − cos 4θ)/2 = sin2 2θ , and sin 4θ = 2 sin 2θ cos 2θ , which yields

M LB (θ , π/2) =

⎛
⎜⎜⎝

1 0 0 0
0 cos2 2θ sin 2θ cos 2θ − sin 2θ

0 sin 2θ cos 2θ sin2 2θ cos 2θ

0 sin 2θ − cos 2θ 0

⎞
⎟⎟⎠ . (5.28)

This matrix would be useful for describing the effects of a rotating QWP in an optical
train. It can be seen from the nonzero elements that such a QWP interconverts linear
and circular polarization states. A similar result is obtained for a half-waveplate (HWP)
oriented at an arbitrary angle about the beam propagation direction, obtained by setting
δ = π :

M LB (θ , π) =

⎛
⎜⎜⎝

1 0 0 0
0 cos 4θ sin 4θ 0
0 sin 4θ − cos 4θ 0
0 0 0 −1

⎞
⎟⎟⎠ . (5.29)

Here, no interconversion between linear and circular polarization states takes place. Lin-
ear polarization states are interconverted between the two orthogonal linear polarization
reference frames, ±45◦ and VH , and all circular polarization components are reversed
from RCP to LCP and vice versa as designated by the lower right element, −1.

Yet another important limit of the general linear birefringence plate in Eq. (5.26)
can be obtained by assuming small values of linear birefringence. For small values of
δ we can expand the trigonometric functions of δ as sin δ = δ − δ3/3! . . . and cos δ =
1 − δ2/2 + . . .. We need only keep terms through first order in δ since higher-order terms
would be negligibly small. This yields the matrix

M LB (θ , δ) =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 −δ sin 2θ

0 0 1 δ cos 2θ

0 δ sin 2θ −δ cos 2θ 1

⎞
⎟⎟⎠ . (5.30)

The δ sin 2θ terms correspond to birefringence with slow and fast axes at +45◦ and
−45◦, respectively, while the δ cos 2θ terms correspond to LB with slow and fast axes at
0◦ and +90◦, respectively. This matrix can be further simplified by writing δ = δ sin 2θ
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and δ′ = δ cos 2θ where δ and δ′ that correspond to the two kinds of LB (±45◦ and VH )
that might occur at different locations with different intensities and orientations across
an optical element. This simple but important Mueller matrix is given by

M LB (δ, δ′) =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 −δ

0 0 1 δ′
0 δ −δ′ 1

⎞
⎟⎟⎠ . (5.31)

The third general Mueller matrix needed is that for an arbitrary sample that can
possess, including the sample-cell windows, linear and circular dichroism (LD and CD)
and linear and circular birefringence (LB and CB). Through first order this matrix can
be represented by

M S = 10−A

⎛
⎜⎜⎝

1 −LD −LD′ CD
−LD 1 CB −LB
−LD′ −CB 1 LB′
CD LB −LB′ 1

⎞
⎟⎟⎠ . (5.32)

The LB and LD entries have unprimed and primed forms corresponding to the two
orthogonal reference frames described above. Here A is the decadic absorbance of the
sample, LD is the vertical–horizontal linear dichroism, (ln 10/2)(A0 − A90), LD′ is lin-
ear dichroism at 45◦ from vertical–horizontal, (ln 10/2)(A45 − A135), CD is the circular
dichroism, (ln 10/2)(AL − AR), and (ln 10/2) = 1.1513. The linear birefringence entries,
LB and LB′, and the circular birefringence, CB, are the corresponding birefringence dif-
ferences, n0 − n90, n45 − n135, and nL − nR , respectively, where n in the real part of the
complex index of refraction of the sample.

Finally, we present the Mueller matrix of a detector that has a different response,
pX and pY , to radiation polarized along its X and Y axes, respectively, and where the
optical axis of this response is at an angle of α with respect to the laboratory X axis.
We also assume that the detector is not chiral and cannot respond differently to RCP and
LCP radiation.

D(α) = [1 (p2
X − p2

Y ) cos 2α (p2
X − p2

Y ) sin 2α 0]. (5.33)

In general, the Mueller matrix is a 4 × 4 matrix; but in the case of the detector, only
the total intensity of the final Stokes vector is measured, and thus only the top row of
the detector Mueller matrix is needed or is nonzero. Another way to think about this is
that there is no longer any polarization information associated with the beam of radiation
once photons strike the detector. The first entry is 1, but equally it could be represented
by (p2

X + p2
Y ) if one prefers not to assume a detector response normalized to unity.

Typically the quantity (p2
X − p2

Y ) is approximately two orders of magnitude smaller than
unity, indicating that the linear polarization sensitivity of the detector is relatively small
compared to its overall response. In the case of the detector, the result of the detector
Mueller matrix operating on the Stokes vector of the incoming beam is simply a scalar
quantity representing the total intensity of the beam at the detector. In particular, we
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can write

ID = D(α) · S f = (
1 (p2

X − p2
Y ) cos 2α (p2

X − p2
Y ) sin 2α 0

)
⎛
⎜⎜⎝

Sf 0

Sf 1

Sf 2

Sf 3

⎞
⎟⎟⎠

= Sf 0 + Sf 1(p
2
X − p2

Y ) cos 2α + Sf 2(p
2
X − p2

Y ) sin 2α. (5.34)

The Stokes vectors and Mueller matrices presented in this section provide the
means to describe quantitatively the polarization states along a complete optical pathway
between a source and a detector. We now use this methodology to describe VCD and
VCB instrumental intensities for any such instrumentation using a PEM to effect the
required polarization modulation of the beam.

5.2.2. Measurement of Circular Dichroism

In this section, we provide a step-by-step application of the Stokes–Mueller formalism
to illustrate in detail how it is used to obtain the detector signal for a CD spectrometer.
As mentioned above, we will assume a dispersive spectrograph to avoid the unnecessary
complications at this stage due to Fourier transformation instrumentation. The optical
path needed to describe the measurement of either ECD or VCD can be represented by
the following expression:

Source → Polarizer(0◦
) → PEM(45◦

) → Sample → Detector

The intensity at the detector for this optical path using the Stokes–Mueller formalism is
given by

ID (ν) = D(α) · M S (ν) · M PEM (ν) · M P (0◦ · S 0(ν). (5.35)

Notice that the optical train is described right to left, opposite that of the diagram above,
since by convention Mueller matrices operate to the right on Stokes vectors. The IR beam
from the source is assumed to be unpolarized with a spectral distribution I0(ν) which
then passes through a polarizer at an angle of 0◦. This results in vertically polarized light
with half the original unpolarized intensity.

S 1(ν) = M P (0◦
) · S 0(ν) = 1

2

⎛
⎜⎜⎝

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ I0(ν)

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ = I0(ν)

2

⎛
⎜⎜⎝

1
1
0
0

⎞
⎟⎟⎠ . (5.36)

This beam then passes through the PEM with retardation angle αM (ν) and stress axes at
45◦. Using the Mueller matrix in Eq. (5.27) gives rise to the Stokes vector, S 2(ν), after
the PEM:

S 2(ν) = M PEM [45◦, αM (ν)] · S 1(ν)

=

⎛
⎜⎜⎝

1 0 0 0
0 cos αM (ν) 0 − sin αM (ν)

0 0 1 0
0 sin αM (ν) 0 cos αM (ν)

⎞
⎟⎟⎠ I0(ν)

2

⎛
⎜⎜⎝

1
1
0
0

⎞
⎟⎟⎠ = I0(ν)

2

⎛
⎜⎜⎝

1
cos αM (ν)

0
sin αM (ν)

⎞
⎟⎟⎠ .

(5.37)
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The beam next passes through the sample with reference to Eq. (5.32). This gives rise
to the last Stoke vector before the detector

S 3(ν) = M S(ν) · S 2(ν)

= I0(ν)

2
10−A(ν)

⎛
⎜⎜⎝

1 0 0 CD(ν)

0 1 CB(ν) −LB(ν)

0 −CB(ν) 1 LB′(ν)

CD(ν) LB(ν) −LB′(ν) 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
cos αM (ν)

0
sin αM (ν)

⎞
⎟⎟⎠

= IDC (ν)

2

⎛
⎜⎜⎝

1 + CD(ν) sin αM (ν)

cos αM (ν) − LB(ν) sin αM (ν)

−CB(ν) cos αM (ν) + LB′(ν) sin αM (ν)

CD(ν) + LB(ν) cos αM (ν) + sin αM (ν)

⎞
⎟⎟⎠ . (5.38)

Here we have assumed a nonoriented sample, such as a solution or disordered solid, so
that all four linear dichroism (LD) elements from Eq. (5.32) are set equal to zero. The LB
terms have been retained to represent linear birefringence due to optical imperfections
or strain in the transparent sample-cell windows. This last Stokes vector is converted to
a scalar intensity by the detector Mueller matrix as discussed above.

ID (ν) = D(α) · S 3(ν) = IDC (ν)

2
{[1 + CD(ν) sin αM (ν)]

+ (p2
X − p2

Y ) cos 2α[cos αM (ν) − LB(ν) sin αM (ν)]

+ (p2
X − p2

Y ) sin 2α[−CB(ν) cos αM (ν) + LB′(ν) sin αM (ν)]}. (5.39)

If for simplicity we assume that the detector has no polarization sensitivity, only the first
of the three detector terms is nonzero, and we can write

ID (ν) + IDC (v) + IAC (v) = IDC (ν)

2
[1 + CD(ν) sin αM (ν)]. (5.40)

The angle of retardation of the PEM, αM (ν), oscillates in a sine wave pattern that can
be expressed to lowest order in the PEM frequency as

sin[αM (ν, t)] = 2J1[αo
M (ν)] sin ωM t , (5.41)

where αo
M (ν) is the maximum retardation value in the PEM oscillation cycle and

J1[αo
M (ν)] is the first-order Bessel function. Using the definition of the CD given above

equal to (1/2) ln 10[AL(ν) − AR(ν)] = 1.1513�A(ν), the expressions for IAC (ν) and
IDC (ν) are given by

ID (ν) = IDC (ν) + IAC (ν) = IDC (ν)

2
[1 + 2J1[αo

M (ν)][1.1513�A(ν)]]. (5.42)

The intensities IAC (ν) and IDC (ν) can be measured separately by virtue of their different
time modulation frequencies, distinguished for the measurement of IAC (ν) by a lock-in
amplifier synchronized to the PEM reference signal. Once separated and measured, the
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ratio of IAC (ν) by IDC (ν) removes characteristic features of the VCD instrument and
yields an expression proportional the CD spectrum �A(ν) as

IAC (ν)

IDC (ν)
= 2J1[αo

M (ν)][1.1513�A(ν)]. (5.43)

As described previously [13], it is possible to calibrate this ratio using a multiple-
waveplate and a polarizer in place of the sample. The calibration spectrum is essentially a
measure of CD intensity equal to unity. The result of the VCD calibration measurement is

[
IAC (ν)

IDC (ν)

]
cal ,ωM

= 2J1[αo
M (ν)]. (5.44)

Calibrated VCD spectra can then be obtained from the expression

�A(ν) = 1

1, 1513

[
IAC (ν)

IDC (ν)

]
/

[
IAC (ν)

IDC (ν)

]
cal ,ωM

. (5.45)

The corresponding VA spectrum can be obtained from the ratio of IDC (ν) with the sample
in place to I 0

DC (ν) without the sample or with some suitable reference in place of the
sample as

A(ν) = − log10
IDC (ν)

I 0
DC (ν)

. (5.46)

These instrumental expressions for the measurement of VCD and VA spectra can be
connected to the general and theoretical definitions of these same quantities given in
Section 5.1.

5.2.3. Measurement of Vibrational Circular Birefringence

A VCD spectrometer can be converted to a VCB spectrometer by two simple changes, one
optical and other electronic. A detailed description of this change including comparison
of the measured VCB spectra to quantum chemistry density function theory calculations
has recently been published [9]. The optical change involves placing a linear polarizer
at 45◦ from vertical after the sample in the VCD optical train. The electronic change
to be explained below is referencing the PEM lock-in amplifier to twice the PEM fre-
quency rather than the fundamental of the PEM frequency as in VCD measurement. The
Stokes–Mueller intensity expression is given by

ID (ν) = D(α) · M A(45◦
)M S (ν) · M PEM (ν) · M P (0◦

) · S 0(ν) = D(α) · M A(45◦
)S 3(ν)

= D(α) · 1

2

⎛
⎜⎜⎝

1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

⎞
⎟⎟⎠ IDC (ν)

2

⎛
⎜⎜⎝

1 + CD(ν) sin αM (ν)

cos αM (ν) − LB(ν) sin αM (ν)

−CB(ν) cos αM (ν) + LB′(ν) sin αM (ν)

CD(ν) + LB(ν) cos αM (ν) + sin αM (ν)

⎞
⎟⎟⎠ .

(5.47)
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Here we have taken advantage of the fact the VCD and VCB optical paths are identical
through the position of the sample and hence we can start the analysis with the Stokes
vector S 3(ν) from the VCD set up in Eq. (5.38). Evaluating this expressions yields

ID (ν) = IDC(ν)

4
[1 + CD(ν) sin αM (ν) − CB(ν) cos αM (ν) + LB ′(ν) sin αM (ν)]. (5.48)

The term cos αM (ν, t) including its time dependence as in Eq. (5.41) can be expressed as

cos αM (ν, t) = J0[αo
M (ν)] + 2J2[αo

M (ν)] sin 2ωM t . (5.49)

If the AC part of this signal is detected with a lock-in amplifier synchronized at the twice
the PEM frequency, 2ωM , the AC and DC detector intensities are

ID (ν) = IDC (ν) + IAC (ν) = IDC (ν)

4
[1 − CB(ν)2J2[αo

M (ν)] cos 2ωM t]. (5.50)

The CB spectrum, �nLR(ν), can be obtained from the ratio

IAC (ν)

IDC (ν)
= −2J2[αo

M (ν)][�nLR(ν)]. (5.51)

The VCB intensity expression can be calibrated by using a vertical or horizontal polarizer
in the place of the sample which, with an appropriate average of IDC (ν) for the two
orientations of the polarizer gives the calibrated intensity

[
IAC (ν)

IDC (ν)

]
cal ,2ωM

= 2J2[αo
M (ν)]. (5.52)

This is precisely the intensity need to calibrate the measurement of CB given in Eq. (5.51).
As a result, we can write the following expression for the calibration CB spectrum:

�nLR(ν) = −
[

IAC (ν)

IDC (ν)

]
/

[
IAC (ν)

IDC (ν)

]
cal ,2ωM

. (5.53)

5.3. FOURIER TRANSFORM INSTRUMENTATION

5.3.1. General Principles

The expressions for VA, VCD, and VCB measurement developed in the previous section
are quite general and can applied to measurements in any spectral region where the
circular polarization modulation was generated using a PEM. In this section we turn to
the combination of CD measurement with Fourier transform (FT) spectroscopy. Virtually
all infrared (IR) or near-IR (NIR) measurements are carried out using FT spectroscopy.
As mentioned above, there are several ways in which one can consider combining CD
measurements with FT-IR (or FT-NIR) spectroscopy. By far the most successful of these
is the one in which a PEM is placed before the sample in the FT instrument that generates
two interferograms at the same time at the detector. One interferogram is the normal
transmission IR interferogram, and the other is the transmission VCD interferogram that
is also modulated at the PEM frequency, ωM .
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There is a convenient analogy between the measurement of VCD spectra using dis-
persive versus FT instrumentation. For dispersive instrumentation, a light chopper is
needed for the measurement of the ordinary transmission spectrum because the detector
has a nonzero signal if the IR source is blocked. The IR detector sees the constant IR back-
ground from its room temperature environment, and this background is the overwhelming
source of noise for IR measurements. In addition, for the measurement of dispersive VCD
spectra a lock-in amplifier (LIA) tuned to the chopper frequency is placed after the PEM
LIA to discriminate the background radio-frequency radiation generated by the PEM.
The chopper frequency is the same for all wavelengths that are selected one resolution
element at a time by a grating monochromator. In FT-VCD measurements the chopper
is replaced by the FT interferometer that “chops” each wavelength at its own Fourier
frequency. The wavelengths can be measured at the same time, each with its own chop-
per (Fourier) frequency, by taking the Fourier transform of the interferogram signal that
emerges from the PEM LIA.

5.3.2. Measurement of FT-VCD and FT-VCB

As a point of reference for considering not only the optical path but also the electronic
pathway in a CD measurement we can consider Figure 5.3. This simplified figure applies
equally well to dispersive and FT CD measurements. When applied to FT-VCD mea-
surements, the signals coming from the LIA for IAC (δ) and directly from the detector D
for IDC (δ) are given by

IDC (δ) =
∞∫

0

IDC (ν) cos[2πδν + θDC (ν)] dν, (5.54)

IAC (δ) =
∞∫

0

IAC (ν) cos[2πδν + θAC (ν)] dν. (5.55)

These electronic signals IDC (δ) and IAC (δ) are interferograms expressed as integral super-
positions of the transmission intensities of all the spectral frequencies in the spectrum
multiplied by a cosine function that depends on the wavenumber frequency, ν, and the
retardation, δ, the path difference of the interferometer from the central equal-mirror
position. The units of length of the retardation parameter δ are usually centimeters.

S

ΔA

W P PEM X D

REF

LIA

DIV

IAC

IDC

ID

Figure 5.3. Optical electronic diagram illustrating the

measurement of CD, where S is the source, W the

wavelength selection device (a monochromator or

Fourier transform interferometer), P a linear polarizer,

PEM a photoelastic modulator, X the sample, D the

detector, ID the detector signal, LIA the lock-in amplifier

referenced to the PEM, and DIV a software division step

to divide IDC into IAC to produce the VCD spectrum �A.

(From reference 31, reproduced with permission.)
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A rapid-scan interferometer operating with constant mirror velocity Vm in centime-
ters/second has a retardation length that is related to the time-base Fourier frequency
fF ,ν = ωF /2π in cycles per second, or hertz (Hz), for each wavenumber, ν, by the
relations

2πδν = 2π(2VM t)ν = 2π(2VM ν)t = 2π fF ,ν t = ωF t . (5.56)

A common time-based Fourier frequency is 16 kHz (16,000 Hz) for the HeNe refer-
ence laser frequency. From Eq. (5.56) this Fourier frequency corresponds to a retardation
velocity 2VM of approximately 1 cm/s since the wavenumber frequency ν of an HeNe
laser at 623.8 nm is nearly 16,000 cm−1. This is a convenient mirror velocity since
the Fourier frequency corresponding to any wavenumber frequency is just the numerical
value of that frequency. Thus the Fourier frequencies associated with the mid-IR region
from 1000 to 2000 cm−1 have values between 1 and 2 kHz.

In order to obtain the transmission spectra, IDC (ν) and IAC (ν), in the integrals of
Eqs. (5.54) and (5.55), the interferogram must be Fourier transformed. This is represented
by the following expressions:

IDC (ν) = FT[IDC (δ)] = 1

2π

∞∫
0

IDC (δ) cos(2πδν) dδ, (5.57)

IAC (ν) = FT[IAC (δ)] = 1

2π

∞∫
0

IAC (δ) cos(2πδν) dδ. (5.58)

Before the Fourier transform can be performed mathematically, the phase correction
spectra, θDC (ν) and θAC (ν), must be determined and removed from the expression for
IDC (δ) and IAC (δ) in Eqs. (5.54) and (5.55). This is an operation that is automatically
performed for θDC (ν) by software that controls the operation of the FT-IR spectrometer,
and several kinds of phase-correction algorithms are available for this purpose. The phase
function θAC (ν) is not the same as the phase function θDC (ν). The reason is that these
two interferograms pass through different electronic pathways with different phase shifts
for the same Fourier frequencies. The algorithm that determines this phase correction
function automatically assumes that all detector intensities are positive. This is true for
IDC (ν), but the intensities IAC (ν) can be either positive or negative across the spectrum
depending on whether the VCD intensity is negative or positive. As a result, a method for
measuring IAC (ν) when only positive CD intensities are present is needed, after which
that phase correction function can be transferred to the measurement of IAC (ν) when
both positive and negative intensities are present. Such a single-signed CD spectrum can
be obtained from stressed optical plate, usually made of ZeSe, followed by a polarizer
located at the sample position.

Once the interferograms IAC (δ) and IDC (δ) are Fourier transformed to the transmis-
sion spectra IAC (ν) and IDC (ν), the determination of the VCD and VA spectra, �A(ν)

and A(ν), proceeds according to Eqs. (5.45) and (5.46) presented in the previous section.
Similarly, for the measurement of VCB, an AC phase function must be measured using
the same electronic pathway as used for VCB measurement before Fourier transforma-
tion. Here the corresponding AC and DC interferograms yield the VCB and VA spectra,
�nRL(ν) and A(ν), as presented above in Eqs. (5.53) and (5.46).
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Figure 5.4. VCB (upper), VCD (middle), and VA

(lower) spectra of (+)-R-limonene as a neat

liquid are shown measured with a pathlength

of 50 μm. Also displayed above the VCB and

VCD spectra are the corresponding VCB and

VCD noise spectra. (From reference 9,

reproduced with permission.)

5.3.3. Infrared VOA and VA Spectra of Alpha Pinene

In this section we present, as a standard example, the VCD, VCB, and VA spectra of
limonene [9]. In Figure 5.4, the VCB upper, VCD middle, and VA lower spectra of (+)-
R-limonene as a neat liquid is presented for the spectral region from 1350 to 950 cm−1.
The convention in VOA spectroscopy is to plot the parent VA spectrum beneath the VOA
spectrum so that features in the VA spectrum can be correlated to features in the VOA
spectrum. This is important since peak values in the VOA spectra can be shifted from the
resonance band center by overlaps of oppositely signed spectral features. Also provided
in the figure are the VCB and VCD noise spectra plotted just above their corresponding
VCB and VCD spectra. The VOA spectra were collected in two blocks. The blocks
were added and divided by 2 to produce the displayed VCB and VCD spectra and were
subtracted and divided by 2 to produce the corresponding noise spectra. The noise spectra
provide a measure of confidence in the authenticity of small features in the VOA spectra.
Finally, the ordinate axis units are unitless absorbance, �A or A, on the left and molar
absorptivity in units of mol−1 cm2, �ε or ε, on the right. The molar absorptivity scale
was obtained from the absorbance scale by dividing the latter by the pathlength in cm
and by the molar concentration in moles/cm3. Absorbance units are useful judging the
signal-to-noise conditions of the measurement since the signal-to-noise ratio is maximized
for �A or A at a value of approximately 0.4. Absorbance levels should never exceed
approximately 1.0 due to significant loss of IR throughput and attendant much higher
noise levels. The molar absorptivity units are useful for comparing intensities to the
results of quantum mechanical calculations or to other molecules of similar structure
and size.
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5.3.4. Comparison of Dispersive and Fourier Transform VCD

Although FT-VCD instrumentation has many significant advantages over the older dis-
persive VCD instrumentation, there still remains an area of application where dispersive
VCD instrumentation is at least comparable in performance and reliability, if not superior.
This area of application involves optimization of instrumentation for a relatively narrow
spectral region of 100–200 cm−1 in width. Under these circumstances, it is possible to
increase substantially the intensity of the IR source without saturating the detector, an
ever-present danger in FT-VCD measurements, and to optimize all other components
such as spectrograph, grating, and filters that would not be appropriate for measurements
covering a wider spectral frequency range. With such optimized dispersive instrumenta-
tion signal-to-noise ratios comparable to those of wide-spectral-coverage FT-VCD over
the same region, can be obtained. Recently, two papers have appeared that featured com-
parisons of dispersive VCD and FT-VCD spectra. The first one is a review by Keiderling
[43] at the University of Illinois, Chicago, that contains many such comparisons, and the
second one is a more recent paper carried out at Syracuse that focuses on comparisons of
the FT-IR and FT-NIR VCD of proteins and also includes a single comparison between
FT and dispersive VCD in the amide I region for the protein α-chymotripsin [44].

Comparisons of dispersive and FT VCD are difficult due to differing natures of
the sources of noise in the VCD spectra. FT-VCD spectra have noise that is distributed
smoothly over the entire spectrum and is the result of the aggregate noise of the spectral
measurement over all frequencies measured simultaneously. The noise does vary with
absorbance level in the usual way, but the noise itself comes from a broadband average.
The difficulty in seeing this smooth kind of noise is one reason why it is important to
show a separate noise curve for VCD spectra as is in Figure 5.4. Noise in dispersive
VCD spectra is much more local in a spectroscopic sense and somewhat easier to see.
The noise is manifested as sharper features that vary while the VCD spectrum is being
measured one resolution element at a time. There seems to be advantages to both types
of VCD measurement, and it may well be that there will always be a place for specially
designed dispersive VCD instrument for a particular spectral region such as the amide I
region of protein IR and VCD spectra.

A final point of comparison concerns kinetic measurements of VCD spectra as a
function of time. Here, there is an intrinsic advantage of FT-VCD instrumentation since
all frequencies in the spectrum are measured simultaneously. The time resolution can
be determined by the length of time for each unit of co-added VCD scans that could
vary from a few tens of seconds to as long as an hour. Dispersive VCD spectra will
always contain a time bias associated with the time it takes to make a single scan over
the frequency range measured. For slow kinetics, on the order of hours, there is no
significant level of time bias since in effect for say a 5-minute single scan there may be
essentially no detectable change in the kinetic state of the sample. Nevertheless, FT-VCD
with simultaneous collection of AC and DC interferograms enjoys a significant advantage
in principle for kinetic measurements.

5.4. ADVANCED METHODS FOR FT-VCD MEASUREMENT

In this section we describe advances in FT-VCD instrumentation and measurement that
involve the introduction of new optical elements or changes in the optical beam path that
have demonstrated a significant improvement in the measurement of VCD spectra.
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5.4.1. Dual Polarization Modulation FT-VCD

The advance of dual polarization modulation for FT-VCD measurement was described
for the first time approximately 10 years ago [31]. The method is related to the earlier
technique called polarization scrambling [12], but differs in several significant ways. In
both polarization scrambling and dual polarization modulation, a second PEM with slow
and fast axes aligned parallel to the first PEM is placed in the optical train after the sample.
For polarization scrambling, the control voltage of the second PEM is continuously
changed as the dispersive monochromator scans the spectrum in order to keep this PEM
at retardation value of optimum scrambling that reduces the magnitude and severity of the
VCD background baseline offset. Polarization scrambling cannot be carried out with the
same level of efficiency for FT-VCD measurement since all frequencies are measured
simultaneously and only for one narrow region of the spectrum can the PEM setting
correspond to optimum polarization scrambling.

For dual polarization modulation, the control voltages of the first and second PEMs
are adjusted to have the same retardation setting, and the FT-VCD spectrum of each of
the two PEMs is measured using its own lock-in. The first PEM records the FT-VCD
of the sample plus the VCD baseline offset spectrum, while the second PEM, placed
after the sample, records only the VCD baseline offset spectrum. Subtraction of the
two AC interferograms in real time during each interferogram scan dynamically cancels
the baseline offset spectrum and yields the VCD spectrum of the sample free of the
interfering baseline distortions and other kinds of spectral artifacts.

The optical-electronic block diagram for the dual PEM setup is provided in
Figure 5.5.

S W

ΔA

IAC1

IAC1 − IAC2 IAC2

IDC

ID

P1 PEM1

REF 1

LIA1

LIA2SUB

DIV

REF 2

X LB PEM2 P2 D

Figure 5.5. Optical-electronic block diagram illustrates the dual polarization modulation setup.

The optical and electronic labels are the same, except for additional numbering, as those used

in Figure 5.3 except for the addition of a real-time electronic subtraction stage (SUB) that

filters and subtracts the outputs of PEM1 and PEM2 before their difference AC interferogram is

Fourier-transformed and ratioed to the Fourier transform of the DC interferogram to produce

the measured VCD spectrum. (From reference 31, reproduced with permission.)
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The optical path between the source and detector is described as

Source → Pol.(0◦
) → PEM1(45◦

) → Sample → PEM2(45◦
) → Pol.(0◦

) → Detector

and the Stokes–Mueller formalism for the intensity at the detector is given by

ID (ν) = D(α) · M P2(0
◦
) · M PEM 2(ν) · M S (ν) · MPEM 1(ν) · M P1(0

◦
) · S 0(ν). (5.59)

This expression is the same as that of the single PEM theory through the Mueller matrix
of the sample which produces S 3(ν) given above in Eq. (5.38). If the Mueller matrix
of the second PEM operates on S 3(ν), the new Stokes vectors S 4(ν) is obtained by the
following expressions:

S 4(ν) = M PEM 2[45◦, αM 2(ν)] · S 3(ν)

=

⎛
⎜⎜⎝

1 0 0 0
0 cos αM 2(ν) 0 − sin αM 2(ν)

0 0 1 0
0 sin αM 2(ν) 0 cos αM 2(ν)

⎞
⎟⎟⎠ IDC (ν)

2

⎛
⎜⎜⎝

1 + CD(ν) sin αM 1(ν)

cos αM 1(ν) − LB(ν) sin αM 1(ν)

−CB(ν) cos αM 1(ν) + LB′(ν) sin αM 1(ν)

CD(ν) + LB(ν) cos αM 1(ν) + sin αM 1(ν)

⎞
⎟⎟⎠

= IDC

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + CD sin αM 1

cos αM 1 cos αM 2 − LB sin αM 1 cos αM 2 − CD sin αM 2

−LB cos αM 1 sin αM 2 − sin αM 1 sin αM 2

−CB cos αM 1 + LB′(ν) sin αM 1

cos αM 1 sin αM 2 − LB sin αM 1 sin αM 2 + CD cos αM 2

+LB cos αM 1 cos αM 2 + sin αM 1 cos αM 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.60)

Here, to save space, the wavenumber frequency dependence has been dropped in the
last expression. We now introduce the Bessel functions J0(αM ) and J1(αM ) from Eqs.
(5.41) and (5.49) through first order in the modulation frequency, and we eliminate terms
that depend on the product sin αM 1 sin αM 2 since the PEMs are not synchronized and the
product of sine waves averages to zero. Also eliminated are the terms cos αM 1 cos αM 2

and CD cos αM 2 since they are small relative to unity, the main DC term. This gives

S 4(ν) = IDC

2

⎛
⎜⎜⎝

1 + 2J1(αM 1)CD
−2J1(αM 1)J0(αM 2)LB − 2J1(αM 2)CD − 2J0(αM 1)J1(αM 2)LB

−J0(αM 1)CB + 2J1(αM 1)LB′
2J0(αM 1)2J1(αM 2) + 21(αM 1)J0(αM 2)

⎞
⎟⎟⎠ .

(5.61)

If we complete the last two Mueller matrix operations for the second polarizer and the
detector in Eq. (5.59), the final scalar intensity is given by

ID = IDC

4
[1 + (p2

X − p2
Y ) cos 2α][1 + 2J1(αM 1)CD − 2J1(αM 1)J0(αM 2)LB

−2J1(αM 2)CD − 2J0(αM 1)J1(αM 2)LB]. (5.62)
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Here the first two terms in square brackets are close to unity with a small term depending
on the magnitude and angle of the polarization sensitivity of the detector. The second
set of terms in square brackets has a DC term (1) and four AC terms comprised of
two equivalent terms associated with each PEM, one carrying the VCD signal and the
other carrying an LB artifact term. These two terms associated with each PEM are
measured separately by the two lock-in amplifiers in Figure 5.5. It is possible to exactly
separate the VCD intensity from the LB intensity by reversing the sign of one of the
lock-ins by changing the lock-in phase by 180◦. If, in addition, the two PEMs are set to
the same retardation value such that J0(αM 2)J1(αM 1) = J0(αM 1)J1(αM 2), the LB terms
cancel while the CD terms add, giving

ID = IDC

4
[1 + (p2

X − p2
Y ) cos 2α][1 + 2J1(αM 1)CD + 2J1(αM 2)CD]. (5.63)

The two VCD terms compensate for the loss of light that occurs when the second polarizer
is placed in the beam. Although this is optically and electronically a perfect solution to
the VCD artifact problem, it suffers from a major drawback that has so far prevented its
use in everyday applications. This drawback is the fact that placing a polarizer in the
beam after the second PEM magnifies the size of the LB by a factor of approximately
100, which places too large a demand on the accuracy of the cancellation of the LB
terms relative to the size of the VCD intensity.

An alternative solution is to not place a polarizer after the sample. Applying the
Mueller matrix of the detector to S 4(ν) in Eq. (5.61) yields

ID = IDC

2
{1 + 2J1(αM 1)CD

+ (p2
X − p2

Y ) cos 2α[−2J1(αM 1)J0(αM 2)LB]

−2J1(αM 2)CD − 2J0(αM 1)J1(αM 2)LB]

+(p2
X − p2

Y ) sin 2α[2J1(αM 1)LB′]}. (5.64)

Here, we have again ignored terms that are small or average to zero. Now there is twice
as much light reaching the detector, but only a very small CD term coming from the
second PEM. All AC terms beyond the CD term of PEM1 are reduced to the level of
the polarization sensitivity of the detector, and again changing the sign of the LIA of the
second PEM cancels the two LB terms when the PEMs are set to the same retardation
value. Carrying out this operation, we obtain

ID = IDC

2
{1 + 2J1(αM 1)CD + (p2

X − p2
Y ) cos 2α[2J1(αM 2)CD]

+ (p2
X − p2

Y ) sin 2α[2J1(αM 1)LB′]}. (5.65)

Because there was no polarizer in place at the vertical or horizontal orientation, a single
LB′ term remains in this expression that is not present in Eq. (5.63). Later in this
section we demonstrate two practical ways to eliminate this remaining source of linear
birefringence. Further analysis reveals (not shown here but easily verified if desired) that
the dual PEM method without a second polarizer eliminates all sources of LB and LB′
artifacts before and after the two PEMs as well as all LB terms between the two PEMs.
Only the LB′ terms between the two PEM are not eliminated unless a polarizer is placed
in the beam after the second PEM as demonstrated above.
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Figure 5.6. Diagram illustrating the optical

layout of a dual-source FT-IR spectrometer. The

beam from the two sources, SA and SB, are each

divided into two beams at the beamsplitter, BS.

These four beams reflect at cube-corner mirrors

(CCM) and recombine at the beamsplitter. The

subscripts R and T refer to reflection and

transmission, respectively, as described in the

text. (From reference 32, reproduced with

permission.)

5.4.2. Dual Source FT-VCD

A relatively recent advance in VCD instrumentation is the use of two sources in an FT-IR
spectrometer [32]. The basic optical layout is illustrated in Figure 5.6. The source SA

is located in the usual position, whereas source SB is located in a nonstandard position.
The interferometer used for the dual source measurement employs cube-corner mirrors
instead of flat plane mirrors. Using such mirrors, it is possible for the light beam incident
on the beamsplitter to be in the lower portion of the beamsplitter and it is possible for the
recombined beams after mirror reflection to be in the upper part of the beamsplitter. In this
way, there are four available in-out ports for the interferometer. In Figure 5.6, the beam
exiting the interferometer toward the sample is comprised of a beam from SA, I A,DC

RT+TR(δ),
where the two split beams each experiences one reflection and one transmission at the
beamsplitter as indicated by the subscripts RT + TR. For this same beam in intensity
originating from SB , I B ,DC

RR+TT (δ), one of the split beams experiences two reflections and
the other two transmissions, labeled RR + TT . These two beams have opposite Fourier
phases and hence contribute with opposite signs at the detector as indicated here:

I AB
DC (δ) = I A,DC

RT+TR(δ) + I B ,DC
RR+TT (δ) =

∞∫
0

(I A
DC (ν) − I B

DC (ν)) cos[2πδν + θDC (ν)] dν.

(5.66)

For the dual-source AC interferogram, one first replaces the single polarizer in front of
the PEM with two polarizers oriented orthogonally, one in front of each source. Thus,
although beams from SA and SB are nearly the same, their different polarization states
with respect to reflection and transmission at the beamsplitter lead to different intensities
for I A

DC (ν) and I B
DC (ν), for the outgoing beams. As a result, even though the beams

I A
RT+TR(δ) and I A

RR+TT (δ) have opposite Fourier phase, their Fourier modulations do not
cancel but rather add as shown in the following equation:

I AB
AC (δ) = I A,AC

RT+TR(δ) + I B ,AC
RR+TT (δ) =

∞∫
0

(I A
AC (ν) + I B

AC (ν)) cos[2πδν + θAC (ν)] dν

(5.67)
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Experimentally, it is found that for such an arrangement with two sources the ratio
I A
DC (ν)/I B

DC (ν) is approximately 1.6 times the ratio with a single source. This increase in
signal against a fixed detector noise background makes the dual-source setup equivalent
to nearly three otherwise identical single source FT-VCD spectrometers operating in
parallel. Alternatively, collection time is reduced by a factor of three with dual source
operation compared to single source operation.

An additional advantage of dual source operation, beyond the increased intensity
of the AC signal, is the reduction in saturation sensitivity of the DC part of the signal.
Because in the DC mode, the two interferograms combine with opposite signs, one or
both beams can be above the saturation limit of the detector, but their difference as
measured can still be below the saturation limit.

For dual-source operation, the VCD intensity is proportional to the ratio of the
combined AC and DC interferograms. This ratio, relative to single-source operation, is
found experimentally to be approximately

∣∣∣∣ I A
AC (ν) + I B

AC (ν)

I A
DC (ν) − I B

DC (ν)

∣∣∣∣ =
∣∣∣∣1 + 1.6

1 − 1.6

∣∣∣∣ ≈ 4.3. (5.68)

This represents the increase in the uncalibrated dual-source VCD intensity relative to the
corresponding uncalibrated single-source VCD intensity. This factor represents the gain
in AC transmission intensity relative to the reduction in DC transmission intensity, and
it is compensated when the final calibrated dual-source VCD spectrum is determined.

5.4.3. Rotating Achromatic Half-Wave plate

It has been demonstrated recently that placing a rotating achromatic half-waveplate
(HWP) after the second PEM in a dual-PEM FT-VCD instrument eliminates all sources
of artifacts throughout the optical train [35]. The plate rotates slowly on the order of 10
revolutions per minute asynchronously with respect to all other modulation frequencies
in the instrument. We also add an additional source of linear birefringence (LB2) after
the rotating HWP, to demonstrate how the effects of this plate are eliminated, followed
by the detector. The optical setup for the dual-PEM rotating HWP is

Source → Pol. → PEM1(45◦
) → Sample → PEM2(45◦

)

→ RHWP → LB2 → Detector

The Mueller matrix for a HWP as a function of its orientation angle was provided above
in Eq. (5.29). For a rotating plate, the effect of the HWP can be averaged over all angles
by integration between the 0 and 2π , as

M RHWP = 1

2π

2π∫
0

⎛
⎜⎜⎝

1 0 0 0
0 cos 4θ sin 4θ 0
0 sin 4θ − cos 4θ 0
0 0 0 −1

⎞
⎟⎟⎠ dθ =

⎛
⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

⎞
⎟⎟⎠ . (5.69)

This Mueller matrix averages to zero all LP states and converts any component of circular
polarization from right to left or vice versa. If a rotating HWP is placed after the second
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PEM in a dual PEM optical train, the resulting Stokes vector S 5(ν) can be obtained
starting from the Stokes vector after PEM2, S 4(ν), given in Eq. (5.61), by

S 5(ν) = M RHWP · S 4(ν) = IDC

2

⎛
⎜⎜⎝

1 + 2J1(αM 1)CD
0
0

−2J0(αM 1)2J1(αM 2) − 2J1(αM 1)J0(αM 2)

⎞
⎟⎟⎠ . (5.70)

If a second source of small linear birefringence LB2 is included after the rotating HWP,
it can be described by the Mueller matrix from Eqs. (5.31) and (5.32):

M LB2 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 −LB2
0 0 1 LB2′

0 LB2 −LB2′ 1

⎞
⎟⎟⎠ . (5.71)

This source of this birefringence can be due to the detector focusing lens or the detector
window. The Stokes vector after this additional source of LB is given by

S 6(ν) = M LB2 · S 5(ν)

= IDC

2

⎛
⎜⎜⎝

1 + 2J1(αM 1)CD
LB2[2J0(αM 1)2J1(αM 2) + 2J1(αM 1)J0(αM 2)]

−LB2′[2J0(αM 1)2J1(αM 2) + 2J1(αM 1)J0(αM 2)]
−(1 + LB2 − LB2′)[2J0(αM 1)2J1(αM 2) + 2J1(αM 1)J0(αM 2)]

⎞
⎟⎟⎠ . (5.72)

The terms in square brackets which are due simply to the circular polarization term of
the Stokes vector after the rotating HWP in Eq. (5.61) become zero if the two PEMs
are set to be equal retardation strength and the LIA1 and LIA2 signals are subtracted
electronically as describe above. If this is done, the last entry in Eq. (5.70) or all the
square bracket terms expressions in Eq. (5.72) are zero and then all LB and LB′ terms
cancel and the final Stokes vector before the detector is given by

S 6(ν) = IDC

2

⎛
⎜⎜⎝

1 + 2J1(αM 1)CD
0
0
0

⎞
⎟⎟⎠ . (5.73)

The signal at the detector, with or without polarization sensitivity at the detector, is
given by

ID (ν) = D(α) · M LB2(ν) · M RHWP · M PEM 2(ν) · M S (ν) · M PEM 1(ν) · M P (0◦
) · S 0(ν)

= D(α) · S 6(ν) = IDC

2
[1 + 2J1(αM 1)CD(ν)]. (5.74)

This is birefringent artifact-free VCD spectrum. The dual-PEM setup eliminates all
sources of birefringence except for the LB′ contributions located between the two PEMs,
primarily due to the sample cell windows in the case of a liquid or solution sample and
orientational effects in a solid-phase sample. By contrast, the rotating HWP eliminates all
sources of birefringence before it in the optical train but has no effect on birefringence
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that occurs after it, such as in the detector focusing lens or detector windows. Together,
and only together, they eliminate all birefringent artifact signals.

The principal drawback of the rotating HWP is acquisition of an achromatic HWP
in the IR region. The fabrication is fairly straightforward. For the NIR region with a
lower limit of 2000 cm−1 the cost of acquisition in 2004 of a super achromatic plate (B.
Halle Nachfolger in Berlin, Germany) was approximately the same cost as a PEM [35].
Extension beyond this limit into the mid-IR is still untested optical technology for VCD
measurements.

5.4.4. Rotating Sample Cell

A simpler solution to the LB artifact problem that remains after incorporation of the
dual-PEM setup is rotation of the sample about the optic axis of the IR beam. Here,
both sources of linear birefringence, LB(ν) and LB′(ν), associated the sample cell, and
included in the Mueller matrix of the sample in Eq. (5.32), are averaged to zero over the
course of the measurement. This yields a VCD baseline that is the same as the baseline
of the spectrometer with the same optical aperture but no optical elements between the
two PEMs. The optical arrangement to be described by Mueller analysis is given below:

Source → Pol. → PEM1(45◦
) → RSC → PEM2(45◦

) → LB2 → Detector

Here the sample cell is replaced by a rotating sample cell (RSC), and we again include
an additional source of birefringence by LB2 to account for the optical strain effects of
the detector focusing lens and detector window.

We first generalize the Mueller matrix of the sample used in Eq. (5.38) to be valid
for any angle of orientation of the sample cell.

M S (θ) = 10−A

⎛
⎜⎜⎝

1 0 0 CD
0 1 CB −LB cos 2θ − LB′ sin 2θ

0 −CB 1 LB′ cos 2θ − LB sin 2θ

CD LB cos 2θ + LB′ sin 2θ −LB′ cos 2θ + LB sin 2θ 1

⎞
⎟⎟⎠

(5.75)

Averaging over all orientation angles as was done for the rotation HWP in Eq. (5.69),
one obtains

M RS =
∫ 2π

0
M S (θ) dθ = 10−A

⎛
⎜⎜⎝

1 0 0 CD
0 1 CB 0
0 −CB 1 0

CD 0 0 1

⎞
⎟⎟⎠ . (5.76)

Integration over all angles eliminates through first order all sources of LB arising from
the sample. The action of PEM2 eliminates all remaining LB terms. The detector signal
has only pure VCD intensity at the fundamental PEM frequency with no artifact terms.

ID (ν) = D(α) · M LB2(ν) · M PEM 2(ν) · M RSC (ν) · M PEM 1(ν) · M P (0◦
) · S 0(ν)

= D(α) · S 6(ν) = IDC (ν)

2
{1 + 2J1[α0

M 1(ν)]CD(ν) − 2J2[α0
M 2(ν)]CB(ν)}. (5.77)

For completeness we retain the VCB intensity that can be measured at twice the PEM
frequency and is proportion to 2J2(αM 1) as described above. VCB cannot be measured
with the achromatic RHWP since the linear polarization states used in VCB measured
are averaged to zero by the RHWP.
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5.5. MEASUREMENT OF DISPERSED SOLIDS AND FILMS

Most measurements of VCD spectra have been carried for neat liquids or solutions.
As seen from considerations above, all such measurements have been carried out in a
sample cell with windows. While the windows, such as BaF2, are transparent in the
regions measured, they nevertheless can display varying degrees of strain birefringence
that can distort the circular polarization balance of the IR beam between RCP and LCP
states leading to artifacts. The method of dual polarization modulation with two PEMS,
combined with sample cell rotation, eliminates all sources of the LB in the optical train.
In this section we discuss the issues associated with measuring the VCD in solid-phase
samples, primarily dispersed solids and films.

5.5.1. Sampling Methods for Dispersed Solids

The most significant difference between a solid sample for VCD measurement and the
cell windows using for a solution-state VCD measurement is that the solid sample has
a significant level of absorption. The absorption bands cause sharp changes in the index
of refraction of the sample as a function of wavenumber frequency. In a solid the index
of refraction can be different for different directions in the solid, and as a result there
can be both linear dichroism from the absorption bands and linear birefringence from the
index of refraction differences in different direction.

One approach to reducing these effects is to grind the solid to small particle sizes
and disperse the solid to reduce the effects of LD or LB on the VCD spectrum. A
complicating factor is the particle size. If particles are not smaller than the wavelength
of the light, scattering from the so-called Christiansen effect will occur that affects both
the IR absorption spectrum and the VCD spectrum. If the particle size is sufficiently
small, the VCD of dispersed solids, such as mulls or KBr pellets, can be obtained
without concern about LB artifacts, provided that two PEMs are used together with the
rotating sample cell.

As has been shown in detail using second-order Stoke–Mueller analysis, one remain-
ing source of CD artifacts for solid samples can arise for samples with both LB and LD
with axes oriented 45◦ from one another—that is, independent of the angle of sample
orientation [45]. The final expression, even after integrating uniformly over all possible
angles of orientation, is

ID = IDC

2

[
1 + J1(αM1)

[
CD + 1

2
(LBLD − LB′LD′)

]]
. (5.78)

This is the same as Eq. (5.74) or Eq. (5.77) except for the addition of a term that
depends on the product of LD and LB for the two reference systems. The way these
quantities were defined, the term LBLD represents the second-order Mueller matrix effect
of LB with axes at 45◦ from vertical, that converts CP light to LP light in the vertical
horizontal orientation, with LD orientated in the vertical versus horizontal direction. The
term LB′LD′ is analogous except all angles are changed by 45◦. A signature of this
artifact is its reversal if the solid sample is rotated 180◦ about any axis perpendicular to
the propagation axis such that the front and back faces of the sample are interchanged.
If this is done, the sign of this artifact is reversed and this artifact cancels for sum of
the VCD measurements with the sample facing front and back. While in principle, this
artifact could arise from the individual crystals for a dispersed solid, no such artifact has
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yet been reported. Most likely, this artifact is important only for oriented solid-phase
samples displaying a significant level of both LD and LB spectra.

An example of a solid-phase VCD spectrum for S -propanolol is presented in
Figure 5.7. This example illustrates one advantage of measuring the VCD of solid-phase
samples, in this case a drug substance, where slight modifications of the composition,
free base versus hydrochloride salt, can lead to distinct differences in the VCD related
to its detailed stereochemical structure in the solid. For these samples, the solid was
ground to small particle size to avoid particle scattering. The absence of observable
levels of particle scattering can be ascertained from the bandshapes of the IR spectra
since particle scattering, which depends on the index of refraction of the solid particles
relative to the hydrocarbon oil used to make the mull, leads to distortion of the
symmetry of the lineshapes. Symmetric lineshapes can be interpreted as the absence of
particle scattering effects.

5.5.2. Sampling Methods for Films

Another solid-phase sampling method used in VCD is the measurement of films. If films
are prepared without care, spurious orientation effects due to strain birefringence can
lead to artifacts that prevent reproducibility of the VCD of film samples. As noted from
the Stokes–Mueller analysis of samples with LB and LD effects, two sets of orientation
effects can be present that differ by 45◦ from one another, LB and LD as well as LB′ and
LD′, and hence checking a film sample for the differences in VCD at positions that differ
only by 90◦ is insufficient to check for the absence of orientation artifact. In addition, as
noted above, it is important to check for front and back face orientations of a film sample
to ensure the absence of second-order LBLD artifacts described for Eq. (5.78). We cite
here a number of examples of methods of measuring VCD of films that do not suffer
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from measurable orientation artifacts. The first is a spin-coated film of a conducting
polymer that showed no effects of orientation about the beam propagation direction
[46]. A second example is spray-dried films, which are fast-drying films formed by two-
dimensional layering from a solution sprayed onto an IR transparent window that has
been heated to promote rapid evaporation of the solvent to form the crystalline film [36].
A third example is films of amino acids prepared from a solution containing cyclodextrin
that, as a supporting matrix for the film, promotes a uniform film without orientation
effects in the VCD spectra that are seen in the absence of cyclodextrin [47]. In this
case, cyclodextrin acts to replace hydrogen bonding interactions present in the aqueous
solutions of the amino acids, and thus VCD spectra can be obtained with a minimum
level of interference of solvent as films with aqueous-like molecular properties. Finally,
we note that recently, as shown in Figure 5.8, VCD spectra of solutions and films were
presented for samples of insulin amyloid fibrils that show a reversal of enhanced VCD
and of supramolecular chirality as a function of the pH [48]. The film and solution VCD
spectra were approximately the same size when normalized to the same IR absorbance
intensity, and no orientation effects including front to back sampling, was observed.

5.6. CONCLUSIONS

Instrumentation for the measurement of infrared vibrational optical activity has advanced
in many ways from the discovery of vibrational circular dichroism in the 1970s. In this
chapter, we have presented many of these advances using the Stoke–Mueller formalism
of optical analysis. Since a number of these advances have taken place relatively recently,
it is likely that the process of instrumentation development and improvement for VCD
measurement is still ongoing and that the future will see further improvements as methods
are sought to routinely measure VCD as rapidly as possible without interferences from
effects of the optical elements required for its measurement.
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6

MEASUREMENT OF RAMAN OPTICAL
ACTIVITY

Werner Hug

6.1. INTRODUCTION

The theoretical understanding of optically active Rayleigh scattering was reached at the
beginning of the 1970s. Decisive insight came through the identification, by Barron and
Buckingham [1], of the interference terms of the electric dipole–electric dipole polariz-
ability tensor with the optical activity tensors, namely the electric dipole–magnetic dipole
tensor and the appropriately contracted electric dipole–electric quadrupole tensor. More-
over, it appeared plausible that the Placzek polarizability treatment of Raman scattering
could be extended to Raman optical activity. This theoretical insights, which suggested
that Raman optical activity (ROA) should be measurable, led to a number of early reports
on its presumed observation. The early data were spurious, however, with published
spectra of an unreasonable size and apparance, and it was only by the measurement of
individual ROA bands of the enantiomers of α-phenylethanol, α-phenylethylamin, and
α-phenylethylisocyanate by Barron et al. in 1973 [2, 3] that the existence of ROA was
experimentally established. The subsequent measurement of the ROA spectra of (+)-
α-phenyletylamine and (−)-α-pinene by Hug et al. [4] confirmed these first data and
expanded measurements to whole ROA spectra. It is noteworthy to point out that the
ROA data reported by Barron et al. actually represent the first observation of vibrational
optical activity of molecular origin. VCD of molecular origin was observed in the fol-
lowing year by Holzwarth et al. [5] and was subsequently confirmed by Nafie et al. [6]
with higher-quality spectra.

With electronic optical activity, at first ORD and later also CD, routinely measur-
able for decades, one might ask what the experimental obstacles were which delayed the
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observation of vibrational optical activity until the 1970s. In the case of Raman optical
activity, there is a simple answer: the lack of the availability of a sufficiently powerful
laser with an appropriate wavelength. It is no exaggeration to state that it was the inven-
tion of the argon ion laser which made the experimental demonstration of ROA possible
and relatively straightforward. Other helpful technologies that had become available in
the 1970s were single-photon counting and KD*P electro-optic polarization modulators
developed for the purpose of laser Q-switching.

Early ROA measurements were tedious and prone to offset. The advances that have
happened over the past three decades can roughly be divided into three cathegories. The
first reflects the general progress in Raman instrumentation, such as optical multichannel
detection originally with intensified linear self-scanned diode arrays [7] and more recently
with backthinned charge-coupled devices (CCDs) combined with (a) high-luminosity
spectrographs with holographic gratings and (b) solid-state lasers that replace gas lasers.
The second is the solution of the offset problem ubiquitous in optical activity, in early
right-angle scattering by a dual-lens light collection system [8], and more recently in
a general way by the creation of a virtual enantiomer [9]. The third are improvements
in light collection, sample cells, and sample handling techniques that have allowed a
reduction in the amount of substance required down to less than 50 μg in the case
of aqueous solutions. Right-angle scattering was supplanted with back- and forward
scattering [10–12]. The exclusive modulation of the circular polarization of the incident
light, which dominated the first decade of ROA measurements, was complemented by
the circular polarization analysis of the scattered light [13–17].

The discussion of these experimental advances will occupy most of the remainder of
this chapter. One should not overlook, however, that the theoretical foundations of ROA
have also been revised to include novel polarization schemes and the general resonance
case [18], with an explicit formulation of the singly excited state limit [19, 20]. There
have been various formulations of nonlinear ROA [21–23] which so far have not found
practical applications.

6.2. OPTICAL ACTIVITY MEASURED BY LIGHT SCATTERING

Spontaneous light scattering is a two-photon process. In contrast to luminescence, Raman
scattering cannot be separated into two consecutive one-photon processes, and the design
of an optically active light scattering experiment thus needs to take the properties of the
scattering tensor into account. A ROA instrument can be used to conduct an optically
active luminescence experiment, but the opposite is not neccessarily true.

The light scattering nature of ROA opens up the possibility of different scattering
geometries and polarization schemes for measuring it. This permits the collection of far
more information on the structure of a molecule, on the molecule’s electronic properties,
and on the nature of its vibrations than is possible with a transmission or luminescence
experiment. It also complicates the discussion of the measurement of ROA.

We describe in the following the main scattering arrangements and how they relate to
the properties of the scattering tensor. The information they provide, and aspects related
to offset control, will be addressed in later sections.

6.2.1. Scattering Geometries and Polarization Schemes

The relevant physical quantity in a scattering experiment is the scattering cross section
σ . In a light-scattering experiment, it measures the rate at which energy is removed
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by scattering from the incident beam of exciting light, relative to the rate at which
energy crosses a unit area perpendicular to the direction of propagation of the incident
beam. In ROA, where the diastereomeric interaction between left- and right-circularly
polarized light with a chiral molecule is measured, the difference scattering cross section
�σ = σ(left) − σ(right) takes this place.

The direct measurement of light scattered into a solid angle � = 4π is not feasible in
Raman and ROA spectroscopy. In ordinary Raman spectroscopy, dσ(θ)/d� is measured,
the differential scattering cross section per unit of solid angle for scattering under an
angle θ into an infinitesimally small element d�. In ROA, �dσ(θ)/d�, the difference
differential scattering cross section per unit of solid angle, is used accordingly. In practice,
in view of the need to collect a finite amount of light, the use of a substantial solid light
collection angle is unavoidable. Experimental data described as, for example, “ROA
measured in foreward scattering” thus do not correspond precisely to the theoretical
expression pertaining to �dσ(0)/d�.

The three distinguished scattering geometries are right-angle scattering (θ = π/2),
backward scattering (θ = π), and forward scattering (θ = 0). For each of these scattering
geometries there are three basic circular polarization schemes depending on whether
the circular polarization of the incident light (ICP, incident circular polarization), of
the scattered light (SCP, scattered circular polarization), or of both (DCP, dual circular
polarization) is modulated or analyzed. In addition, for ICP the scattered light can or
cannot be analyzed with respect to its content polarized perpendicular (⊥) or parallel (‖)
to the scattering plane. Likewise, in SCP the incident light can be naturally (n) polarized
or linearly polarized perpendicularly or parallel to the scattering plane. In DCP, the left-
(right-) circularly polarized component of the scattered light can be detected when the
exciting light is left- (right-) circularly polarized (DCPI), or the circular polarization of
the incident and detected light can be opposite (DCPII) [15, 16]. Outside resonance,
DCPII vanishes, and the information obtained with ICP and SCP is identical.

The indication of the polarization arrangement is part of the notation of scattering
cross sections. It is best illustrated by an example. For a SCP experiment with a scattering
angle θ undertaken with naturally (n) polarized exciting light, one has

ndσp(θ)SCP = 1

2
(ndσp,R(θ) +n dσp,L(θ)), (6.1)

−�ndσp(θ)SCP = −(ndσp,L(θ) −n dσp,R(θ)). (6.2)

where p indicates the molecular vibration underlying the Raman band one observes.
This index is often omitted because the vibrational assignement may not be known in an
experiment. The notation is then identical to that for Rayleigh scattering, but the symbols
in formulae stand for different molecular quantities.

L and R obviously refer to the left- and right-circularly polarized component of the
scattered light. The minus sign in front of �dσ has been introduced because molecular
properties in optical activity are defined as the quantity measured for left-circularly polar-
ized light minus that for right-circularly polarized light, while in ROA the opposite sign
convention was adopted for measured scattering intensities [7, 24, 25]. Outside resonance
with electronic transitions, and except for the infrequent cases where the comparison of
the sign of a ROA and a VCD band may be of interest (the mechanisms that generate
ROA and VCD are not identical), the sign convention adopted for representing ROA
data causes few problems. It is a source of confusion, on the other hand, in resonance
ROA [19].
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Absolute values for differential scattering cross sections [26] are rarely measured in
Raman scattering and have not so far been determined in ROA. In most cases, scattered
intensities are indicated in what amounts to arbitrary units, such as ADC (analog-to-digital
converter) counts or electrons detected by a CCD (charge coupled device) detector. The
indication of the exciting power and recording time—which is not neccessarily the actual
illumination time of the sample during which the scattered light was collected—is useful
for judging the experimental conditions but gives an approximate idea only of the ROA
scattering power of a compound. Specifying detected electrons per joule of exciting power
for a spectrum recorded with a particular instrument and sample cell does, in principle
at least, allow the computation of scattering cross sections, provided that a comparative
measurement can be made for Raman bands for which absolute scattering cross sections
are known. Optical corrections will have to be made for the index of refraction of the sam-
ple, the finite size of the light collection angle, instrumental resolution, and the variation
of the detectivity of the instrument with wavelength. Moreover, absolute scattering cross
sections are available for molecules in the gas phase while ROA is measured for liquids.
Passing from a gas to a liquid profoundly modifies the intensity of Raman scattering [26].

6.2.2. Scattering Cross Sections and Invariants of the ROA Scattering
Tensor

In a ROA experiment, the polarization properties of either the exciting light, the scattered
light, or both need to be conserved. This requires samples to be optically isotropic on
a scale of less than a quarter of the wavelength of the light. The samples measured in
ROA therefore are in general liquids, and the scattering cross sections that one measures
correspond to molecules for which the spatial orientation has been averaged. They can
therefore be expressed through rotational invariants of the ROA scattering tensor. The
understanding of the properties of the ROA scattering tensor was crucial for the success
of the first observations of ROA [2, 4]. This has remained so for the design of modern
ROA spectrometers.

The currently most often used ROA scattering arrangement is SCP collinear scatter-
ing. For forward scattering, which depends on all five Raman and ROA invariants and
which is thus chosen as example, the theory yields the expressions

ndσp(0)SCP = Kp(90a2
p + 14β2

p ) d�, (6.3)

−�ndσp(0)SCP = 4Kp

c
(90aG ′

p + 2β2
Gp − 2β2

Ap) d�, (6.4)

where

Kp = 1

90

( μ0

4π

)2
ω0ω

3
p = 107

9
π2μ2

0c4ν̃3
p ν̃0, (6.5)

ν̃p = ωp

200πc
= ω0

200πc
± �ν̃p , (6.6)

where ω0 = 2πν0 and ωp = 2πνp are the pulsations of the exciting and the scattered
light, respectively, �ν̃p is the frequency of vibration p and ±�ν̃p is thus the Raman
wavenumber shift (in cm−1), c is the speed of light (in ms−1), and μ0 is the permeabilty
of the vacuum. The notation implies that a single vibrational mode undergoes a transition.
The formulae are valid for 0 K. For other temperatures, they have to be modified to
include appropriate Boltzmann factors [27].
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a2
p is the isotropic and β2

p the anisotropic invariant of the molecular electric
dipole–electric dipole transition tensor αμν,p . aG ′

p and β2
Gp are the isotropic and

anisotropic invariants due to the interference terms of this tensor with the electric
dipole–magnetic dipole transition tensor G ′

μν,p , and β2
Ap is the anisotropic invariant

due to the interference term with the tensor Aμν,p = εμρσ Aρ,σν,p , where Aρ,σν,p is the
electric dipole–electric quadrupole transition tensor and εμρσ is the antisymmetric unit
tensor of Levi-Civita.

In the Placzek polarizability theory approach, in the far from resonance limit, the
transition tensor is written as a molecular electronic tensor T e

μν effecting a transition
between an initial molecular vibrational state |i 〉 and a final state 〈f |:

Tμν,p ≈
(

∂T e
μν

∂Qp

)
〈f |Qp |i 〉 ≈

(
∂T e

μν

∂Qp

)
0

√
�

400πc�ν̃p
, (6.7)

where we have additionally assumed that the vibration is described by normal mode Qp

and thus harmonic, that the electrical harmonic approximation holds, and that f ← i is
a fundamental transition. The electronic property tensors have the form

αe
μν = 2

�

∑
j 	=n

ωjn

ω2
jn − ω2

0

Re(〈n|μ̂μ|j 〉〈j |μ̂ν |n〉), (6.8)

G
′e
μν = −2

�

∑
j 	=n

ω0

ω2
jn − ω2

0

Im(〈n|μ̂μ|j 〉〈j |m̂ν |n〉), (6.9)

Ae
ρ,σν = 2

�

∑
j 	=n

ωjn

ω2
jn − ω2

0

Re(〈n|μ̂ρ |j 〉
〈
j |�̂σν |n

〉
), (6.10)

with μ̂μ and m̂ν representing the electric and magnetic dipole operator, respectively, and
�̂σν the electric quadrupole operator.

Formulae for scattering cross sections for practically important SCP and DCP
arrangements are collected in Table 6.1. In the far from resonance case, ICP cross
sections are obtained from the SCP ones by multiplying them by a factor of
two [28, 29]. The reason for this factor is that in a SCP experiment, scattering into the

TABLE 6.1. Comparison of SCP and DCPI Scattering Cross Sections

Difference

4(K /c)

Sum

KScattering Angle Cross Section

0 SCP, unpolarized 90aG ′ + 2β2
G − 2β2

A 90a2 + 14β2

DCPI 180aG ′ + 4β2
G − 4β2

A 180a2 + 4β2

π SCP, unpolarized 12β2
G + 4β2

A 90a2 + 14β2

DCPI 24β2
G + 8β2

A 24β2

π/2 SCP, polarized 45aG ′ + 7β2
G + β2

A 90a2 + 14β2

SCP, depolarized 6β2
G − 2β2

A 12β2

SCP, unpolarized 45
2 aG ′ + 13

2 β2
G − 1

2 β2
A 45a2 + 13β2

DCPI 45aG ′ + 13β2
G − β2

A 45a2 + 13β2

Integral SCP 2π
3 (180aG ′ + 40β2

G ) 4π
3 (180a2 + 40β2)
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left- and right-circular polarization channel of an instrument is recorded simultaneously,
while in an ICP measurement the scattering cross sections for left- and right-circularly
polarized exciting light are separately determined and then subtracted. The actual
equivalent measurement times for SCP and ICP are, of course, the same. Three
measurements with different scattering geometries and polarization schemes are required
for determining the three ROA invariants [30].

The persistence of quadrupole contributions in the theoretical expressions for ROA
scattering of rotational averages of molecules was originally not well understood because
such contributions are absent in the optical activity expressions for transmission. Integral
scattering cross sections [28, 29] are included in Table 6.1 because they show that in a
scattering experiment, quadrupole interaction likewise does not contribute to the energy
difference taken out of the transmitted light by circular intensity differential scattering.
While integral ROA scattering cross sections cannot be measured directly, their invariant
combination can be obtained as the linear combination 2

3�⊥dσp(π/2) + 1
3�||dσp(π/2)

of a polarized and a depolarized right-angle SCP scattering measurement. Initial interest
in this linear combination was the elimination of quadrupole contributions considered
computationally demanding [31].

6.2.3. Building Blocks of a ROA Scattering Instrument

ROA instruments share a laser, a spectrograph, and a data acquisition system with ordi-
nary Raman instrumentation. They similarly contain optics for focusing the laser beam
into the sample and for collecting Raman scattered light. Such optics has to be carefully
optimized in a ROA instrument for not perturbing the polarization properties. Polariza-
tion optics is required for creating circularly polarized light (ICP), for analyzing the
circularly polarized content of light (SCP), or for both (DCP). Additional polarization
conditioning optics for scrambling undesirable polarization components is also needed
in order to reduce offsets.

Figure 6.1 gives an overview of a modern SCP backscattering instrument permitting
the simultaneous detection of the intensity of the right- and the left-circularly polarized
component in the scattered light. Circular components other than those due to the ROA
of the sample, as well as components of linear polarization, are undesirable in such an
instrument, and the polarization conditioning optics is designed to eliminate them. In a
DCP modification of the SCP instrument, the incident light would be modulated between
right and left circular. The two arms of the dual arm system in Figure 6.1 will then detect
DCPI and DCPII.

6.3. SCATTERING ZONE, LIGHT COLLECTION, AND SPECTRAL
ANALYSIS

Arguably two of the most important aspects of a light-scattering experiment are (a) the
formation of the light collection zone and (b) the collection of light from it. The con-
siderations for optimizing both of them are different for right-angle scattering and for
collinear scattering. In right-angle scattering, the waist of the focused beam of the laser
used to excite scattering is imaged onto the entrance slit of the spectrograph used for
analyzing its spectral content, while in collinear scattering it is the light collected from
circular cross sections of the beam that has to be passed through a spectrograph’s rectan-
gular entrance slit. Different considerations from those discussed in the following would
apply if the spectral analyzis would be performed by Fourier transform spectroscopy.
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Figure 6.1. Building blocks of an SCP ROA spectrometer.

6.3.1. A Spectrograph Optimized for ROA Scattering

Etendue. As one of the main considerations in ROA is detecting as many scattered
photons as possible, a high-throughput dispersive system is required. The luminosity of a
spectrograph can be quantified by its étendue, or geometric extent G , which is a measure
for the product of the area S of the field stop, in general the entrance slit, and the solid
angle subtended at the entrance aperture by the collimator or the dispersing element
(whichever is smaller) [32]:

G = πS sin2 α ≈ πS

(2 × focal ratio)2
, (6.11)

where α is the half-angle of the light acceptance cone with NA = sin α the numerical
aperture. In the second half of the equation, the usual approximation 2NA ≈ 1

(focal ratio)
is used.
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Before the advent of concave holographic reflective and planar holographic trans-
mission gratings, and of steep notch and edge filters obviating the need for dispersive
pre-monochromators, it was generally the étendue of the dispersive system which limited
the throughput of a Raman instrument. In contrast, the étendue of modern holographic
transmission grating spectrographs is so large that the shape of the scattering zone, along
with the light collection optics, tends to limit the amount of light which reaches the
detector. For calcultating the étendue of the standard Kaiser Holospec which we assume
as the base design, the detector width (which determines the slit length) must be known.
If we assume a CCD detector with 256 × 1024 square pixels of 26-μm edge length, then
the 0.1-mm × 6.656-mm slit (9.5-cm−1 resolution with a 2400-lines/mm holographic
VPT grating HSG-532-LF, Kaiser Optical) leads to an étendue of 0.16 mm sr (f = 85
mm, f /1.8 entrance lens, f = 85 mm, f /1.4 output lens). Hadamard or Fourier transform
spectroscopy would thus provide no Jacquinot throughput advantage.

Entrance Speed Optimized for Interfacing. A high output speed is a desirable
spectrograph characteristic because it keeps the detector size small. The benefit of high
input speed is a reduction of the diameter of the input optics and thus the size and cost
of the spectrograph.

A decisive consideration in optimizing the spectrograph design [33] was to facilitate
interfacing with the remainder of the optics of the ROA instrument. To this end, the
focal length of the entrance optics was increased from 85 mm to 200 mm by the use of a
76-mm-diameter achromatic doublet. The large diameter of the entrance optics renders (if
the size of the grating is not taken into account) the f = 85 mm, f /1.4 output optics the
element which determines a f /3.3 input focal ratio. The grating size of 53mm × 64mm
reduces étendue by cutting off marginal rays, and the actual average focal ratio is slightly
better than 4. Because resolution requirements in ROA are modest, the use of a single
achromatic doublet does not lead to a noticable degradation.

At 7-cm−1 resolution, the entrance slit width amounts to 0.175 mm with the modified
optics. With the same 6.656-mm-wide detector as above, the slit length amounts to 15.6
mm and the étendue reaches the same value as for the unmodified spectrograph, albeit
at better resolution. An appropriate notch or edge filter has to be used in the external
optics because the modified spectrograph lacks such a prefilter.

The reduced entrance speed allows the direct coupling with low focal-ratio degrada-
tion fiber optics needed in collinear scattering, and it does not impose the requirement of
a high numerical aperture onto the transfer optics of the dual lens light collection optics
we describe for right-angle scattering.

Image Distortion. A major disadvantage of a spectrograph with the simple optical
layout shown in Figure 6.2, as compared to the concave holographic grating spectrograph
[34] used in the first high-throughput ROA instrument [7], is the curved image it creates
from a straight entrance slit [32].

For the angles θ and φ in Figure 6.2, for rays passing a straight vertical entrance
slit at the height of the optical axis (field angle α = 0), the dispersion equation holds:

sin θ + sin φ = mλ

d
, (6.12)

where m is the grating order, λ the wavelength, d the spacing between lines on the
grating, and φ and θ the angles that the wavefront normals of the incoming wave
and the dispersed ray, respectively, make with the grating normal. φ is fixed and θ
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Figure 6.2. Optical layout of the modified

holographic transmission grating spectrograph.

S, entrance slit; L1, f = 200-mm entrance lens; G,

grating; L2, f = 85 mm, f /1.4 photographic lens;

FP, output focal plane with CCD detector.

varies with λ, with both angles measured in a horizontal plane. Let θ0 be the the
value for a particular λ0. A ray passing the entrance slit at a different height will have
a field angle α. This will cause a deviation �θ = θ − θ0 with respect to the value
θ0 [32]:

�θ = 1

2

sin θ0 + sin φ

cos θ0
α2. (6.13)

The equation describes a parabola. It is valid, provided that the slit is short compared to
the focal length of the instrument, as the approximation 1

cos α
≈ 1 + ( α2

2 ) is used in its
derivation, with angles understood to be introduced in radians. The deviation of the slit
image from a straight line, and hence its curvature as a function of the field angle α, can
be calculated as tan θ times the focal length of the output lens, which is 85 mm in our
case.

With a 6.656-mm-wide detector, the field angle reaches ±2.25◦. For the stan-
dard plane, holographic gratings used with green exciting wavelengths φ = 40◦ and
θ0 = 50◦ hold at the center of the spectral range projected onto the detector. This leads
to a displacement of 0.143 mm at the lower and upper edges of the detector, which
must be compared to the 0.075 mm (7-cm−1 spectral width) image of the slit on the
detector. One notices that �θ varies with θ0 and therefore depends on the spectral posi-
tion.

In ordinary Raman spectroscopy, the curvature of the slit image can be corrected by
software, provided that the CDD detector is read pixelwise. In a ROA experiment, where
the detector is read hundreds of times in order to attain a sufficient signal-to-noise ratio,
the overhead incurred by a pixelwise reading of the detector would inordinately increase
data acquisitions times.

There are two practical approaches for solving this problem. The optical one is to
use a curved entrance slit that produces a straight-line image on the detector at the center
of the observed spectral range [33]. In order to calculate its curvature, the angles φ and θ

are interchanged. For convenience of manufacturing, the parabola can be approximated
by a circular arc with a radius of 108.5 mm. There will remain some curvature at positions
off-center; but even at the extreme ends of a typical CCD detector with 26.6-mm length,
the degradation of resolution remains acceptable. The software solution is to read the
detector in binned slices of different width chosen to combine a sufficient read-out speed
with an acceptable loss of resolution. An estimate for loss of resolution with the size of
the slices can be found in reference [33].
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From Eq. (6.13) it is seen that the slit curvature does not depend on the wavelength
at which one is working. This is fortunate as the Raman wavenumber range of about 4000
cm−1 is in general covered by two different gratings, with the HSG-532-LF grating cited
earlier typically covering a −85- to +2400-cm−1 range. Provided that the same values of
φ and θ apply to both, the same compensating curvature of the entrance slit can be used.

6.3.2. Right-Angle Scattering

In order to maximize light throughput, the brightness of the scattering zone and the solid
light collection angle must be maximized subject to the following conditions:

• The image of the scattering zone projected onto the entrance slit must fill the slit’s
length.

• It must not overfill its width.
• The numerical aperture of the spectrograph must be matched.

We assume the same light collection optics as will subsequently be discussed for
collinear scattering, namely a f = 30 mm Gradium lens with a fast f /1.1 speed for
collimating the scattered light, followed by a f = 100 mm achromatic lens for focusing
it onto the entrance slit of the spectrograph. Thin-lens formulae yield a combined focal
length of the two lenses of f = 23 mm and thus a speed of f /0.85. This is about as fast
as practical light collection optics can get. The image magnification amounts to 3.3, and
the f /3.6 cone of collected light projected onto the the spectrograph’s entrance slit fills
its numerical aperture.

Beam Waist Considerations. For a length of a straight entrance slit of 15.6 mm
and a width of 0.175 mm (7-cm−1 resolution), the zone in the sample from which light
can be collected has a length of 4.73 mm and a width of 0.053 mm. The confocal
parameter bf of the waist of the laser beam focused into the sample should correspond
to the length, and the beam’s diameter at the ends of the confocal zone, amounting to√

2 of the value at the center, should not substantially exceed the width. bf is equal to
twice the Rayleigh length and is given by

bf = 2πw2
f

λ
, (6.14)

where wf is the radius of the waist of the focused beam which is close to the ideal value
of 0.053/(2 × √

2) = 0.0187 mm, and λ is the wavelength of the laser light, which we
assume to be 532 nm. The radius of a beam with a Gaussian profile (TM00 mode) is
generally considered to be equal to the distance from the center to where the intensity
has dropped to 1/e2 of the center value, with the cross section it describes comprising
86.5% of the beam’s power.

The beam waist in the sample is the transform of the waist of the beam exiting the
laser, often located at the output mirror. The considerations for generating it by beam
transfer and focusing optics can be simplified by making the assumptions that the waist
of the beam entering the focusing lens has a Rayleigh length substantially larger than the
waist’s distance from the lens’ entrance focal point and that this Rayleigh length is far
larger than the lens’ focal length. Conversely, for the beam leaving the lens, one assumes
the Rayleigh length of the waist to be small compared to the focal length of the lens.
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The focus region is then treated as a point source when looking backward to the lens.
One finds that the new beam waist created by the lens is located at its image-side focal
point, and the confocal parameter bf and the radius wf of the waist are related by

d = 4f
wf

bf
, (6.15)

where f is the focal length of the lens and d is the diameter of the beam when entering the
lens. Results from Eq. (6.15) are approximate for finite values of bf . Small deviations
in the waist’s position can easily be corrected by slightly displacing the lens. With
wf = 0.020 mm, bf = 4.73 mm, and an f = 50 mm focusing lens, a value of 0.79 mm
follows for d .

Practical working distances between the output mirror of the laser and the sample
cell are of the order of 1 m or more in a ROA instrument. The change of the beam’s
radius w(z ) as a function of distance z from the waist w0, assumed to be located at the
output mirror, is given by

w(z ) = w0

√√√√1 +
(

λz

πw2
0

)2

. (6.16)

One readily finds that there is no value for w0 which for z = 1000 mm yields d =
2w(z ) = 0.79 mm. Thus, either beam transfer optics must be employed or the require-
ments for the confocal length in the sample must be reduced.

Dual Lens Light Collection and Sample Considerations. Figure 6.3 shows
a dual lens light collection system that allows filling the spectrograph’s étendue with a
beam waist of half the length discussed above. This yields a value of d = 1.58 mm and
requires a diameter of the beam leaving the laser of about 1.5 mm, with the possibility
of adjusting this value by varying the focal length f of the focusing lens.

S

P

L4

L3
L2

L1

M1

M2

l1 Figure 6.3. Dual lens light collection system

for right-angle scattering. L1 and L2, light

collection lenses composed of an f = 30-mm

Gradium lens and an f = 100-mm achromatic

doublet; I1, intermediate image; P, mirrored

prism; L3, field lens; L4, lens for focusing I1
onto the entrance slit S of the spectrograph.
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Figure 6.4. Light collection cone inside a flat-window sample cell and a capillary, in the plane

perpendicular to the capillary’s axis.

A further advantage of a smaller collimated segment needed in the sample is a
reduced sensibility to thermal lensing, which is a problem for samples that show a tiny
amount of absorption. In the case of a planar grating spectrograph suffering from image
distortion, a dual lens light collection system can be adapted so that the directions of the
line images formed by the two lenses are not collinear but parallel to the tangents of two
halfs of a curved entrance slit.

The measurement of ROA in right-angle scattering has some definite advantages
over collinear scattering. For one, it requires a smaller sample volume if a capillary is
used as the sample cell: Its diameter does not need to be much larger than the waist of
the laser beam from which light is collected [4], with a length of barely 2.5 mm, and the
capillaries’ cylindrical surface increases the brightness of the image, as compared to a flat
surface cell (see Figure 6.4). For another, the danger of collecting Raman light and light
due to fluorescence of the windows of the sample cell is negligible compared to collinear
scattering. And last but not least, the lack of the need of a fiber-optics cross-section
transformer eliminates an important source of loss of light, so that light throughput is
higher with a dual-lens system than can be achieved in collinear scattering. The main
drawback, which matters for the measurement of solutions, is the smaller ratio of ROA
to Raman scattering for depolarized Raman bands, as compared to backward scattering
(see Table 6.1).

Except for size, sample considerations are similar in right-angle and collinear ROA
scattering. The samples need to be nonfluorescing transparent isotropic liquids. Solutions
have to be reasonably concentrated due to Raman spectroscopy’s limited dynamic range,
which translates to a few percent for aqeuous solutions and 10% or more for a solvent
such as acetonitrile. The measurement of suspensions of particles smaller than a quarter of
the wavelength of the exciting light might be possible but has not yet been demonstrated.

6.3.3. Collinear Scattering

The backscattering geometry yields the highest ratio of ROA to Raman scattering. For
depolarized Raman bands, this ratio is similar for SCP, ICP, and DCPI. The suppres-
sion of isotropic Raman contributions in DCPI can sizably enhance the ratio for strongly
polarized bands (Table 6.1), though such bands also tend to carry little ROA informa-
tion. In forward scattering, on the other hand, the ratio favors DCPI for depolarized
bands for which a2 and aG ′

p vanish. The throughput that can be achieved with the same
spectrograph and detector in collinear and right-angle scattering is compared in Table 6.2.

As compared to right-angle scattering, the demands for the quality of the waist of
the beam focused into the sample are lesser, and TM00 operation of the exciting laser is



MEASUREMENT OF RAMAN OPTICAL ACTIVITY 159

TABLE 6.2. Comparison of Collinear Dual Arm and Right-Angle Dual Lens Light Collection

Polarization Scheme Throughput Gain 1/f Noise Gain

Dual arm, collinear SCP —
√

DCPI static — —
DCPI switcheda —

√
Dual lens, right angle SCP —

√
ICP static

√
—

ICP switcheda —
√

DCPI static
√

—
DCPI switcheda —

√

a “Switched” means switching of scattered light between CCD halves for incident polarization states, see
Section 6.5.

not required. Multimode beams are less prone to trapping particles in their center by the
optical tweezer effect than are TM00 beams.

The Role of Fiber Optics. The first backscattering ROA instrument used the
ICP scheme and fiber optics optimized for matching the large étendue of a concave
holographic grating spectrograph [10]. If matching is not carefully done, focal-ratio
degradation will lead to a loss of light, and a number of later instruments used direct
coupling [11, 12]. Because far higher throughput can be achieved in collinear scatter-
ing with well-designed optics, the instrument depicted in Figure 6.1 is based on fiber
optics. In the case of SCP, fiber optics also permits an elegant simultaneous detection of
left- and right-circularly polarized scattered light. It is unlikely that other cross-section
transforming optics, such as holographic optical elements, might accomplish this dual
function.

The fibers form the curved entrance slit of the spectrograph. Two groups of 31 low
numerical aperture (NA = 0.22) fibers with a diameter, including buffer, of 0.245 mm
are separated by a 0.3-mm spacer, yielding a slit of 15.5-mm length. The active surface
due to the core of 0.215-mm diameter of the fibers amounts to 2.25 mm2, which is 69%
of the surface. Without cladding, if the fibers would be joined core by core, an object of
13.33-mm length would result. The average width of the active surface therefore amounts
to 0.169 mm and yields the desired resolution of about 7 cm−1. Bends in the fibers below
a 200-mm radius are to be avoided in order to avoid focal ratio degradation. Shallow
right-angle bends in orthogonal planes are used to achieve a substantial depolarization
of the transmitted light. A discussion on how best to arrange the fibers from the slit-like
end on the circular entrance ends can be found in reference [33].

Scattering Zone and Light Collection. Figure 6.5 shows a combined back- and
forward-scattering arrangement. The waist of the laser beam is createt by an f = 100-mm
achromat at the common focus of two fast f = 30-mm, f /1.1 Gradium lenses. The beam
passes through a hole in the lens which collects the backscattered light. This permits
different focal lenths for focusing and collecting light and allows a better adjustment of
the beam waist of the transverse multimode disk laser used in the instrument. It also
avoids undesirable Raman scattering in the light collection lens, which can be a problem
when very weakly scattering samples, such as gases, are measured.

Light collected from the center of the focused beam is collimated by the Gradium
lenses. After passing an edge filter and the circular polarization analyzer, it is focused
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Figure 6.5. Combined forward and backward

scattering arrangement. L1, lens focusing the

laser beam into the the sample S; L2 and L3,

f = 30-mm Gradium light collection lenses; M1

and M2, turning mirrors for deviating the

exciting laser beam in two orthogonal planes;

M3, mirror deviating the beam into the beam

dump BD.

for each scattering direction by two f = 100-mm achromats onto the approximately
circular ends of the two tails of a fiber-optics cross-section transformer. As discussed for
right-angle scattering, the ratio of the focal lengths of the Gradium lenses to that of the
achromats yields an f /3.6 cone to fill the numerical aperture of the spectrograph.

Either the exciting light or the scattered light needs to be deviated in a backscattering
instrument. In an ICP experiment it is preferable to deviate the scattered light, while in
an SCP experiment it is the deviation of the incident light which is less critical with
respect to polarization conservation. Polarization changes can further be minimzed by
combining two right-angle deviations of the laser beam in orthogonal planes, and the
two deviations schematically indicated in Figure 6.5 are chosen this way.

The light collection optics is nonimaging. Light is collected, for either backward or
foreward scattering, from a volume of two cones intersecting at the center of the the
light collection zone. Figure 6.6 depicts a cut through it for a cell with flat windows and
assuming the index of refraction of the sample to be that of fused quartz (n = 1.47).
One cone extends to the light collection lens, whereas the other extends, in principle,
to infinity. It is for this reason that forward and backward ROA scattering cannot be
simultaneously measured. Light collection for one of the two lenses in Figure 6.5 has to
be blocked because otherwise light reflected back from one of the collection channels
tends to causes offsets in the other.

The radius at the locus where the cones of light collection intersect corresponds to
the image of the round-fiber optics ends formed backwards by the light collection optics.
In a diamond-shaped central zone, light with a solid angle filling the 27.3-mm diameter
of the f /1.1 Gradium lens is collected. Outside this boundary, collection efficiency falls
off. On-axis collection is blocked by the small mirrors used to deviate the exciting laser
beam.

Figure 6.7 shows the measured dependence of the light collection efficiency on the
longitudinal position of the sample [35]. The “sample” used for this test was a 0.17-mm-
thick microscope cover glass. Its thickness is not neglegible and its index of refraction
slightly modifies optical paths, but the qualitative agreement with theoretical expectations
is satisfactory.

Sample Cells and Sample Size. In collinear scattering, the shape of the light
collection zone leads to the collection of light due to Raman scattering and fluorescence
from the windows of the scattering cell. The shorter the cell and the thicker its windows,
the more pronounced this problem becomes. Relatively large amounts of substance are
further required for low offset as the cone of scattered light has to be able to leave the
sample without polarization degradation, and the required sample volume therefore tends
to increase with the third power of the length of the cell.
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Figure 6.6. Light collection from the

scattering zone in a collinear experiment.

Light is collimated by an f = 30-mm Gradium

lens as in Figure 6.5 and is then focused onto

the circular entrance ends of the fiber-optics

cross-section transformer by an f = 100-mm

achromatic doublet. The index of refraction

of the sample is assumed to correspond to

that of quartz.
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Figure 6.7. Measured longitudinal

dependence of collection of Raman light

from the 920-cm−1 band of a 0.17-mm

thick microscope cover glass slide. The

spectrum corresponds to that of the Teflon

cell in Figure 6.8.

Figure 6.8 shows Raman and fluorescence spectra from empty cells with the light
collection zone placed at their center. The fused quartz cell (Hellma) of 5-mm pathlength
depicted in Figure 6.9 produces the smallest background signal, despite its 1-mm-thick
windows. Its volume of 35 μL is also the largest one, and its diameter-to-length ratio of
only 0.6 can lead to small offsets due to the collection of Raman-light-reflected multiple
times from the boundaries of the sample volume. Placing the focus of the light collection
optics deeper than halfway into the cell avoids this but increases light collection from the
back window. The cell made from black Teflon, also shown in Figure 6.8, has a volume
of only 21 μL. Its pathlength of 3 mm, its black side walls, and its diameter-to-length
ratio of 1 reduce the collection of light-reflected multiple times. Its more closely spaced
glass windows, though only 0.17 mm thick, produce a larger signal than the windows of
the quartz cell.

The spectra of two empty glass capillaries of 1.46- and 1.21-mm inner diam-
eter shown in Figure 6.8 demonstrate the influence of glass on parasitic light. The
thinner-walled melting point capillary produces a higher background signal than does
the disposable precision capillary pipette tip (“minicaps,” Hirschmann). The 20% smaller
diameter of the melting point capillary is partly responsible for this, but it cannot explain
either the extent of the increase or the change in shape of the parasitic signal.

Of practical importance is the ratio of the parasitic signal of the cell to the Raman sig-
nal of the sample. Compared to the Raman intensities of the chiral compounds of interest
in ROA, the intensities of the spectra in Figure 6.8 are weak. In Figure 6.10 the spectra of
a 5% solution of ascorbic acid in water, measured in the quartz cell and in the precision
capillary of Figure 6.8, are compared. For the capillary, the contribution of the glass
envelope can be identified below 500 cm−1 in the Raman spectrum but does not lead to
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cell with 5-mm pathlength and 1-mm-thick windows. Black Teflon cell with 3-mm pathlength and

0.17-mm-thick windows.

an offset in the ROA spectrum. For the fused quartz cell, a parasitic signal cannot be
identified. In addition to the expected smaller size of the parasitic signal, the Raman and
ROA signals of the sample are larger than those measured in the capillary. The reduction
in scattering intensity of about 50% is typical for water solutions measured in capillaries
of the kind shown in Figure 6.8. The decrease in signal strength is less pronounced for
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Figure 6.9. 35-μL precision quartz

cell (bottom) and exploded view of

black Teflon cell (top) with

microscope cover glass windows.

Joints are black Kalrez.

compounds with higher indices of refraction because the cylindrical surface of the cap-
illary then provides more of an advantage over flat windows (see Figure 6.4).

Offset free collinear measurements in capillaries require a length of the column of
the liquid about twice the capillaries’ inner diameter [35]. This translates into about 100
μg of substance if a 5% solution is used in a 1.46-mm-diameter capillary. If small offsets
are not a concern, a situation that is often encountered in the determination of absolute
configurations, smaller-diameter capillaries and liquid volumes of 1 μL or less [36] are
possible in backscattering.
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6.4. SIGNAL DETECTION AND NOISE

Signal-to-noise problems have been a companion to ROA since its inception. The first
recording of an entire spectrum and not just individual bands with an optical single-
channel instrument typically took several weeks [4], with beam walk-off of the exciting
laser, stability of the polarization modulation, and stability of the sample posing major
problems for such extended measurement times. While shot noise is the reason for the
long recording times, two distinct additional noise sources matter in a ROA experiment,
namely flicker noise and deterministic offset. Deterministic offset will be discussed in
the section on polarization control because it is related to the polarization properties of
the light.

6.4.1. Noise

Shot Noise. The two root causes for the shot noise problem of ROA are the
weakness of the Raman effect and the fact that optical activity represents the difference
of two much larger quantities. The ratio of ROA to Raman scattering is generally less
than 1 part in 1000. A typical value of the number of detected Raman photons, per joule
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of exciting energy passed through the sample, is 2.6 × 107 for the medium to strong
band due to the carbonyl stretch vibration of 3-methylcyclohexanone. This value refers
to a 2.4-cm−1-wide window representing one column on the CCD detector at the peak
of the band. The geometry is backscattering with the instrument shown in Figure 6.1
equipped with the spectrograph of Figure 6.2, and with an exciting wavelength of 532
nm. Measured at a resolution of 7 cm−1, the band has a full width at half-maximum
height of 25 cm−1 or about 10 columns on the detector.

The Raman signal corresponds to NR + NL, where NR and NL are the number of
detected photons for right- and left-circularly polarized scattered light, respectively. The
root mean square shot noise for their sum and difference is

√
NR + NL. In order to detect

the ROA signal of the band, which has a ratio � = NR−NL
NR+NL

≈ 10−5, at least 1010 photons
per column of the CCD must be detected. If the laser power passing through the sample
amounts to 250 mW, this means a measurement time of 26 minutes, not counting read-out
time of the detector.

It is illustrative to consider the laser power that one would need at other exciting
wavelengths. We disregard differences in the quantum efficiency of the detector and in the
throughput of the spectral analyzing system and solely consider the wavelength depen-
dence of the Raman and ROA scattering cross sections. For Raman, if we neglect the
difference between the frequency of the exciting and scattered light, then cross sections
vary like the fourth inverse power of the wavelength of the light. For a detector yielding a
signal proportional to the number of detected photons, the exciting laser energy required
for a constant signal therefore varies as the third power of the wavelength. Thus, we will
need an exciting laser power of approximately 2 W at 1064 nm and 32 mW at 266 nm.
In ROA we have to take the variation of the �-ratio with the wavelength into account.
For a band with � = 10−5 at 532 nm, one will have � = 5 × 10−6 at 1064 nm and
� = 2 × 10−5 at 266 nm, which translates into 8 W and 8 mW, respectively.

Required laser power is just one criterion of many for the measurability of ROA.
Sample decomposition by photochemistry or heating, fluorescence, and offset problems
are others. Ample power is easily available, for example, at 1064 nm from undou-
bled YAG lasers but appropriate detectors for optical multichannel spectroscopy are not.
Fourier transform spectroscopy can provide the Fellgett (multiplex) advantage of disper-
sive optical multichannel systems. However, it cannot alleviate the sample heating prob-
lem due to the absorption of overtones of stretching vibrations involving hydrogen atoms.

Flicker Noise. In contrast to shot noise, which has a white power spectrum and
increases like the square root of measurement time, flicker noise, often also called 1/f
noise, increases with decreasing frequency f . In clock works, after the elimination of all
deterministic drifts, there remains an error due to flicker noise that is known to increase
at least linearly with time [37]. This makes flicker noise one of the most vexing problems
in ROA measurement as it tends to lead to slow, drifting offset in ROA spectra.

Though flicker noise is a generally observed penomenon in nature, its origin is not
well understood. In ROA, there are many potential sources of flicker noise. Obvious
ones are instabilities of the laser source, density fluctuations in the sample due to local
heating by the laser beam, and oscillating dust particles trapped in the beam by the optical
tweezer effect.

There are two ways to combat the effect of flicker noise. Either one can use a
frequency above the onset of 1/f noise for switching between right- and left-circular
polarization of the exciting light in ICP and DCP, or one can simultaneously measure
the intensity of both in SCP. In view of the read-out time of the detector, either approach
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requires the subdivision of its surface into two halves, sacrificing half of the etendue of
the spectrograph. Table 6.2 compares the different options for right-angle and collinear
scattering.

6.4.2. Detectors

Early optical multichannel systems relied on image-intensified low-light-level television
tubes. Image distortion, low geometric stability, low stability of the sensitivity, a small
dynamic range, blooming, and read-out lag rendered them unsuitable for providing Fell-
gett multiplexing gain to ROA spectroscopy. The use of linear self-scanned diode arrays
rectified many of these deficiencies. They made the multichannel recording of good-
quality ROA spectra [38] possible with image intensification, while the recording of
ordinary Raman spectra was made possible without intensification [34, 39]. Limitations
were the relatively high read-out noise and the small width of self-scanned diode arrays.

Modern back-thinned charge coupled device (CCD) detectors combine the high sen-
sitivity and stability of self-scanned diode arrays with a lower read-out noise and a
larger light-sensitive area. The CCD 30-11-0-232 (EEV) detector used in reference 33
has 256 × 1024 pixels with a 26-μm square shape providing a 6.656-mm × 26.624-mm
light-sensitive area. Quantum efficiency can exceed 70% in the yellow spectral range,
and deep depletion can extend good quantum efficiency into the red and near infrared.
Because the goal in ROA is to register as many photons as possible rather than to
detect individual photons, the low read-out noise of CCDs obsoletes image intensifica-
tion. Exposure times are of the order of a few 100 ms to a few seconds. Thermoelectric
cooling therefore suffices for reducing charge loss by dark current.

Illumination of the CCD creates a charge pattern that is treated as 256 lines of 1024
pixels each. The charge of a pixel is read by shifting the whole pattern over the width
of the CCD, line by line, into a read-out register of 1024 cells. For a shifted line, the
charges of the 1024 cells of the register are clocked out, converted into a voltage, and
then analog-to-digital (A/D) converted. Because this is a relatively slow process, on-chip
binning is used to move the charge of several lines, combined into a single slice, into
the read-out register, before reading and A/D converting it. Charge removal by reading
the CCD only once is far from complete, and additional charge clearing cycles, without
A/D conversion, are required.

Typical parameters for A/D conversion are a 16-bit resolution with one bit set to
the charge of 10 electrons. The full-scale charge of 655,360 e− matches the capacity of
the read-out register, and the 16-bit resolution avoids aliasing and thus potential spurious
ROA signals for low-intensity Raman bands.

The saturation charge of individual pixels is a few hundred thousand electrons. The
value depends on the design of the CCD and strongly on its mode of operation. The
cells of the read-out register can hold a somewhat larger charge, which remains for the
quoted CDD below the A/D converters maximum capacity. For the instrument described
in reference [33], rms read-out noise amounts to a mere 15 electrons for each address
of a slice, even if the slice is read in as little as 5 ms. In comparison, read-out noise
(including charge resetting and fixed pattern subtraction) is about 1000 electrons per
address for reading the whole of a CMOS linear self-scanned diode array used in earlier
instrumentation in a mere 20 ms [7]. Such a diode array has about one-third of the surface
of the CCD, and each address can hold about two-thirds of the saturation charge of an
entire column of 256 pixels of the CCD.

Saturation charge of individual pixels and of the read-out register are limiting param-
eters in a ROA instrument: Overloading either of them leads to offset through nonlinearity
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and blooming, with charge flowing uncontrollably into adjacent cells. The presence of a
strong Raman band requires reducing exposure in order not to saturate individual pixels.
Reduced binning to protect the read-out register makes reading of the CCD even slower.
Blocking light from known strong solvent bands from reaching the detector, by optical
filters or mechanical stops, is possible but cumbersome. Modern backthinned CMOS
diode arrays with less sensitivity to overload might make an eventual comeback as a
solution to CCDs’ unsatisfactory dynamic range. An added advantage would be their
higher quantum efficiency in the red, making the deep depletion required for CCDs, with
its increased sensitivity toward cosmic particles, unneccessary.

In the SCP instrument of Figure 6.1, the surface of the CCD is treated as two halfs
of 128 lines each for registering the intensity of left- and right-circularly polarized light.
The charge of the two halves must be shifted over a different number of addresses into
the read-out register. Interchanging the function of the two branches of the instrument,
as described in the section on polarization modulation, eliminates this source of offset.

6.5. POLARIZATION CONTROL AND DETECTION

Precise polarization control is one of the most important aspects of the measurement of
ROA as the determination of scattering differences for left- and right-circularly polarized
light down to the 10−5 level of their sum is required. At first sight, this appears to
be best achievable by determining the ellipticity of the scattered light. In practice, the
determination of the scattering difference via an intensity measurement has proved more
efficient because nulling for establishing a baseline is not needed.

6.5.1. Circular Polarization Modulation and Analysis

The circular polarization analyzer in a SCP instrument consists of a polarizing beam-
splitting cube preceded by a quarter-wave plate with its axes oriented at +45◦ and −45◦

to either the s or p polarization direction of the cube. Circular polarization is generated
in ICP and DCP instruments by the inverted arrangement—that is, a linear polarizer
preceding a quarter-waveplate or a Fresnel rhomb. Modulation is required between right
and left circular in ICP and DCP, so either (a) the axes of the quarter-waveplate have to
be interchanged or (b) the linear polarization incident on it needs to be rotated by 90◦.

In current instruments, switching of circular polarization states is synchronized to the
CCD read-out cycle, which requires modulation periods of 100 m or more. This precludes
the use of photoelastic modulators otherwise common in optical activity measurements.

Exciting Light. KD*P (potassium dideuteriumphosphate) modulators representing
quarter-wave plates with electrically interchangable fast and slow optical axes have been
the modulators of choice in ICP instruments [2, 4]. One of their disadvantages is the
high modulation voltage they require, of the order of 1.5 kV for light in the green wave-
length region; another disadvantage is the temperature dependence of their retardation.
Temperature dependence is likewise pronounced for switchable liquid crystal retarders
(LCR). They exhibit, moreover, a transmission change of about 2 parts in 103 for the two
switching states [33] which has to be compensated. Switching of LCRs is slow and needs
to be done during the read-out time of the CCD detector. Optomechanical approaches
for the circular polarization modulation of the exciting light in ICP and DCP are rotating
a quarter-waveplate in linearly polarized light, or moving a half-waveplate into and out
of circularly polarized light.
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Scattered Light. The transmission difference of the two switching states of LCRs
is of little consequence in the SCP instrument shown in Figure 6.1 because switching
here merely serves the purpose of interchanging the functions of the two arms of the
instrument, with one carrying the information of the intensity of the left- and the other that
of the right-circular component of the scattered light. The limited precision of LCRs—the
retardation can vary over their aperture, and the induced optical axes are not precisely
aligned for the two switching states—would, however, make them unsuitable as parts of
the circular polarization analyzer if it were not for the additional polarization conditioning
optics of the instrument.

The large acceptance angle of LCRs is a potential advantage over other switchable
retarders for analyzing scattered light. It is not actually required in the SCP instrument
of Figure 6.1, because deviations of the collimated light from the direction of the opti-
cal axis are kept below 1◦ by design, in order to match the small acceptance angle
of the polarizing beamsplitting cube of the circular polarization analyzer. Large-aperture
KD*P retarders, which can be manufactured to closer tolerances, and which have smaller
retardance oscillations [9] and higher switching speeds than LCRs, might increase mea-
surement precision. They were avoided because of their large size and their high voltage
requirements.

6.5.2. Polarization as a Source of Deterministic Offset

One can distinguish offset caused by the electronics and the optics. Placing a signal
amplifier or A/D converter into close proximinity to a voltage synchronized with the
acquisition cycle is bound to lead to electronic offset. The origin of optical offsets ranges
from an intensity modulation of the exciting light through backreflection of light into the
laser cavity, synchronized to the data acquisition cycle, to polarization interconversion by
optical elements yielding an excess of right- or left-circular light unrelated to the ROA
of the sample.

We limit the discussion here to polarization related deterministic offset. On the one
hand, it has in the past been the most awkward one to deal with; and on the other
hand, it has found a conceptual solution by scrambling linear and circular polarization
components.

Linear Polarization Scrambling. Linear polarization of the exciting or of the
scattered light is prone to create offsets in a SCP instrument. Stray bifrefringences in
optical elements, as well as reflections under oblique angles from mirrors, the surfaces
of lenses, and the walls of the sample cell, tend to convert linearly into elliptically polar-
ized light. The circular polarization analyzer itself is likely to exhibit linear polarization
dependence that likewise results in a spurious ROA signal.

Linear components can similarly lead to offset in an ICP experiment. Imperfections
of the circular polarization modulator entail elliptically instead of precisely circularly
polarized exciting light, and circularly polarized light can become elliptical through bire-
fringences and reflections in the optical train. The axes of the ellipses will not, in general,
have the same size and orientation for the left and right modulation period. This can lead
to offset through the polarization sensitivity of the spectrograph and, in a polarized
right-angle scattering experiment, the properties of the Raman scattering tensor.

Dual Lens Light Collection. Described earlier in the context of optimizing light col-
lection in right-angle scattering, dual lens light collection (Figure 6.3) can also eliminate
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the influence that linearly polarized components in the incident light have on scattered
intensities in an ICP experiment [8]. With respect to polarization, dual lens light collec-
tion is equivalent to collecting light in a circle around the sample. This amounts to an
effective scrambling of the linear polarization information of the exciting light.

Lyot Depolarizer. Lyot depolarizers are not ordinarily usable for narrow bandwith
light such as that of an individual Raman band. By placing them into the divergent light
ahead of the light collection lens [10], an effective scrambling can be achieved of linear
as well as circular polarization components. Such an arrangement was successfully used
in the recording of collinear ICP scattering [11, 12].

Linear Rotators. A half-waveplate rotates the plane of polarization of linearly polar-
ized light by twice the angle it makes with the plate’s fast axis. If the plate is rotated, the
plane of polarization rotates with twice its speed. Formally, the time-averaged result of
the action of a regularly rotating half-waveplate on light described by the Stokes vector
S = (I , P1, P2, P3) can be expressed as the product

〈S 〉 = 〈L〉S , (6.17)

where 〈L〉 is the time-averaged Mueller matrix [9] of the rotating half-waveplate given by

〈L〉 =
〈⎛
⎜⎜⎜⎝

1 0 0 0

0 cos 4φ sin 4φ 0

0 sin 4φ − cos 4φ 0

0 0 0 −1

⎞
⎟⎟⎟⎠

〉
=

⎛
⎜⎜⎜⎝

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −1

⎞
⎟⎟⎟⎠ , (6.18)

with φ being a momentary angle between the plates fast axis and the horizontal plane.
The resulting time-averaged Stokes vector is 〈S 〉 = (I , 0, 0, −P3). The intensity I

remains unchanged, P1 and P2, which describe the preponderance of horizontal over
vertical and of +45◦ over −45◦ oriented linear polarization, respectively, are rendered
0, and the right- and left-circular polarization states specified by P3 are interconverted.
Time-averaged scrambling of linear polarization can therefore be achieved by a rotating
half-waveplate. In view of its effect, one might call such a device a linear rotator. As
rotation has to be accomplished by mechanical means, the method lacks the elegance of
the previous approaches, but it has the advantage of being more generally applicable,
including to collimated monochromatic light.

The precision of the retardation of half-wave plates, along with the fact that their
transmission depends slightly on the orientation of their axes with respect to the plane of
polarization of the light incident on them, limits the degree of depolarization that can be
achieved with a single plate. A higher precision is possible by using two counter-rotating
plates. This provides, moreover, the benefit of doubling the rotation speed of the plane of
polarization, and it reduces the influence an even tiny wobble of the laser beam, synchro-
nized with the orientation of the plane of polarization, can have. A combination of two
low-order quartz half-wave plates is suitable for depolarizing the quasi-monochromatic
exciting laser beam, and a zero-order one is used for the limited range of wavelengths
encountered in the Raman scattered light.

Figure 6.11 shows an arrangement of two motors with hollow axles, specifically
developed for scrambling linear polarization components, equipped with half-wave plates
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Figure 6.11. Dual high-speed hollow

axle motor arrangement equipped with

low-order quartz half-wave retardation

plates. The counter-rotating motors are

synchronized to the data-acquisition

cycle.

through which the laser beam passes. Their precisely synchronized rotation speeds of
13,488.75 and 11,853.75 rpm are chosen so that their fast optical axes cross at 180◦

/31 intervalls, with the speed of rotation of the plane of polarization reaching 50,685
rpm. The rotation speeds yield completed rotations for acquisition and read-out times
that are multiples of 4/109 s. The base interval of 1/109 is chosen to avoid interference
by accidental synchronization of acquisition cycles with either the European 50-Hz or
the US 60-Hz line frequency.

Scrambling Circular Polarization: The Virtual Enantiomer. Because it is
circular polarization which carries the ROA information, scrambling it must be done
compatible with recovering this information. The strategy is to carry out the measurement
in a way that makes the elements of the optical train, including the circular polariza-
tion modulator in an ICP and the circular polarization analyzer in a SCP experiment,
time-averaged agnostic of the circular polarization state used for probing the handed-
ness of the sample. This is equivalent to alternatingly measuring the chiral molecule
that one is interested in, along with its enantiomer. While using the actual enantiomer
is not a generally useful approach, it is possible to create the chiroptical properties
of a molecule’s optical antipode by purely optical means. We will call this a virtual
enantiomer.

The property of half-waveplates to interconvert left- and right-circularly polarized
light is the key for achieving this. It can be shown in a general way [9] that placing a
chiral molecule between half-waveplates makes it look, if observed from the outside, as
if it were its enantiomer. This is true for all its chiroptical properties. If, moreover, the
axes of the half-waveplates are aligned so that together they form a full-wave retardation
plate, then their presence becomes transparent to an observer probing the molecule from
the outside. Practical half-waveplates entail an optical pathlength change, and in an actual
experiment they therefore have to be placed into sections of the optical train with parallel
light paths, in order to minimize optical disturbances they cause.

The scrambling of linear components, as described in the previous section, simplifies
the description of the action that half-waveplates have in creating a virtual enantiomer.
Their only effect then becomes that of interconverting left- and right-circularly polarized
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light, and one might therefore call them circularity converters. This is seen from their
action on the Stokes vector of time-average linearly depolarized light obtained by a linear
rotator: ⎛

⎜⎜⎝
1 0 0 0
0 cos 4φ sin 4φ 0
0 sin 4φ − cos 4φ 0
0 0 0 −1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

I
0
0

P3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

I
0
0

−P3

⎞
⎟⎟⎠ . (6.19)

If circularity converters are preceded by linear rotators, then their angular orientation φ

becomes unimportant.

Combination of Linear and Circular Polarization Scrambling. Linear polar-
ization scrambling by rotating half-waveplates and the creation of a virtual enantiomer
can be applied to the ICP, SCP, and DCP polarization scheme. Scrambling is applicable
to chiroptical measurements other than ROA, with the limitation being the availability
of appropriate retarders.

Figure 6.12 shows schematically a practical implementation in a SCP instrument.
The counter-rotating linear rotators LR1 and LR2 eliminate linear polarization from the
exciting laser beam. Ideally they should, as is also the case for the circularity converter
CC1, be placed directly in front of the sample cell, but this is not possible in a backscat-
tering experiment. The light path between them and the sample is therefore kept as
polarization neutral as possible by the use of two 90◦ deviations in orthogoal planes
instead of a single one. The influence of small residual linear components produced by
optical imperfections is reduced by the linear rotator LR3 in the scattered light. The
slightly different transmission of the low-order retarder CC1 for light-polarized parallel
and perpendicular to its fast axis is an example of such an imperfection.

We will analyze the effectiveness of the arrangement for the case of arbitrarily
polarized exciting light S = (I , P1, P2, P3) of the laser. We will see that the influence of
P3, which would normally lead to huge offsets in a SCP measurement, is suppressed,
and that a linear component described by P1 and P2 is prevented from reaching the
circular polarization analyzer. Offset mechanisms other than due to the exciting light are
amenable to a similar analysis.

Figure 6.12. Combination of linear and

circular polarization scrambling in an SCP

backscattering instrument. LR1 and LR2,

high-speed counter-rotating linear rotators in

the exciting light; CC1 and CC2, circularity

converters in the exciting and scattered light,

respectively; LR3, slow-rotation linear rotator in

the scattered light. Other optical elements are

as in Figure 6.5.
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For the situation where the actual molecule is measured, the time-averaged Stokes
vector on the entrance of the circular polarization analyzer is given by

〈S ′(00)〉 = 〈L3〉X 〈L2〉〈L1〉S . (6.20)

where 〈L1〉, 〈L2〉, and 〈L3〉 are the Mueller matrices of the linear rotators LR1, LR2, and
LR3, and X stands for the scattering matrix of the sample, which we assume to include
the influence of the optics between the polarization correcting elements. The notation
(00) indicates that the circularity converters are removed from the optical path, and a
prime distinguishes the scattered from the exciting light.

For the measurement of the virtual enantiomer, where both circularity converters are
moved into the optical train, one likewise has

〈S ′(11)〉 = C 2〈L3〉XC 1〈L2〉〈L1〉S , (6.21)

with C 1 and C 2 representing the matrices of the circularity convertes CC1 and CC2. The
products of the various Mueller matrices can be separately evaluated, and one has

〈L2〉〈L1〉 =

⎛
⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎟⎠ , (6.22)

C 1〈L2〉〈L1〉 =

⎛
⎜⎜⎝
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0 0 0 0
0 0 0 0
0 0 0 −1

⎞
⎟⎟⎠ , (6.23)

C 2〈L3〉 =

⎛
⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎟⎠ . (6.24)

For X we assume the general form

X = I ′

I

⎛
⎜⎜⎝

X00 X01 X02 X03

X10 X11 X12 X13

X20 X21 X22 X23

X30 X31 X32 X33

⎞
⎟⎟⎠ , (6.25)

where I ′/I is the ratio of the intensity of the scattered to that of the exciting light.
The Stokes vectors for the scattered light are obtained as 〈S ′(00)〉 = I ′/I × (X00I +

X03P3, 0, 0, −X30I − X33P3) and 〈S ′(11)〉 = I ′/I × (X00I − X03P3, 0, 0, X30I − X33P3).
For an achiral sample, X03 and X30 of the scattering matrix vanish [40] and X33

represents the reversal ratio. Subtraction of the Stokes vectors then yields

〈�S ′〉 = 〈S ′(00)〉 − 〈S ′(11)〉 = I ′/I × (0, 0, 0, 0). (6.26)

This means that time-average scrambling of circular and linear components effectively
eliminates any influence that such components of the exciting light have on the scattered
light. The term surviving for a chiral sample, for exciting light devoid of a circular
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Figure 6.13. Timing diagram of an SCP acquisition cycle for a single fixed position of the

circularity converters. The liquid crystal retarder is switched while the exciting light is switched

off and the CCD is read (dark interval). The circularity converters are moved to the next one of

four relative positions during the last (8th) dark interval. Every second dark interval is increased

by one basic timing unit of 1/109 s (see text) to eliminate the influence of systematic deviations

of the shutter opening and closing speeds.

component, is −2I ′X30; that is, subtraction of a measurement with CC1 and CC2 moved
into the optical train from one where they have been removed leads to addition of the
terms responsable for chiral scattering.

Perfect half-wave plates do not exist. In practice it is therefore best to limit the
size of net circular components of the exciting light in an SCP instrument, either by a
high-quality linear polarizer or by a rotating quarter-wave plate.

6.5.3. Acquisition Cycle

A basic acquisition cycle of a circular intensity difference measurement consists of sepa-
rately measuring and subtracting the Raman signal for right-and left-circular polarization.
In the SCP instrument of Figure 6.1 the two intensities are determined simultaneously by
the two arms, and a basic acquisition cycle therefore comprises illuminating the sample
and reading the CCD detector. Switching the state of the liquid crystal retarder in the
circular polarization analyzer interchanges the function of the two arms. The sum for
two switching states, a dual acquisition cycle, has a vastly increased precision because
differences in the arms’ transmission are eliminated.

The linear rotators LR1 and LR2 are synchronized so that an integral number of turns
of the plane of polarization of the exciting light results for each illumination period. The
mechanical shutter used to cut off the laser beam tends to lead to a systematic deviation
of the period’s length. The deviation’s influence can be eliminated by combining four
dual acquisition cycles into a block and by starting consecutive dual cycles with the plane
of polarization rotated by 45◦. To this end, every second dark period is extended by one
basic timing unit of 1/109 s (see section on linear polarization scrambling). Figure 6.13
shows a timing diagram for a block of four dual cycles.

Synchronization of the polarization scrambler LR3 in the scattered light is not
required for long acquisition times. It is important for short acquisitions as demonstrated
in the recording of ROA spectra of the anomers of glucose [41].

The circularity converters are moved into and out of the optical path after each
block of four dual acquisition cycles. The required optical precision is generally more
demanding for CC1 than for CC2. It can be shown [9] that a vastly increased offset
suppression is achieved for half-wave plates of limited precision by not moving the
converters together but in a pattern (00), (01), (10), (11), with the circularity converter
CC1 in the incident light moving like the lower and the converter in the scattered light
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like the higher bit. For the optical arrangement in Figure 6.12 the ROA and Raman
information is then obtained from the average Stokes vector components P ′

3 and I ′,
respectively, of the scattered light, given by

P ′
3 = −1

4
{P ′

3(00) + P ′
3(01) − P ′

3(10) − P ′
3(11)}, (6.27)

I ′ = 1

4
{I ′(00) + I ′(01) + I ′(10) + I ′(11)}. (6.28)

The modification of the acquisition cycle for a slow modulation DCPI experiment is
straightforward. The exciting light is modulated between right and left circular, and a
basic acquisition cycle now consists of reading the CCD detector twice, with the desired
signal once on its upper and once on its lower half. A fast modulation DCPI instrument
can be obtained with a shutter provided by a synchronized rotating wheel at the entrance
of the spectrograph [33].

6.6. FINAL REMARKS

Stereochemical information and the determination of absolute configurations have been
the main areas of practical interest of ROA so far. In the context of the present chapter,
we have stressed the measurement of ROA with different scattering geometries and
polarization schemes. Such measurements render differing information, which reflects
ROA’s dependence on the various invariants of the scattering tensor and, thus, on a
molecule’s electronic structure and the nature of its vibrational modes.

The potential value of such information for sterochemistry can be illustrated by the
example of the depolarization ratio in ordinary Raman spectroscopy. A glance at it in the
Raman spectrum of a polyatomic molecule can allow the identification of, for example,
a ring breathing mode, due to the polarized nature of the band it produces, without any
calculation. In a similar way, the comparison of the forward and backward scattering
ROA spectra of a molecule might permit, with more experience at hand than presently
available, a judgment on the role that interaction between fragments plays in generating
a particular ROA band’s sign and size.

Figure 6.14 compares the forward and backward scattering SCP ROA spectra of (R)-
(+)-propylene oxide. The Raman spectra are identical for the two scattering geometries
except for differencies in the detectivity of the two scattering channels, and the ROA
spectra are normalized to the Raman intensity measured in backward scattering. The two
ROA spectra are, except for band positions, starkly different, as one might expect from
the formulae in Table 6.1. A closer analysis reveals that forward scattering spectra are
exclusively determined by intrinsic terms, with no dependence on the distance between
molecular fragments. Backward scattering spectra, on the other hand, depend on intrinsic
terms as well as on terms proportional to the distance.

Apart of the expected wider future use of ROA data obtained with different scatter-
ing geometries and polarization schemes, a move of exciting laser wavelengths from the
presently preferred green toward the red or near infrared appears inevitable. � values
will suffer, but longer exciting wavelengths solve much of Raman spectroscopy’s ubiqui-
tous fluorescence problem. Spectrographs and optics present no obstacle to such a move.
Power levels of semiconductor lasers have been insufficient so far in the red, but appro-
priate Raman fiber lasers hold promise. The overload problem of CCD detectors is a
temporary technological limit and is bound to find a solution in the form of low-noise
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Figure 6.14. Comparison of forward and backward scattering ROA spectra of (R)-(+)-propylene

oxide (methyloxirane). Top curve: degree of circularity RC(π ) indicating the degree of polarization

of bands; −1 represents a fully polarized band and +5/7 denotes a fully depolarized band. Middle

curves: ROA spectra. Bottom curve: Raman measured in backscattering. Measurement parameters:

150 (270)-mW laser power and 120 (36.6)-min illumination time for forward (backward) scatter-

ing, respectively. The curves are slightly smoothed by a third-order five-point Savitzky–Golay

procedure.

CMOS line scanners or similar devices. Raman spectroscopy’s low dynamic range, which
makes ROA measurements in most solvents except water difficult, might be alleviated by
the use of fine grained mulls with a particle size similar to what is being used to render
lenses made from organic materials scratch resistant. Technological advances made the
first ROA measurements possible in the seventies of the last century, and they will render
them a standard tool of chiral chemistry in the future.
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7
NANOSECOND TIME-RESOLVED

NATURAL AND MAGNETIC
CHIROPTICAL SPECTROSCOPIES

David S. Kliger, Eefei Chen, and Robert A. Goldbeck

7.1. INTRODUCTION

Kinetic studies have long been recognized as critical to understanding the mechanisms of
chemical reactions. As with other mechanistic studies, understanding how biomolecular
reactions work, such as in the functional and folding reactions of proteins, requires an
understanding of their kinetics. Early studies of proteins focused on understanding their
reaction products and their structures. From these, the mechanisms by which proteins pro-
duced those products could often be deduced. More recently, however, it has become clear
that natively folded proteins are dynamic entities and that protein structures can change
as they carry out their functions. Studies of the kinetics of protein reactions have thus
become increasingly important. It has also become clear in recent years that the mech-
anistic steps in the folding and function of proteins can occur on very rapid timescales.

Studies of rapid kinetics have generally involved the use of time-resolved optical
spectroscopies because these are most amenable to measurements on short time scales.
Rapid time-resolved absorption studies have been feasible since the middle of the past
century, with the advent of millisecond flash lamps for initiating photochemical reac-
tions [1, 2]. Flash lamps were later created with microsecond pulse durations, followed
by the advent of pulsed lasers with pulse durations of nanoseconds, soon shortened to
picoseconds and then femtoseconds [3]. Today, lasers are even available with attosec-
ond pulse durations [4]. The development of such pulsed light sources, together with
the development of light detection systems with both high time resolution and multi-
wavelength capabilities, has made optical studies of reaction kinetics on very rapid time
scales possible.

Comprehensive Chiroptical Spectroscopy, Volume 1: Instrumentation, Methodologies, and Theoretical
Simulations, First Edition. Edited by N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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While rapid measurements of absorption spectra have added tremendously to our
understanding of fast reactions in proteins, such spectra are not particularly sensitive
to protein structural changes. Thus a number of more structure-sensitive time-resolved
spectral techniques have been developed over the years that have been important tools for
protein mechanistic studies [5]. These include time-resolved fluorescence, IR, resonance
Raman, and even time-resolved X-ray techniques. Over the years we have also developed
a number of chiroptical spectroscopic techniques to monitor the time evolution of protein
structures [6]. This development began with techniques to measure time-resolved circular
dichroism (TRCD) with nanosecond [7] and later picosecond [8, 9] resolution. This
approach was later extended to techniques for the time-resolved measurement of magnetic
circular dichroism (TRMCD), optical rotatory dispersion (TRORD), and magnetic optical
rotatory dispersion (TRMORD), as well as very sensitive time-resolved measurements
of linear dichroism (TRLD) [10–14]. These techniques, as well as more recent related
developments and a number of applications, will be described in the rest of this chapter.

7.2. NEAR-NULL ELLIPSOMETRIC CD MEASUREMENTS

Realizing the potential importance of structure-sensitive spectral measurements with high
time resolution to studies of protein function and protein folding, our group worked to
develop a capability for measuring CD spectra with high time resolution as far back
as the 1980s. At that time, the standard method for making CD measurements was to
use photoelastic modulators (PEM) with frequencies on the order of 100 kHz to create
light that rapidly alternated between right- and left-circular polarizations. Phase-sensitive
detection was then used to sensitively measure the difference in absorption between light
of these two polarizations. This sensitivity is important because the difference between
absorption of left- and right-circularly polarized light is typically on the order of 10−2

to 10−5 times the magnitude of the absorption itself. However, given the frequency of
the modulators, it would not be possible to measure CD kinetics with this approach with
time resolution better than milliseconds. Furthermore, to get modulators that would be
significantly faster than this would require much smaller modulators, and this would
result in optical throughputs that would be too small for measurements with reasonable
signal to noise. We thus sought a different approach to CD measurements which could
be capable of high time resolution.

The approach we used took advantage of the vectorial properties of the electric
field component of light. As shown in Figure 7.1, these properties make it possible to
convert one form of light to another with relative ease. Thus linearly polarized light
with any orientation can be created by adding linear light components of vertical and
horizontal polarized light with different amplitudes. Circularly polarized light can be
created by the addition of vertically and horizontally polarized electric field vectors
of identical amplitudes that are 90◦ out of phase. Elliptically polarized light can be
created by the addition of 90◦ out-of-phase vertical and horizontal electric field vectors of
different amplitudes or by the addition of left and right circular components with different
amplitudes. In other words, one can easily convert light between different polarization
types through controlling the amplitudes and/or phases of the light components.

Because elliptically polarized light can be thought of as comprising left- and right-
circularly polarized components of different amplitude and the eccentricity of the elliptical
polarization changes when the relative amplitudes of the left and right components
change, ellipticity provides a different and, it turns out, sensitive way to measure circular
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Figure 7.1. The manipulations of light

polarization used in CD measurements can be

visualized with the aid of electric field

polarization vectors. Viewing the light facing

toward its source, the tip of its electric field

vector traces out over time a pattern that

depends on its polarization as it oscillates with a

frequency ν. Linearly polarized light traces out a

straight line, with its phase of oscillation at a

given instant being indicated in the figure by an

arrowhead. (a) Two linearly polarized light

vectors with the same phase add together in

simple vector addition to give a sum field that is

also linearly polarized (the numbered arrowheads

indicate times that are 90◦ apart in phase). (b) A

more interesting case is when the two linear

polarization vectors have different phases. When

perpendicular vectors of equal magnitude but 90◦

phase difference are added together, the result is

circularly polarized light. (c) Finally, if the

out-of-phase vectors have different magnitudes,

then elliptical polarization results.

dichroism. Thus, if one passes an elliptically polarized light beam (with highly eccentric
ellipticity) through a circularly dichroic sample, the relative amplitudes of the circular
components will change, thus changing the eccentricity of the elliptically polarized light.
Measuring the change in eccentricity thus provides a way to measure a sample’s circular
dichroism.

In practice this can be accomplished with an apparatus like that shown in Figure 7.2.
One starts by using a high-intensity flashlamp to produce light with sufficiently high
peak intensity that measurements with good signal-to-noise ratios can be made without
exposing the sample to the damagingly high levels of light energy absorption over time
that might be caused by a continuous light source. This light is then passed through a
high-quality linear polarizer (i.e., one with high extinction so the light emerging from the
polarizer has linear polarization to a very high degree) followed by a birefringent element
that converts the linearly polarized light into highly eccentric elliptically polarized light.
To accomplish this, one can simply take a strain-free quartz plate and apply a mechanical
strain along a well-defined axis. This produces elliptically polarized light with eccentricity
determined by the amount of strain applied to the plate. By orienting the strain axis
along a ±45◦ axis relative to the axis of linear polarization, one produces left or right
elliptically polarized light oriented along the original axis of the linearly polarized light.
After passing this light through the sample, the change in ellipticity can be monitored by
passing the light through a second linear polarizer with polarization axis perpendicular to
that of the first polarizer. Monitoring the intensity of the resulting light for both left and
right elliptically polarized beams then yields the sample circular dichroism according to
the following formula:

Signal = (IREP − ILEP)/(IREP + ILEP) = 2.3�εc�/δ, (7.1)
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Figure 7.2. Apparatus used for near-null ellipsometric measurements of time-resolved circular

dichroism. A circularly dichroic sample will change the eccentricity of elliptically polarized light

because this light comprises components of LCP and RCP light with different amplitudes. Highly

eccentric elliptically polarized light is generated by passing linearly polarized light, which is

unpolarized before meeting the first linear polarizer, through a strain plate (SP) that introduces

a small phase retardance (δ). When the compression (fast) strain axis of this birefringent element

is oriented at 45◦ from the linear polarization axis, the major axis of the elliptically polarized

light that is produced is parallel to the original linear polarization axis. REP and LEP light (+45◦

and −45◦) are obtained by rotating SP around its vertical axis by 180◦. CD in a sample will change

the polarization ellipticity of the REP and LEP probe beams, with the minor axis (horizontally

polarized light) of each being monitored after the probe beam passes through the second

analyzing polarizer and detected by either an intensified photodiode array or intensified charge

coupled device.

where IREP and ILEP are the intensities of right elliptically and left elliptically polarized
light, respectively, �ε is the circular dichroism, c is the concentration of a sample of
pathlength �, and δ is the retardation in radians of the birefringent element used to
produce elliptically polarized light from the linearly polarized light. It is clear from this
formula that the more eccentric the elliptically polarized light (i.e., the smaller the δ),
the larger the signal produced from a sample of given circular dichroism.

Initial implementation of this approach to CD measurements involved making time-
resolved measurements at single wavelengths. Expansion of this implementation soon fol-
lowed by extending measurements into the far-UV region and making multi-wavelength
measurements by replacing a monochromator/photomultiplier detection system with a
spectrograph/multichannel analyzer [initially using gated diode array detectors and more
recently using gated charge-coupled device (CCD) detectors] [15]. Given the sensitivity
of this CD measurement approach to a number of artifacts (discussed below), the ability
to measure multi-wavelength spectra is very useful to ensure that the measured signals
truly reflect CD spectra of interest rather than optical artifacts.

7.3. NEAR-NULL ELLIPSOMETRIC MCD MEASUREMENTS

While natural CD results only from molecules with chiral structures, CD can be induced in
either chiral or achiral molecules placed in a magnetic field. Magnetic circular dichroism
(MCD) is closely related to the Zeeman effect, which causes splitting of degenerate
energy levels in molecules placed in a magnetic field. The electric dipole transitions
between Zeeman levels are circularly polarized, so splitting of these levels results in a
CD signal when light propagating parallel to the magnetic field direction passes through
the sample. The size of the MCD signal is proportional to the strength of the magnetic
field as well as the magnetic moments of the molecule’s electronic energy levels. Since
MCD is produced from the splitting of degeneracies, it is a sensitive measure of molecular
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Figure 7.3. Apparatus for time-resolved magnetic circular dichroism measurements. The TRMCD measurement is

an extension of that for TRCD, with addition of a magnet (MN, MS) surrounding the sample and a compensator to

counteract the Faraday rotation of the probe beam polarization as it travels though the sample cell windows and

the solvent in a magnetic field. The compensator, comprising a solvent blank in a cell matched with the sample

cell and a magnetic field matched in magnitude but opposite in direction to that for the sample, rotates the beam

polarization back to its original orientation.

structures and environments that perturb the electronic states. The sensitivity of natural
CD to asymmetries in molecules makes it particularly useful in studying proteins, which
naturally exhibit asymmetric structural motifs. Because of the sensitivity of MCD to the
splitting of degenerate electronic states, it produces large signals in aromatic molecules
and thus is particularly useful in studying heme proteins and proteins that contain aromatic
residues. In heme proteins, MCD is particularly sensitive to the axial ligation, spin, and
oxidation states of the heme iron. MCD measurements are thus a very useful complement
to natural CD measurements in such proteins.

The approach to measuring MCD spectra with high time resolution is basically the
same as the TRCD approach, but with a couple of changes. First, and most obvious,
one must add a magnet around the sample with the magnetic field oriented along the
axis of light propagation. This requires the use of magnets surrounding the sample with
holes in the pole pieces through which the light passes. The second change involves
the use of a compensator to correct for Faraday rotation of light passing through the
sample cell windows and solvent. Although the windows and solvent will be transpar-
ent at the probe wavelength, they will produce an optical rotation (Faraday effect) in
the beam because of the MCD associated with their far-UV absorption bands, since
absorption and refraction are fundamentally linked by the Kramers–Kronig integral
transform. Thus, the polarization ellipse of elliptically polarized light passing through
such a sample in a magnetic field will rotate. However, the TRCD technique relies
on a measurement of the change in minor axis intensity of the elliptically polarized
light; therefore, if the ellipse is rotated, the intensity of the minor axis would appear
to increase due to the rotation rather than to a dichroism. This Faraday rotation effect
can be quite large compared with the dichroism of the sample since the concentrations
of molecules under study are generally very small relative to solvent concentrations and
window densities. Thus a Faraday compensator is used to rotate the elliptical polariza-
tion axis back to its original orientation before the light passes through the polarization
analyzer and on to the detector. The apparatus for TRMCD measurements is shown in
Figure 7.3.

Two approaches have been used to compensate for the Faraday rotation in MCD
measurements. The first approach to Faraday compensation involves use of an optically



184 COMPREHENSIVE CHIROPTICAL SPECTROSCOPY, VOLUME 1

active material, such as a sugar solution, placed between the sample cell and the analyzing
polarizer. If measurements are made far from an absorption band, the Faraday effect
varies with wavelength as 1/λ2. When the magnet is oriented in a configuration parallel
to the light propagation, the rotation of the sample will be levorotatory, so use of a
dextrorotatory sugar such as sucrose will rotate the plane of elliptically polarized light to
the original orientation if the sucrose concentration is adjusted properly. Similarly, when
the magnet is oriented in an antiparallel configuration, the rotation will be dextrorotatory
and a levorotatory sugar, such as fructose, can be used.

The approach of using sugars in a Faraday compensator works well in spectral
regions far from the sugar or solvent UV absorption bands, but it does not work well
for measurements in the UV region. In the latter case, a more accurate approach is
to add a compensator comprising a second cell that is matched to the sample cell and
placed in a magnetic field matched in magnitude but opposite in orientation to the sample
magnetic field. This approach provides an accurate cancellation of Faraday rotation at
all wavelengths.

The dependence of the MCD effect on the magnetic field makes it possible to separate
CD signals from MCD signals in samples exhibiting both effects. Circular dichroism
measurements on a sample that exhibits both natural CD and MCD will detect the sum
of the two effects, CD + MCD, in an applied magnetic field that is parallel (north to south)
with the light propagation vector. Since the MCD signal depends on the magnitude and
orientation (parallel or antiparallel) of the magnetic field, the signal produced by the
same sample when the orientation of the magnetic field is reversed will be CD − MCD.
Thus, taking measurements at both orientations of the magnetic field and adding the two
signals will give two times the CD, whereas subtracting the two signals will give two
times the MCD.

7.4. NEAR-NULL POLARIMETRIC ORD AND MORD MEASUREMENTS

We discussed above the methods for measuring TRCD and TRMCD using an ellipsomet-
ric approach. We will discuss below artifacts of which one must be careful in applying
these methods. Some of these artifacts arise from the fact, as discussed in reference to
TRMCD measurements, that absorption changes are always accompanied by refractive
changes. The latter can cause birefringence artifacts when making dichroism measure-
ments. In making TRCD and TRMCD measurements, therefore, one must take care to
minimize the effects of birefringence. However, there are closely related polarimetric
techniques that can provide similar molecular information with less sensitivity to linear
birefringence (LB) artifacts and with the higher signal-to-noise ratios that are possible
away from absorption bands. Just as CD and MCD spectra are useful in providing infor-
mation about molecular structures, the wavelength dependence of circular birefringence
[i.e., optical rotatory dispersion (ORD) and magnetic optical rotatory dispersion (MORD)]
also contains valuable molecular structural information. This is an obvious result of the
fact that CD and ORD, as well as MCD and MORD, are directly related to each other
through the Kramers–Kronig relationships [16].

It is more common these days for researchers to measure CD spectra than ORD
spectra because CD is more easily interpreted in terms of molecular structures than
ORD. This is because CD transitions report on the dichroic properties of individual
electronic (or vibrational in the case of VCD measurements) transitions, whereas ORD
reflects more widely dispersed refractive index changes and thus typically reports on
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the combined contributions of multiple electronic transitions. However, there are appli-
cations, particularly for fast time-resolved measurements, wherein signal-to-noise ratios
are limited by the amount of light collected, when the ability to measure an ORD sig-
nal outside of an absorption band of a molecule can be an advantage that outweighs
any inconvenience in interpretation. A good example is the study of protein folding (as
discussed below in Section 7.7.2), in which monitoring ORD changes near 230 nm was
found to give a similar picture of the kinetics of secondary structure change as that
observed in TRCD monitored at 222 nm, despite the presence of overlapping contri-
butions from other CD bands in the ORD. An even more straightforward biomolecular
example is provided by the MORD of heme proteins. In this case, the Soret and visible
heme bands are typically well separated in wavelength from each other and the electronic
transitions of other protein chromophores, permitting their MCD spectra to be obtained
conveniently by Kramers–Kronig transform of their MORD [12].

TRORD measurements can be made using an approach that is similar to, yet simpler
than, the ellipsometric TRCD approach. The approach is shown in Figure 7.4. The basic
idea of this measurement is that circular birefringence rotates the polarization axis of
linearly or elliptically polarized light. Thus, if the polarization axis of a probe beam
is rotated in either a clockwise or counterclockwise direction by a small fixed angle,
the optical rotation of the sample will add to or subtract from that rotation, allowing a
determination of the sample-induced rotation by taking the difference of the magnitudes
of the total rotations. This is accomplished by placing the sample between two crossed
polarizers in the probe beam path, as with the TRCD approach, but eliminating the
birefringent element (strain plate) used in the latter apparatus. Instead, the first polarizer
is rotated off the crossed position by a small angle, β, and the intensity of light passing
through the sample and analyzing polarizer is measured. The measurement is repeated
with the first polarizer rotated off by an angle −β. The result of these measurements
depends on the orientation of the crossed polarizers relative to the polarization axis of
the excitation laser. In one limiting case, orientation 1, the laser excitation polarization
axis is taken to be vertical and the polarizer axes are horizontal and vertical. In another
limiting case, orientation 2, the laser axis is vertical and the polarization axes are at +45◦

and −45◦. The signal, defined as the difference of these two intensities divided by their

 Linear
Polarizer

 Sample Rotation
±β

Detector

Flash lamp

 Analyzing
Polarizer

Figure 7.4. Schematic diagram of a time-resolved optical rotatory dispersion apparatus. ORD data are collected

by measuring the intensities of the probe beam that pass through the sample and the fixed, analyzing polarizer to

the detector when the first linear polarizer is rotated (off the crossed position of the two polarizers) first by a small

angle, β, and then by −β. The underlying concept of this measurement is that the optical rotation of the sample

will either add to or subtract from the reference rotation, ±β, because CB rotates the polarization axis of linearly or

elliptically polarized light. By orienting the axes of the linear polarizers at +45◦ and −45◦ relative to the vertical (0◦)

axis of the pump laser polarization axis, the signal yields LD of the sample and when the polarizer axes are at 0◦ and

90◦ the signal yields the sample ORD.
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sum, can be shown by using Mueller calculus to be

S1 ≡ [I (β) − I (−β)]/[I (β) + I (−β)] ≈ −[LD′ + CB]/β (7.2)

and

S2 ≡ [I (β) − I (−β)]/[I (β) + I (−β)] ≈ [LD − CB]/β, (7.3)

where S1 and S2 are the signals for orientations 1 and 2, respectively, I (β) and I (−β)

are the probe intensities reaching the detector after rotation of the polarizer by angles of
+β and −β, respectively, LD′ is the linear dichroism in orientation 1, LD is the linear
dichroism in orientation 2, and CB is the circular birefringence [11].

As can be seen in these formulae, signals produced with this approach have contribu-
tions from both linear dichroism and circular birefringence (or ORD in multi-wavelength
measurements, Figure 7.5). However, separating these two effects is generally straight-
forward. If the chromophores in the sample are randomly oriented, then there would be
no linear dichroism and each measurement would yield only CB (ORD). If the sample
is anisotropic or is made to be transiently anisotropic through laser excitation from the
photoselection effect [17], then a linear dichroism can result. For measurements made
at times significantly longer than the rotational diffusion time of the chromophore, the
sample will again be isotropic and will yield no LD signal. For faster measurements,
the photoselection axis will be that of the excitation laser polarization axis. Therefore,
for measurements using orientation 1, LD′ will be zero and the signal will be due only
to CB (ORD). In orientation 2, the LD signal will generally be much larger than the
ORD signal so the signal is essentially due only to LD. In both cases, β is generally
small (typically about 0.01 radians) so the signal amplifies the effects of CB or LD,
making this approach a very sensitive way of measuring LD or ORD. In general, CB or
LD � β � 1 radian.

This same approach can be used to measure TRMORD by compensating for the
Faraday rotation of the sample cell and solvent as in TRMCD measurements. Polarization
orientation 2 is used, with probe beam polarizers oriented in the vertical and horizontal
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line) spectra. The ORD signal shown was

magnified 5 times for comparison with the LD

spectrum. On this scale an ORD signal of 0.1

corresponds to a 0.006
◦

rotation and an LD

signal of 0.3 corresponds to a difference in

absorption of 0.009.
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directions. However, the excitation beam, which propagates along an axis perpendicular
to the probe beam propagation direction, is polarized along an axis parallel to the probe
beam propagation axis to minimize artifacts due to coupling of photoselection-induced
LD with the solvent and cell window Faraday rotation [13].

7.5. LIMITATIONS OF NEAR-NULL TECHNIQUES

The methods described above provide measurements of CD and ORD, along with their
magnetic counterpart measurements, with high sensitivity because they use near-null
approaches. That is, rather than measuring small changes in large signals, such as the
small difference in extinction coefficient between left- and right-circularly polarized light
relative to the extinction coefficient itself, the measurements involve determining the
relatively large difference in the intensity of the minor axis elliptical polarization intensity.
While this approach yields measurements with high sensitivity, it also is prone to the
introduction of artifacts which must be controlled or accounted for. Figure 7.6 shows
how elliptically polarized light can be affected by linear and circular dichroism, as well
as linear and circular birefringence. One must account for the coupling of these effects
to avoid artifacts in measurements of interest.

As discussed above and shown in Figure 7.1, REP or LEP light can be described in
terms of the vector addition of unequal amplitude left- and right-circular components or
by the vector addition of out-of-phase linear components. Figure 7.6 shows how CD, CB,
LD, or LB would affect these vector components and thus alter REP or LEP light. For a
measurement of CD, consider what artifacts might be caused by the CB, LD, or LB of a
sample. To first order, CB and LD each change REP and LEP in the same way. There-
fore, taking the difference over the sum of the REP and LEP intensities will yield no CD
signal. On the other hand, LB effects will be very different for REP and LEP light and
can thus produce a signal large enough to completely mask CD effects. Recalling that the
elliptically polarized light is produced by a linearly birefringent element, it should not be
surprising that a sample exhibiting LB would strongly affect a measurement that depends
on careful control and measurement of changes in polarization ellipticity. For CD mea-
surements, it is thus important to understand LB contributions and how to minimize them.

A potentially significant source of linear birefringence besides the strain plate is
inadvertent strain in optical elements along the optical path of the CD instrument. It
is thus important to use high-quality optics that exhibit retardations of less than 10−4

radians. In addition to artifacts due to static linear birefringence of optical elements, time-
resolved measurements are susceptible to artifacts from transient linear birefringence
caused by photoselection-induced anisotropy in an excited sample or even from cell
window birefringence due to thermally induced window strain [a particular problem
when using laser temperature jumps (T-jump) coupled to ellipsometric measurements].
In the case of photoselection-induced birefringence, the effects will disappear as the
excited molecules rotate to become randomly oriented, but this could take picoseconds
for small molecules or hundreds of nanoseconds for typical proteins, or even milliseconds
for proteins embedded in membrane patches.

Fortunately, while photoselection-induced LB effects can be large, they can also be
eliminated, or at least greatly minimized, by proper orientation of the polarization axis
of the excitation laser. Precise alignment of this axis along the vertical or horizontal axes
minimizes induced birefringence for perpendicular pump-probe geometries. In practice,
horizontal polarization alignment (excitation polarization parallel to the probe beam prop-
agation axis) is generally more effective because misalignments produce smaller signals.
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Figure 7.6. A schematic diagram of how the optical properties of a sample can change the

polarization of light [73]. The center box shows the decomposition of right elliptically polarized

(REP) and left elliptically polarized (LEP) light into two orthogonal polarization bases: circular

and linear. In the circular basis, elliptical light results from the addition of unequal amounts of

right-circularly polarized (RCP) and left-circularly polarized (LCP) light. The relative phases of RCP

and LCP (indicated by the arrowheads) determine the orientation of the ellipse (see Figure 7.1).

Diagrams at each of the four corners show the effect of optical properties—circular dichroism

(CD), linear dichroism (LD), circular birefringence (CB), and linear birefringence (LB)—on initially

elliptically polarized light. The effects of LD and LB are most easily visualized in terms of the

changes in the linear components, whereas CD and CB are most easily visualized in terms of the

circular components. The box in the upper left shows the effect of a positive CD on REP and LEP.

More LCP than RCP is absorbed, fattening the REP ellipse (which becomes more RCP-like) and

thinning the LEP ellipse (which becomes closer to linearly polarized). A positive CB, shown in the

lower left, retards RCP relative to LCP and thus rotates REP and LEP in the same direction by an

angle equal to half of the retardance angle. Shown in the lower right is the effect of a small LB

for the most general case, the birefringence axes askew from the elliptical axes by a nonintegral

multiple of 45◦ (15◦ retarder with fast axis rotated 30◦ counterclockwise from horizontal in the

example shown). When LB is small, its effect on the orientation and ellipticity are opposite for

REP and LEP. (The more complicated effect of large LB is best visualized with the aid of the

Poincaré sphere [19].) The rotation results from the relative phase difference induced in the linear

basis states so that they are no longer 90◦ out of phase. This rotation vanishes when the fast LB

axis is at a 45◦ angle from the elliptical axes. The change in eccentricity is caused by the skew

between the LB and initial ellipse axes and is at a maximum at 45◦. The effect of a skewed LB

acting separately on each of the linear basis vectors is to produce polarization ellipses of opposite

handedness. The handedness associated with the major axis, REP in this case, determines whether

the net eccentricity of the total polarization ellipse is increased or decreased. The effect of LD

(shown in the upper right) is to both rotate and change the eccentricity of the polarization

ellipse identically for REP and LEP light. As the magnitude of LD increases and approaches the

limit of a perfect linear polarizer, the major axis of the ellipse rotates toward the axis of highest

transmission and the eccentricity approaches unity. (Adapted from reference 73 with permission

of the American Chemical Society.)
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For those applications where it is not possible to eliminate birefringence artifacts in
TRCD measurements, TRORD measurements can be a useful alternative because bire-
fringence affects ORD signals to second order rather than to first order, as is the case for
TRCD measurements. One recent development where this was shown to be important is
in T-jump experiments, as discussed above. A temperature jump on the order of 10–20◦C
produces a shock wave in the sample and significant strain in cell windows. This makes
T-jump TRCD measurements more difficult, but T-jump ORD measurements have been
produced successfully [18].

Linear birefringence artifacts can actually be less problematic for TRMCD measure-
ments than for TRCD measurements because the “raw” MCD signals for chiral molecules
like proteins typically comprise MCD plus natural CD, so that pure MCD is determined
by taking the difference between the signals measured with parallel and antiparallel ori-
entations of the magnetic field. The birefringence effects are the same for both field
orientations, so they tend to cancel from the difference in such MCD measurements.
While this reduces the susceptibility of MCD measurements to LB effects, other artifacts
are of concern. For one, the laser polarization axis must be controlled with respect to the
magnetic field direction, as well as the probe beam polarization axis. Another factor for
MCD measurements that is not present for CD measurements is the homogeneity of the
magnetic fields of both the magnet surrounding the sample and the magnet surrounding
the compensator because inhomogeneities result in different optical rotations in different
parts of the probe beam.

7.6. CD AND MCD IN SAMPLES ORIENTED
BY LASER PHOTOSELECTION

Besides potentially affecting near-null TRCD/ORD and TRMCD/MORD measurements
in an indirect manner, by inducing the linear dichroism and birefringence artifacts
discussed above, laser excitation-induced anisotropy may also directly alter the CD/ORD
and MCD/MORD properties of a sample. When laser excitation partially orients a molec-
ular sample through the process of photoselection, the extent of orientation depends on
the symmetry properties of the chromophoric transition, the intensity, polarization, and
propagation properties of the light, and the orientation and excitation relaxation properties
of the sample [17]. In fluid samples, both the direct and indirect effects of photoselection
decay with the rotational diffusion lifetime, so that (in the absence of population decay
back to the prephotolysis state) the return to the isotropic TRCD or TRMCD signal,
�αt=∞ (and similarly for TRORD or TRMORD), is given by

�α(t) − �αt=∞ = (�αt=0+ − �αt=∞) exp[−6DRt], (7.4)

where �α = αL − αR is the apparent difference in absorption coefficients for left- and
right-circularly polarized probe light, respectively, �αt=0+ is the rotationally unrelaxed
TRCD/MCD immediately after photolysis, and DR is the rotational diffusion constant.
The diffusion constant for isotropic molecules is given by DR = kBT/(6ηV ), where η

is the viscosity, kB is the Boltzmann constant, T is absolute temperature, and V is the
hydrodynamic volume of the solute.
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Expressions for the natural CD and MCD of photoselection-oriented molecules,
�αPS, are given in the following subsections. (Note that they were derived using the
assumption that depletion of the isotropic sample existing before photo-excitation can
be ignored.) Those results are connected to the time dependence contained in Eq. (7.4)
through the expression �αt=0+ − �αt=∞ = �αPS − �α−ISO, where �α−ISO is the
pre-photoconversion dichroism of that subset of isotropic molecules that will undergo
photoconversion. (Note that �α−ISO will reflect the same photoselection orientation
factors as �αPS.) If no pre-conversion transitions overlap the probe frequency ν, then
�α−ISO(ν) = 0. If pre-conversion transitions do overlap with ν, then �α−ISO can be cal-
culated from the expressions below for �αPS by replacing all quantities referenced to the
probe beam (e.g., bandshape functions, matrix elements) with their pre-photoconversion
equivalents.

Expressions for oriented ORD and MORD (not shown) can be calculated by
Kramers–Kronig transformations of the corresponding CD and MCD expressions. More
general discussions of the spectroscopy of photoselection-oriented samples can be found
in [19] and [20].

7.6.1. CD of Samples Oriented by Photoselection

The orientation-averaged CD of a photoselected sample with nondegenerate transitions
[bandshape function = g(ν)] at the probe frequency ν and the pump frequency ν ′ is
given for a collinear excitation geometry by

�αPS = αL − αR = 2

15
kk ′N φI g(ν)g(ν ′){3|μ′|2Im(μ · m)

+ (μ · μ′)Im(μ′ · m) + (πν/c)(μ′ × μ)Qμ′}, (7.5)

where φ is quantum efficiency of photoconversion, I is laser light fluence (photons/cm2),
N is solute concentration (molecules/cm3), k = 8π3ν/hc, h is Planck’s constant, c is
speed of light, μ, m, and Q are the electric dipole, magnetic dipole, and electric
quadrupole moments for the probe transition, respectively, and primes indicate the cor-
responding pump transition parameters [21]. The quadrupole term in Eq. (7.5) does not
appear in the CD of isotropic samples and also vanishes from the analogous expression
for the degenerate transition case. More general expressions for the CD of photoselected
samples (that are initially isotropic) and their applications to special symmetry cases can
be found in reference 21.

7.6.2. MCD of Samples Oriented by Photoselection

The orientation averaged MCD of a photoselected sample excited by a linearly polarized
pump beam propagating perpendicularly to the probe beam (crossed beam geometry,
X-beam) is given by

�αPS = �αX−beam = −2Hkk ′NI φ

15
g ′(ν)

[
a

h

∂g(ν)

∂ν
+

(
b + c

kBT

)
g(ν)

]
, (7.6)

where

a = A1 + A2 sin2 θ + A3 cos2 θ ,
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b = −Im{B1 + B2 sin2 θ + B3 cos2 θ},
c = C 1 + C 2 sin2 θ + C 3 cos2 θ , (7.7)

θ is the azimuthal angle of the pump polarization relative to the pump-probe propagation
plane, and H is the applied longitudinal field strength [22]. The subscripted A, B , and C
MCD terms, generalized for photoselection, are given by

A1 = D ′ A,

A2 = i

dd ′
∑

aa ′a ′′
bb ′b ′′

μ̃∗(ia ′′ fb′′) · μ̃∗(i ′
a ′ f ′

b′) μ̃(ia fb) × μ̃(i ′
a ′ f ′

b′) · [m̃(fb fb′′)δaa ′′ − m̃(ia ′′ ia)δbb′′ ],

A3 = i

dd ′
∑

aa ′a ′′
bb ′b ′′

μ̃(ia fb) × μ̃∗(ia ′′ fb′′) · μ̃(i ′
a ′ f ′

b′) μ̃∗(i ′
a ′ f ′

b′) · [m̃(fb fb′′)δaa ′′ − m̃(ia ′′ ia)δbb′′ ],

B1 = D ′

d

∑
ab

μ̃(ia fb) ·
⎡
⎣∑

j 	=f

μ̃∗(ia j ) × m̃∗(jfb)

Ej − Ef
+

∑
j 	=i

μ̃∗(jfb) × m̃∗(ia j )

Ej − Ei

⎤
⎦ ,

B2 = 1

dd ′

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
aa ′
bb ′

μ̃∗(i ′
a ′ f ′

b′) ·
⎡
⎣∑

j 	=f

μ̃∗(ia j )m̃∗(jfb)

Ej − Ef
+

∑
j 	=i

μ̃∗(jfb)m̃∗(ia j )

Ej − Ei

⎤
⎦ · μ̃(ia fb) × μ̃(i ′

a ′ f ′
b′)

−
∑
aa ′
bb ′

μ̃(i ′
a ′ f ′

b′) ·
⎡
⎣∑

j 	=f

μ̃(ia j ) × m̃(jfb)

Ej − Ef
+

∑
j 	=i

μ̃(jfb) × m̃(ia j )

Ej − Ei

⎤
⎦ μ̃∗(ia fb) · μ̃∗(i ′

a ′ f ′
b′)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,

B3 = 2

dd ′
∑
aa ′
bb ′

μ̃(i ′
a ′ f ′

b′) × μ̃(ia fb) ·
⎡
⎣∑

j 	=f

μ̃∗(ia j )m̃∗(jfb)

Ej − Ef
+

∑
j 	=i

μ̃∗(jfb)m̃∗(ia j )

Ej − Ei

⎤
⎦ · μ̃∗(i ′

a ′ f ′
b′),

C 1 = D
′
C ,

C 2 = i

dd ′
∑

aa ′a ′′
bb ′

μ̃∗(ia ′′ fb) · μ̃∗(i ′
a ′ f ′

b′) μ̃(ia fb) × μ̃(i ′
a ′ f ′

b′) · m̃(ia ′′ ia),

C 3 = i

dd ′
∑

aa ′a ′′
bb ′

μ̃(ia fb) × μ̃∗(ia ′′ fb) · μ̃(i ′
a ′ f ′

b′) μ̃∗(i ′
a ′ f ′

b′) · m̃(ia ′′ ia), (7.8)

where Ei , Ef , and Ej denote the energies of initial (i ), final (f ), and intermediate (j )
states, d and d ′ indicate the (ground state) degeneracies of probe and pump transitions,
respectively, and the subscripts a and b label degenerate levels within initial and final
states. The A, B, C , and D (dipole strength) terms for the isotropic case appearing in the
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equations above are given by

A = i

2d

∑
aa ′
bb ′

μ̃(ia fb) × μ̃∗(ia ′ fb ′) · [m̃(fb fb ′)δaa ′ − m̃(ia ′ ia)δbb ′],

B = 1

d

∑
ab

Im

⎧⎨
⎩μ̃(ia fb) ×

⎡
⎣∑

j 	=f

m̃∗(jfb) · μ̃∗(ia j )

Ej − Ef
+

∑
j 	=i

m̃∗(ia j ) · μ̃∗(jfb)
Ej − Ei

⎤
⎦

⎫⎬
⎭ ,

C = i

2d

∑
aa ′b

μ̃(ia fb) × μ̃∗(ia ′ fb) · m̃(ia ′ ia),

D = 1

d

∑
ab

|μ̃(ia fb)|2. (7.9)

More general expressions for the oriented MCD as a function of excitation geometry
and polarization are given in reference 22 for samples that are initially isotropic. The
orientation factor approach described in reference 20 can be used to derive the natural or
magnetic circular dichroism of photoselected samples that are not initially isotropic—for
example, crystals, membranes, and stretched films.

7.7. APPLICATIONS OF NANOSECOND CHIROPTICAL SPECTROSCOPIES

The million-fold improvement in time resolution presented by near-null ellipsometric
(TRCD and TRMCD) and polarimetric (TRORD and TRMORD) techniques, compared
with conventional instrumentation, has opened up a range of rapid physicochemical and
biophysical processes for study [5–7, 10, 23, 24]. Fast TRCD/ORD methods have been
applied to the electronic excited states of inorganic complexes [25–29], RNA photochem-
istry [30], protein conformational changes in hemoglobin [7, 11, 31] and myoglobin [32,
33], folding reactions in cytochrome c, RNase A, and polypeptides [18, 34–41], and
the photocycles of phytochrome [42, 43], photoactive yellow protein [44], Phot1 LOV2
protein [45], and the visual pigment rhodopsin [46]. Applications of TRMCD/MORD
methods have included functional studies of mammalian cytochrome c oxidase [47, 48],
the bacterial oxidase cytochrome ba3 [49], cytochrome c3 [50], myoglobin [12, 51], and
hemoglobin [52, 53], as well as folding studies of cytochrome c [34, 54–56]. Data from
a selection of these studies are shown in Figure 7.7, and we discuss several of these
applications in more detail in the following subsections.

7.7.1. Inorganic Complexes

Nanosecond TRCD spectroscopy can be used to assign the electronic states of metal
complexes and examine their ligand–ligand electronic interactions, as has been demon-
strated in TRCD spectral studies of the excited states of ruthenium [27, 28], chromium
[25], and iron complexes [26]. Chiroptical information can be obtained for short-lived
states, as demonstrated in the latter study of iron(II) trisbipyridyl, which measured the
CD spectrum of an electronic excited state having an 800-ps lifetime.
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7.7.2. Protein Folding

Stopped-flow and rapid mixing far-UV CD studies of protein folding typically have been
unable to resolve the most rapid secondary structure formation processes in proteins,
as the so-called burst phase may proceed to completion within the ∼1 ms or longer
dead times characteristic of conventional approaches to time-resolved CD measurements
[57, 58]. The first CD study to resolve the submillisecond formation of helical structure
in a protein, cytochrome c, was reported by Chen et al. in 1998 [34]. That study, which
used near-null ellipsometric far-UV TRCD techniques and CO photolysis as a folding
trigger, was soon followed by a TRCD study that used photoreduction to trigger folding
in this protein [37]. The advantage of the latter method for initiating folding was that
it permitted the kinetics of α-helical structure formation to be followed over a much
longer time range (from microseconds to several hundred milliseconds) than was practi-
cable with the ligand photolysis method. The signal-to-noise ratio advantage of far-UV
TRORD for the detection of ultra-fast secondary structure processes has also been com-
bined with photoreduction triggering to explore the dependence of the submicrosecond
to microsecond “burst phase” dynamics on denaturant concentration (Figure 7.8) and the
mutation of key protein residues (Figures 7.7e and 7.7f) [35, 36, 39]. The results of these
cytochrome c TRCD/ORD folding studies, which exploited the redox and photochemical
properties of the heme moiety to achieve fast triggering, have been useful in address-
ing such questions as the simultaneity and cooperativity of ultrafast secondary structure
formation (time constant of ∼10−5 s to submicrosecond) with the early collapse phase
of unfolded chains observed in Trp fluorescence studies of small globular proteins like
cytochrome c [59].

What about far-UV TRCD/ORD studies of more general protein sequences that lack
a cofactor, such as the heme found in cytochrome c, that can provide the chemical
reactivity suitable for rapidly initiating secondary structural changes with light? The syn-
thetic addition of photoactive groups, such as azobenzenes, is one way to introduce such
a photochemical folding trigger that has been realized in nanosecond TRORD studies
of polypeptides [40, 41]. An even more general approach is to use the photophysics
of solvent heating by laser pulses. The absorption of brief IR laser pulses by the sol-
vent water can be used to generate temperature jumps of ∼10◦C that rapidly perturb
the folded/unfolded protein conformational equilibrium. However, as mentioned above,
because of the stray linear birefringence issues associated with the shock wave produced
by rapid solvent heating, this trigger method has been more conveniently coupled with
nanosecond near-null TRORD methods than with TRCD [18]. Folding of RNase A and
cytochrome c has been triggered by rapid heating and probed with TRORD using an
apparatus diagrammed in Figure 7.9. This work demonstrated the applicability of the
T-jump TRORD method to protein studies [18]. Currently, the kinetics of the α-helix to
β-sheet transition (which plays a key role in the folding of many functional proteins and
in the formation of the deadly β-sheet structure in many diseases) in poly-L-lysine is
being studied with this method. Preliminary data for this study are shown in Figure 7.7d.

The intrachain conformational diffusion rate of unfolded proteins is a fundamental
parameter in the dynamics of folding that appears explicitly in energy landscape models
and is implicit in the barrier crossing frequency of transition state theory descriptions of
folding rates. Despite its theoretical importance, it has been difficult to measure exper-
imentally, particularly for folding-competent protein sequences. However, one route to
measuring this parameter has been through near-null polarimetric TRMORD spectroscopy
of heme-residue recombination reactions in unfolded cytochrome c and Kramers–Kronig
transformation of the rotation data to TRMCD spectra [54, 55]. Being more sensitive to
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Figure 7.7. Results of protein folding and function studies using time-resolved polarization

spectroscopy. (a) Far-UV TRCD data of the phytochrome A photoactivation (not shown) and

photoreversion reactions [42, 43]. The spectra of the switch-off (Pr, gray line) and switch-

on (Pfr, white circles) forms of phytochrome are shown with the spectrum measured 1.5 μs

after photoinitiation of the reversion (Pfr → Pr) reaction. N-terminal α-helical unfolding during

photoreversion was assigned to a single exponential process with a time constant of 310 μs,

whereas folding of the N-terminal α-helix during photoactivation was slower (τ ∼ 113 ms). (b)

Near-UV TRCD spectra of MbCO following CO photolysis [33]. The data are shown as the difference

between the photoproduct CD spectra measured at 18 time delays from 220 ns to 10 ms after

photolysis and the ground-state MbCO CD spectrum. The temporal behavior of the CD data was

fit to two exponential processes with lifetimes of 110 μs and 1.5 ms. Together with near-UV

TROD results, the 110-μs near-UV TRCD component was proposed to reflect early motions of

tyrosines and/or nearby aromatic groups in response to an event that triggers ligand rebinding.

(c) Heme ligand dynamics during reduced cytochrome c folding (4.6 M guanidine hydrochloride

(GuHCl)) probed with TRMORD/MCD spectroscopy in the Soret region [54]. These 32 TRMCD

spectra were calculated from TRMORD signals that were measured from 330 ns to 25 ms after

CO-photodissociation-initiated folding of reduced cytochrome c. The time-dependent changes of

the MCD data were best described by four exponential processes (τ = 3, 50, 300, and 700 μs) and

suggested that the heme ligand kinetics during folding are better interpreted by a heterogeneous
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the nature of the heme ligand than ordinary absorption, MCD of the heme Soret bands
is better able to detect the influence of finite intrachain diffusion on the microsecond-
timescale kinetic competition between methionine and histidine residues for binding to
the heme site vacated by CO photolysis.

7.7.3. Protein Function

The photocycle of rhodopsin, which activates the firing of visual neurons, appears to
comprise a large number of distinct intermediates. However, the absorption spectra of
many of the intermediates are similar, which tends to obscure the structural basis of the
activation process. Turning to a more structure-sensitive chiroptical approach, an initial
(near-null ellipsometric) TRCD study of rhodopsin in the UV–vis spectral bands of its
N -retinylidene Schiff base prosthetic chromophore revealed a ∼10–100-μs timescale
spectral evolution that was not seen in ordinary absorption, a finding that could point to
a chromophore conformational change that is the earliest direct trigger for activation [46].

Early evidence from time-resolved absorption studies suggested that hemoglobin’s
R → T quaternary structural change happened about 20 μs after removal of the heme
ligands from the R state (typically accomplished by photolyzing the CO complex) [60].
However, near-UV TRCD spectroscopy of the aromatic residue bands revealed a much
faster spectral evolution with a spectral signature characteristic of quaternary structural
changes [31]. This finding suggested the existence of an early kinetic step along a
compound R → T pathway. The compound nature of the allosteric transition was then
confirmed by near-UV TRMCD spectroscopy. TRMCD showed that a Trp–Asp hydrogen

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 7.7. (Continued) versus homogeneous folding model. (d) T-jump TRORD studies of the

α-helix to β-sheet transition in poly-L-lysine (PLL). TRORD signals (thin black lines) measured at

500 ns, 4 μs, and 25 μs after a 7 K T-jump are compared to the equilibrium signal for α-helix

PLL (pH 12, thick black line) at 314 K. The equilibrium ORD signal for PLL measured at 321 K

(gray line) is about 67% of that for α-helix PLL. ORD data measured at 500 ns, 4 μs, and 25 μs

show a corresponding 0%, 20%, and 33% decrease in signal intensity. (e and f) TRORD studies

of reduced wild-type tuna heart cytochrome c folding (3.3 M GuHCl) in the far-UV region [35].

Rapid laser-induced reduction of the initially unfolded oxidized species (white circles) forms an

immediate photoproduct characterized by a reduced heme iron and unfolded protein. Because

the reduced state of cytochrome c favors the folded protein, folding is triggered, as observed

in the ORD signals measured at 200 ns, 25 μs, 10 ms, 100 ms, and 500 ms after photoreduction

(e). These signals represent only a few time points measured in this experiment and are shown

relative to the final folded reduced state of the protein (gray circles). Global kinetic analysis

of all the data (27 time delays) yields two exponential processes with time constants of 40 μs

and 185 ms. A comparison of the time-dependent formation of secondary structure in 3.3 M

GuHCl for wild-type tuna heart (gray line) and wild-type horse heart (black line, white circles)

[36] cytochromes c shows the absence of the fast folding phase [observed for the latter (see

Figure 7.8)] in the tuna protein (f). That there is a sequence dependence of the ultrafast helix

formation and that this fast-folding phase may be attributed to the formation of a molten

globule intermediate is supported by the kinetic traces measured for folding of the horse heart

variant H26QH33N (dotted line) [39] and of horse heart cytochrome c in the presence of sodium

dodecyl sulfate (SDS) (black line) [38], where folding is initiated from the molten globule state of

reduced cytochrome c.
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Figure 7.8. Far-UV TRORD studies of the submillisecond (fast phase) kinetics of wild-type horse

heart cytochrome c secondary structure folding in (a) 2.7 M, (b) 3 M, (c) 3.3 M, and (d) 4 M

guanidine hydrochloride (GuHCl) [36]. These studies, which coupled the rapid photoreduction

trigger method with time-resolved CD and ORD measurements, report noncanonical behavior

of the kinetics of reduced cytochrome c folding as a function of GuHCl. On increasing the

concentration of denaturant, the behavior of the ORD signal shows formation of secondary

structure only after about 5 μs in 2.7 M GuHCl versus formation of 20% secondary structure

within the instrument time resolution (τ < 400 ns) in 4 M GuHCl. The solid lines in (a)–(d) indicate

the signal intensity for the natively folded reduced cytochrome c. The results of these studies

suggested the formation of a submillisecond molten-globule-like intermediate during folding of

reduced cytochrome c.

bond, extending across the dimer–dimer interface and known to be a component of the
R → T structural shift that is crucial to allostery and cooperativity in hemoglobin, was
formed with a 2-μs time constant, much faster than the canonical R → T step observed
in absorption (Figure 7.10) [52].

7.8. OTHER APPROACHES TO FAST AND ULTRAFAST TRCD
MEASUREMENTS

In this section we briefly consider other approaches to fast time-resolved chiral spec-
troscopy. Those alternative approaches that use PEM methods tend to bracket in time
the nanosecond to microsecond time regime that is the focus of the near-null ellip-
sometric and polarimetric methods primarily discussed in this chapter. This is largely
because of the kilohertz resonant frequencies characteristic of photoelastic modulators.
At timescales much faster than nanoseconds, PEM frequencies are so relatively slow that
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Figure 7.9. A temperature-jump time-resolved optical rotatory dispersion apparatus. This T-jump TRORD system

uses a rapid-heater folding trigger that is generated using a stimulated Raman scattering approach coupled to

a small-volume TRORD detection method. The output of a Nd:YAG laser, which is protected from potentially

deleterious back-reflections with an optical isolater (thin-film polarizer, Faraday rotator, and wave plate), passes

through a 50:50 beam splitter to produce two 9-mm 1064-nm beams that are subsequently compressed in diameter

to about 4 mm with two separate 2:1 telescopes. After traveling through two D2-filled Raman shifters, the 1560-nm

wavelengths are selected and directed with 1560-nm high reflector mirrors to the sample along counterpropagating

paths. The diameters of the 1560-nm beams are controlled with a second set of telescopes for optimal overlap with

the probe beam. The ∼300-μm probe beam in this small-volume TRORD system is a modification of the TRORD system

that is described in Figure 7.4, wherein two UV-enhanced spherical mirrors are used to focus the probe beam into

the sample.

they do not interfere with time-resolved measurements. High repetition-rate picosecond
and femtosecond lasers can then be synchronized to the PEM frequency to produce cir-
cularly polarized probe pulses whose differential absorption by a dichroic sample can be
extensively signal averaged in a manner that is broadly similar to that used in conven-
tional PEM-based CD spectroscopy. On the other hand, at timescales much slower than
tens of microseconds, PEM frequencies can be fast enough that PEM-based detection
methods are again applicable and are typically implemented by using a conventional CD
instrument and rapid microfluidic mixing of reactants.

Finally, we will end this chapter by mentioning recent variations of CD ellipsometry
that have been applied to ultrashort timescales.
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Figure 7.10. An early step in the R → T quaternary transition of hemoglobin detected by TRMCD

spectroscopy of the tryptophan bands after photolysis of the CO complex. (a) Near-UV TRMCD

spectra collected at delay times ranging from 63 ns to 25 ms after photolysis. (b) A plot of the

near-UV Trp band position versus time shows a red shift at 2 μs that corresponds to formation of

a Trp–Asp hydrogen bond between the two dimers of the Hb tetramer. (Adapted from reference

52 with permission from the American Chemical Society.) (See insert for color representation of

the figure.)

7.8.1. PEM-Based Picosecond CD and MCD

Simon and co-workers first implemented picosecond CD detection by using a 1-kHz PEM
synchronized to two pulsed dye lasers tunable from 560 to 950 nm [8, 9, 23, 61]. One
of the laser beams was passed through a polarizer and the PEM to produce alternating
left- and right-circularly polarized probe light, while the second beam was passed though
a variable delay line before exciting the sample. Output from the photomultiplier tube
(PMT) monitoring the probe beam was fed into a lock-in amplifier referenced to the PEM
frequency. Additionally, passing the pump beam though a depolarizer and spinning half-
waveplate was found to be necessary to eliminate photoselection-induced linear dichroism
artifacts in the CD signal measured by the lock-in amplifier. Also, a servo-controlled
neutral density filter placed in the probe beam was used to maintain a constant time-
averaged output voltage from the PMT, minimizing distortion of the CD signal that might
be caused by nonlinearity of the PMT response when large changes in optical density
occur in the sample. This approach has been applied to ultrafast processes in myoglobin
and in photosynthetic reaction centers [8, 62] and has been extended to picosecond MCD
measurements [63].

7.8.2. Rapid Mixing

The mixing dead-time characteristic of conventional stopped-flow instruments (several
milliseconds) can be reduced by an order of magnitude using microfluidic mixing tech-
niques. For instance, an ultrafast solution mixer (for denaturant dilution) was coupled
with a commercial CD dichrograph to obtain time-resolved measurements of cytochrome
c folding with ∼400-μs dead time [58]. One caveat to this approach is that strain
birefringence caused by high flow pressures may distort the CD signal, as reported in
reference 58.
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7.8.3. Ultrafast Ellipsometric CD

The near-null polarimetric and ellipsometric techniques for nanosecond TRORD and
TRCD spectroscopy presented above can in principle be extended to ultrafast measure-
ments by replacing the microsecond flashlamp as a probe source with an ultrafast white
light continuum pulse. Indeed, both single- and multi-wavelength approaches to ultra-
fast chiroptical spectroscopy using variations of these near-null techniques have been
developed.

Hache has described an implementation of ultrafast near-null ellipsometric TRCD
that uses 150-femtosecond laser pulses for the pump and probe beams, the former being
mechanically chopped and the latter being tunable for single-wavelength CD measure-
ments over the wavelength ranges 230–350 and 400–500 nm [64–66]. This approach
uses a Babinet–Soleil compensator as a variable source of reference birefringence (in
place of a strain plate). The light intensity transmitted between crossed polarizers is ana-
lyzed to second order as a function of the reference birefringence in order to determine
the sample CD (as opposed to the first-order analysis described above for ns TRCD).
This approach relies on detecting a small shift between two intensity versus retardation
parabolas, the first measured by time averaging the transmitted light intensity over the
pump chopping frequency and the second measured by a lock-in amplifier referenced to
the pump chopping frequency, in order to determine the pump-induced change in sample
CD. This parabolic analysis approach is most useful when the pump-induced absorption
changes in the sample are not too large. It has been applied to the excited states of
ruthenium tris(bipyridyl) and tris(phenanthroline), and the dynamics of conformational
change in photoexcited binaphthol, photolyzed carboxymyoglobin, and a photoreceptor
protein thought to be involved in light avoidance behavior in the protozoan Blepharisma
japonicum [67–71].

In a recent multi-wavelength implementation of ultrafast near-null TRORD and
TRCD spectroscopy, Mangot et al. focused 150-femtosecond pulses from a 5-kHz
Ti:sapphire laser into a CaF2 crystal to obtain a supercontinuum probe source extending
from 350 to 800 nm [72]. Using near-null measurements of the light intensity
transmitted by a sample placed between crossed polarizers, the TRORD of the sample
after excitation by a femtosecond laser pump pulse was obtained by analyzing the
polarizer–analyzer off-rotation angle dependence of the transmitted intensities to second
order (similar to the parabolic CD analysis approach of Hache), rather than to first order
as described above for nanosecond near-null polarimetric measurements. This apparatus
can be modified for multi-wavelength TRCD measurements by placing a broadband
quarter-wave plate before the analyzing polarizer.
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FEMTOSECOND INFRARED

CIRCULAR DICHROISM
AND OPTICAL ROTATORY DISPERSION

Hanju Rhee and Minhaeng Cho

8.1. INTRODUCTION

The property of light propagating through a medium differs from that through a vacuum,
because its velocity and intensity are modulated due to the frequency-dependent refrac-
tive index n(ω) and absorption coefficient κ(ω) of the medium, respectively, which
reflect the intrinsic optical properties of the medium. Consequently, frequency-dependent
phase retardation and attenuation processes occur simultaneously [1]. In the case
that the optical medium is spatially isotropic and contains no chiral molecules, these
quantities at a given frequency remain the same irrespective of radiation polarization
state, meaning that the transmitted light polarization state does not change by the
medium. However, for a solution including chiral molecules, this is not the case for
circular polarization (left, LCP; right, RCP) because the parameters, n(ω) and κ(ω),
leading the dispersion and absorption processes vary with its handedness; that is,
we have nL(ω) �= nR(ω) and κL(ω) �= κR(ω) [2]. The circular dichroism (CD) and
circular birefringence (CB), referred to as the optical activity , are directly related to
the frequency-dependent differential absorption coefficient, �κ(ω) = κL(ω) − κR(ω),
and the differential refractive index, �n(ω) = nL(ω) − nR(ω), respectively. Throughout
this chapter, we will use the terms optical rotatory dispersion (ORD) and circular
birefringence (CB) together when denoting �n because the optical rotation of linearly
polarized light is the actual observable, which is solely related to the CB.

These chiroptical properties are manifested by almost all natural products and drugs,
and they are highly sensitive to their conformations and absolute configurations. The

Comprehensive Chiroptical Spectroscopy, Volume 1: Instrumentation, Methodologies, and Theoretical
Simulations, First Edition. Edited by N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody.
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CD or ORD spectroscopy has therefore been extensively used to elucidate secondary
structures of biomolecules such as polypeptides and proteins and to determine absolute
configurations of chiral drugs dissolved in condensed phases or bound to target pro-
teins [2]. In principle, κ(ω) and n(ω) are related to each other via the Kramers–Kronig
relations [3–5], but in practice, the two observables, CD and ORD spectra, should be
measured independently due to the limitation in the experimentally achievable frequency
range. Before the 1990s, the CD spectroscopy was more widely used than the ORD mea-
surement in studying structural details of chiral molecules, which was not only because
the measurement is comparatively easy but also because direct comparisons between
experimental and quantum mechanically calculated results were possible. In particular,
the electronic CD spectrum was interpreted using sector rules and exciton coupling mod-
els. The conventional CD spectroscopy relies on a differential intensity measurement
technique, where the absorbance difference of LCP and RCP lights by the chiral sample
is selectively measured. In the case of the vibrational CD (VCD) [6, 7], which is the
vibrational analog of electronic CD, the chiral susceptibilities for nuclear vibrations are
far much smaller than the corresponding signals in the UV–vis range, which originate
from the angular motions of electronic degrees of freedom. Consequently, it is by no
means an easy measurement because one has to differentiate such a weak effect by using
the differential measurement scheme with relatively largely fluctuating incident IR beams.
This is why it still takes a long time (typically a few hours) to acquire a statistically
meaningful VCD spectrum with commercially available VCD spectrometers.

Despite the successes of the conventional VCD measurement methods, they still pose
certain limitations that prevented further methodological advancements for a wide range
of applications including time-resolved VCD studies of biomolecules. Understanding this
difficulty starts from realizing that the vibrational response of chiral molecule is related
to helical oscillations of charged particles that are associated with nuclear motions in
a given chiral molecule. Such helical oscillations can be decomposed into angular and
linear components representing chiral and achiral effects, respectively. A major difficulty
of the conventional differential absorbance (�A) measurement technique is associated
with the fact that such angular components (magnetic dipole responses) of the nuclear
motions are extremely small in comparison to the linear components (electric dipole
responses). Consequently, the VCD (measuring �A) signal is masked by the strong achi-
ral IR absorption signal (�A/A = 10−4 –10−6), which is in this case a huge fluctuating
achiral background noise. Recently, it has been shown that the electric field measure-
ment [8–11] and calculation [12, 13] methods based on a time-domain characterization
of infrared optical activity (IOA) are alternative and promising approaches overcoming
some of the problems hampering the differential intensity measurement and gas-phase
ab initio calculation methods, respectively.

To provide an explanation on the underlying principles of the electric field
approaches, we find it useful to consider the fundamental difference between quantum
mechanical and classical mechanical descriptions of particle dynamics, which is essen-
tially the phase factor of quantum mechanical wavefunction [14]. Phase information
is lost when the absolute square of the wavefunction is experimentally measured.
Similarly, a free-induction-decay (FID) field E generated by the linear polarization of a
given material interacting with an incident radiation is a complex function containing an
additional time- and space-dependent phase factor, exp(iφ), compared to the incident
electric field [2]. Conventional circular dichroism is usually based on an intensity
measurement technique so that the intensities |E|2 of the transmitted fields when a chiral
solution sample interacts with LCP and RCP radiations are separately measured. Note
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that the imaginary part of the phase factor is responsible for the differential absorbance
of chiral molecules for LCP and RCP radiations, whereas its real part is associated with
the optical rotation of an incident linearly polarized radiation. Direct characterization of
such a complex phase factor thus requires special measurement methods. Recently, it was
shown that a combination of cross-polarization analyzer and heterodyned interferometric
detection method is capable of measuring both the phase and the amplitude of the
IOA FID field E instead of |E|2 with respect to the incident radiation [8–11]. We shall
refer these measurement and calculation methods to as electric field approaches. In this
chapter, we will provide discussions on both theoretical and experimental aspects of the
time-domain IOA of chiral molecules in condensed phases.

8.2. TIME CORRELATION FUNCTION THEORY

The radiation–matter interaction Hamiltonian in the minimal coupling scheme is given by
the inner product of the vector potential of the electromagnetic field and the momentum
operator of charged particles [15]. Then, the multipolar expansion form of the interaction
Hamiltonian, which is valid up to the first order in the wavevector k, is given as [8, 12,
13, 16, 17]

HI = −μ · E(r,t) − M · B(r,t) − (1/2)Q : ∇E(r,t). (8.1)

Here, E and B are the electric and magnetic fields, respectively. μ, M, and Q are the
electric dipole, magnetic dipole, and electric quadrupole operators, respectively. Using
the linear response theory, one can find that the linear polarization is given as [8]

P(1)(r,t) =< μρ(1)(r,t)> + < (M × k̂)ρ(1)(r,t)> −(i/2) < (k · Q)ρ(1)(r,t)>, (8.2)

where k̂ ≡ k/|k| and ρ(1)(r, t) is the first-order perturbation-expanded density operator
with respect to the above radiation–matter interaction Hamiltonian HI in Eq. (8.1). Then,
the linear polarization in Eq. (8.2) can be rewritten in terms of the corresponding linear
response functions [16]:

P(1)(r, t) = ρ0

∞∫
0

dτ {φμμ(τ) + φμM (τ ) + (i/2)φμQ (τ ) + φM μ(τ)

− (i/2)φQμ(τ)} · eE (r, t − τ), (8.3)

where e is the unit vector in the polarization direction of the external electric field and ρ0

is the number density N/V . The linear response functions in Eq. (8.3) are defined as [16]

φμμ(τ) ≡ i

�
θ(τ ) < [μ(τ ), μ(0)]ρeq >,

φμM (τ ) ≡ i

�
θ(τ ) < [μ(τ ), M(0) × k̂]ρeq >,

φμQ (τ ) ≡ i

�
θ(τ ) < [μ(τ ), k · Q(0)]ρeq >,

φM μ(τ) ≡ i

�
θ(τ ) < [M(τ ) × k̂, μ(0)]ρeq >,

φQμ(τ) ≡ i

�
θ(τ ) < [k · Q(τ ), μ(0)]ρeq > . (8.4)
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Here, < . . . > denotes the trace over the bath states and ρeq is the thermal equilibrium
density operator. The first term on the right-hand side of Eq. (8.3), which represents the
electric dipole response against the external electric field, is typically two to three orders
of magnitude larger than the other terms for electronic transition or four to six orders
for vibrational transition.

Without loss of generality, it is assumed that the incident field propagates along the
z axis in a space-fixed frame,—that is, k = (ω0/c)ẑ, where ω0 is the center frequency
of the electric field—and that e = ŷ. The rotationally averaged y component of P(1)(t),
which is the temporal amplitude of P(1)(r, t), is then found to be

P (1)
y (t) =

∞∫
0

dτχμμ(τ)E (t − τ), (8.5)

where

χμμ(t) ≡ ρ0

(
i

�

)
〈[μy (t), μy (0)]ρeq 〉. (8.6)

In this case that the y component of P(1)(t), which is parallel to the polarization direction
of the incident beam, is measured, the magnetic dipole and electric quadrupole contri-
butions to the linear polarization in Eq. (8.3) vanish. From the electric dipole–electric
dipole response function given in Eq. (8.6), the linear susceptibility in frequency domain
is defined as

χ(ω) =
∞∫

0

dtχμμ(t)eiωt = χ ′(ω) + iχ ′′(ω). (8.7)

The imaginary part of χ(ω), denoted as χ ′′(ω), can be rewritten as

χ ′′(ω) = πρ0

�

∑
a ,b

P(a)|μab |2[δ(ω − ωba) − δ(ω + ωba)]

= πρ0

�
(1 − e−β�ω)

∑
a ,b

P(a)|μab |2δ(ω − ωba), (8.8)

where P(a) is the population of the initial state |a〉 and μab is the transition dipole
moment defined as μab = 〈a|μy (0)|b〉. β = 1/kB T where kB is the Boltzmann constant.
The absorption lineshape function g(ω) in an isotropic medium is then given as

g(ω) = 3�ε′′(ω)

4π2(1 − e−β�ω)
= ρ0

2π

∞∫
−∞

dteiωt 〈μ(t) · μ(0)〉, (8.9)

where the imaginary part of the dielectric constant is related to the imaginary part of the
susceptibility as ε′′(ω) = 4πχ ′′(ω).

We next consider the linear optical activity such as circular dichroism and circu-
lar birefringence. When the incident radiation is circularly polarized, the unit vector e
is given as eL = (x̂ + i ŷ)/

√
2 and eR = (x̂ − i ŷ)/

√
2 for the left- and right-circularly

polarized lights, respectively. The difference polarization, which is related to the linear
optical activity, is defined as �P(r, t) = PL(r, t) − PR(r, t), where PL,R(r, t) is the linear
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polarization induced by the left- or right-circularly polarized light. Instead of considering
the y component of these linear polarizations, we now consider the rotationally averaged
x components of the linear polarizations PL(r, t) and PR(r, t) that are found to be

PL
x (r, t) = 1√

2

∫ ∞

0
dτ {χμμ(τ) + χμM (τ ) + χM μ(τ)}E (r, t − τ), (8.10)

PR
x (r, t) = 1√

2

∫ ∞

0
dτ {χμμ(τ) − χμM (τ ) − χM μ(τ)}E (r, t − τ), (8.11)

where

χμM (t) ≡ ρ0

(
i

�

)
〈[μx (t), −iMx (0)]ρeq 〉, (8.12)

χM μ(t) ≡ ρ0

(
i

�

)
〈[Mx (t), iμx (0)]ρeq 〉. (8.13)

Note that the y components of PL(r, t) and PR(r, t) are the same, so that the y component
of the difference polarization �P(r, t) is zero. From Eqs. (8.10) and (8.11), we find that
the rotationally averaged x component of the difference polarization is

�Px (t) = 1√
2

∞∫
0

dτ�χ(t − τ)E (τ ), (8.14)

where the linear optical activity susceptibility, �χ(t)[≡ χL(t) − χR(t)], is related to the
electric dipole–magnetic dipole response functions in Eqs. (8.12) and (8.13) as

�χ(t) ≡ 2{χμM (t) + χM μ(t)}, (8.15)

Note that the electric dipole–electric dipole and the electric dipole–electric quadrupole
responses do not contribute to �Px (t) because they all vanish after rotational averaging
of the corresponding second- and third-rank tensorial response functions over randomly
oriented chiral molecules in solutions. From Eq. (8.15), one can obtain the linear optical
activity susceptibility in frequency domain,

�χ(ω) = ρ0

�

∞∫
0

dt eiωt {〈[μx (t), Mx (0)]ρeq 〉 − 〈[Mx (t), μx (0)]ρeq 〉}

= ρ0

�
(1 − e−β�ω)

∑
a ,b

P(a)(μabMba − Mabμba)

∞∫
0

dt ei (ω−ωba )t , (8.16)

where μab = 〈a|μx (0)|b〉 and Mab = 〈a|Mx (0)|b〉. Using the relationship
∫ ∞
−∞ dt eiωt

〈A(t)B(0)〉 = (∫ ∞
−∞ dt eiωt 〈B(t)A(0)〉)∗

, the lineshape function of the circular dichroism
�g(ω) in an isotropic medium is then given as

�g(ω) = 3��ε′′(ω)

4π2(1 − e−β�ω)
= ρ0

π
Im

∞∫
−∞

dt eiωt 〈μ(t) · M(0)〉. (8.17)
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This result shows that the cross-correlation function of electric dipole and magnetic dipole
is directly related to the CD spectrum via Fourier transformation. Consequently, a direct
calculation of the cross-correlation function in time is enough to obtain the CD spectrum.

8.3. DIFFERENTIAL INTENSITY MEASUREMENT METHOD

In this section, we present a brief discussion on the conventional differential inten-
sity measurement of VCD with LCP and RCP radiations, for the sake of comparison.
Figure 8.1 depicts the differential intensity measurement scheme. An equal amount of
LCP or RCP beam (I0) is alternately created by a phase-retarder (PR) and injected into
the chiral sample (CS). Then, each intensity (IL,R) attenuated by the optical sample is
separately recorded at spectrometer. By taking the difference of their logarithmic scales,
the CD spectrum (�A) is finally obtained as

�A = AL − AR = − log

(
IL

I0

)
+ log

(
IR

I0

)
= log

(
IR

IL

)
. (8.18)

The sign and intensity of �A are determined by the relative magnitudes of IL and IR

at a given frequency. With �I = IL − IR and I = (IL + IR)/2, �A is approximately given
by −�I /(2.303 × I ). When the absorption intensity of LCP or RCP beam is measured,
most of absorbed photons correspond to the achiral noise originating from the electric
dipole free-induction-decay field. These extra photons act as a largely fluctuating noise
along the light source fluctuation, which in turn increase shot noise and deteriorate the
signal-to-noise ratio significantly. In the case of the VCD, where �A value is typically
about 10−4 –10−5 at absorbance A ∼ 1, even if the incident light is fairly stable and its
fluctuation amplitude level is just about 0.1% of its average intensity, it is still very diffi-
cult to discriminate such a weak chiral signal (�I ) from the large fluctuating background
noise (I ). This is a fundamental problem of the differential measurement method. In the
following section, we will show an alternative time-domain approach based on a spectral
interferometry that is capable of overcoming some of these difficulties.

8.4. PHASE-AND-AMPLITUDE MEASUREMENT
OF IR OPTICAL ACTIVITY

The governing principles of the electric field measurement method can be understood
from an explanation of the nondifferential amplitude-level detection scheme, where the

LCP RCPIR beam

CSPR

I0

IL IR

I0
(+ l/4) (– l/4)

(LP)

Detector

ΔI(w) = IL(w) – IR (w) 

Figure 8.1. Conventional differential VCD intensity measurement scheme. PR, phase-retarder;

CS, chiral sample. The PR converts an incident IR LP beam into LCP and RCP ones by alternately

controlling the phase retardation (±λ/4). Their attenuated intensity spectra (IL,R(ω)) by the CS are

separately measured, and their difference (�I(ω)) corresponds to the VCD spectrum.
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IOA field is isolated from the achiral background field and its handedness (phase) and
magnitude are subsequently characterized. The transmitted electric field through the cross-
polarization analyzer accounts for the chirospecific IR response of chiral solution sample
and forms a wave packet of IOA FID field carrying complete IOA (VCD and VORD)
information over the whole frequency range of the incident IR pulse spectrum. Sec-
ondly, direct phase-and-amplitude measurement of the IOA FID field can be achieved by
employing a Fourier-transform spectral interferometry (FTSI) [18–25], which is a useful
method for characterizing an unknown weak electric field in terms of its spectral phase
and amplitude with respect to a reference field called local oscillator and has been widely
used in heterodyne-detected two-dimensional (2D) optical spectroscopy [21–24]. Such
a heterodyne detection of the IOA FID using a modified Mach–Zehnder interferometer,
where a time delay between the signal and a local oscillator is experimentally controlled,
simultaneously provides both VCD and VORD spectra.

8.4.1. Cross-Polarization Detection (CPD) Technique: Enhancement
of Chiral Selectivity

The main problems of the conventional intensity measurement method are, as briefly men-
tioned, that (1) the huge achiral background noise is unnecessarily detected and (2) the
differential intensity measurement scheme thus needed to remove such achiral noise is
very vulnerable to the light intensity fluctuation. The electric field measurement approach
based on a cross-polarization detection (CPD) technique enables us to overcome those
problems and to significantly enhance the chiral selectivity. Let us first consider chiral
aspects of molecules and radiations. When equal amounts of left- and right-handed enan-
tiomers of a chiral molecule are mixed in solution, such solutions are called racemate that
is macroscopically nonchiral due to a homogeneous mixing of the two forms and therefore
optically inactive. Similarly, two LCP and RCP fields with opposite handedness proper-
ties can be combined with equal amount to form a linearly polarized (LP) light field that
is nonchiral much like a racemate. If the LP beam transmits through a chiral medium with
excess of one enantiomer, its polarization state becomes elliptically polarized by the dif-
ferential interactions between the two opposite field components, LCP and RCP, with the
chiral molecules. Such field chiralization is observed through the VCD and VORD effects.

Figure 8.2a describes the basic concept of the CPD technique and provides a sim-
plified sketch of detailed chiroptical polarization changes involved. A linear polarizer
(P1) ensures that an incident IR field becomes a vertical LP beam (= 50% LCP + 50%
RCP). While traveling through the chiral sample, each opposite-handed field component
experiences different chiroptical responses so that one of the two components is more
attenuated and delayed with respect to the other, depending on the molecular chirality.
As a result, the incident LP beam is transformed into an elliptically polarized (EP) one
whose major axis is a little bit rotated left or right from the vertical axis. With a close
inspection of the transmitted EP beam, it becomes possible to decompose it into three
different polarization components: vertical LP(V), horizontal LP(H), and circular polar-
ization (CP). The LP(V), which accounts for the achiral electric dipole response signal,
is completely removed by another linear polarizer (P2) placed after the sample cell in an
ideal case, where its optic axis is perpendicular to that of P1. In contrast, the LP(H) and
CP components that are created by the chiral responses, �n (VORD) and �κ (VCD),
respectively, are allowed to transmit through the P2.

The phase relationship between the polarization components will be characterized
in a subsequent measurement procedure. The LP(H) component (VORD) has 0◦ or 180◦
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Figure 8.2. Cross-polarization detection (CPD) scheme. P1 and P2, linear polarizers; CS, chiral

sample. (a) Monochromatic chiroptical response. The LP beam by the P1 (vertical) is a linear

combination of an equal amount of LCP and RCP beams. After passing through the CS, unequal

absorption (�κ, VCD) and phase shift (�n, VORD) of the two oppositely handed field components

lead to a linear-to-elliptical polarization change and at the same time its optical rotation,

respectively. The P2 (horizontal) is used to eliminate the vertical LP (achiral) component and

allows only the CP (VCD) and the horizontal LP (VORD) components to be transmitted through

it. It should be noted that a phase relationship between the VCD and VORD signal fields

is in-quadrature (±π /2). (b) Impulsive chiroptical response. A femtosecond IR pulse can be

viewed as a collection of multiple longitudinal modes of the laser. The individual frequency

components (ω1, ω2, ω3, . . .) experience different chiroptical responses (VCD/VORD). As a result,

each horizontally emitted electric field (E⊥) has different amplitude and relative phase (�r). All

the phase-and-amplitude modulated field components are superimposed to form a chiral wave

packet called IOA FID.

phase shift with respect to the all electric dipole polarization, depending on whether the
optical rotation of EP is actually left or right. On the other hand, the horizontal component
of LCP or RCP (VCD) is phase-shifted by either +90◦ or −90◦. Therefore, the VCD and
VORD components in the transmitted field also have a well-defined in-quadrature phase
relationship between the two, since the optical rotation is negligibly small in general.
If a proper IR electric field measurement technique that is phase-sensitive is developed,
the handedness and intensity of VCD and VORD signals can be simultaneously obtained
by directly measuring the phase (handedness) and amplitude (intensity) of the chiral IR
electric field without relying on a differential intensity measurement method. This is
essentially the basis of the enhanced chiral selectivity achievable in the present electric
field approach.
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8.4.2. Time-Domain IR Optical Activity Free Induction Decay

For one’s better understanding, we have so far simply focused on the monochromatic
chiroptical response regarding just a single frequency field component. We shall now
consider its impulsive characteristics induced by a femtosecond IR pulse that in fact
has a broad range of frequency components (FWHM ∼200 cm−1). The mode-locked
femtosecond IR pulse can be regarded as a superposition state of longitudinal modes
(sine waves) from the laser cavity, whose amplitude distribution is determined by Fourier
transformed function of the pulse shape and whose relative phases are all zero. While the
incident femtosecond LP pulse transmits through the chiral medium, the individual field
components experience frequency-dependent IR responses, which can be divided into the
achiral [n(ω), κ(ω)] and chiral [�n(ω), �κ(ω)] ones. Then, its phase (dispersion) and
amplitude (absorption) are also frequency-dependently modulated and their polarization
states are correspondingly altered, depending on a specific chiral property of a target
chiral molecule. Figure 8.2b depicts a specific case where three IR frequency components
(ω1, ω2, ω3) chosen in the IR pulse spectrum have different polarization states. These
differently modulated waves are superimposed to form an IR wave packet in time domain.
We have referred to it as IR optical activity free induction decay (IOA FID) because it
contains the whole linear chiral responses.

To establish the relationship between the generated electric field (experimental
observables) and the underlying chiroptical response (�χ), let us consider the CPD
configuration and the theory described in Section 8.2. With the CPD scheme, the unit
vector of the incident beam is given as e = ŷ in Eq. (8.3) and the rotationally averaged
x component of the linear polarization PCPD

x (t) over the ensemble of randomly oriented
chiral molecules in solution is then given as

PCPD
x (t) = −i

∫ ∞

0
dτ {χμM (τ ) + χM μ(τ)}E (t − τ)

= − i

2

∫ ∞

0
dτ�χ(τ)E (t − τ). (8.19)

From this, we find that PCPD
x (t) is essentially the same as the difference polarization,

�Px (t), in Eq. (8.14) except for the constant factor and that the CPD geometry enables
direct measurement of the chiral response without relying on the conventional differential
measurement scheme.

In practice, however, the experimentally measured quantity is not the polarization
itself but the electric field E(t). For the x and y components of the emitted signal electric
field at position z inside the sample, Ex (z , t) and Ey (z , t), we found that the Maxwell
equation is given as [8]

∇2Ex (z , t) − 1

c2

∂2

∂t2
Ex (z , t) = 4π

c2

∂2

∂t2
PCPD

x (z , t), (8.20)

where

PCPD
x (z , t) = − i

2

∫ ∞

0
dτ�χ(τ)Ey (z , t − τ) +

∫ ∞

0
dτχμμ(τ)Ex (z , t − τ). (8.21)

Note that PCPD
x (z , t), determined by both Ex (z , t) and Ey (z , t), acts as the source gen-

erating Ex (z , t). By solving this equation in the frequency domain, it was found that the
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x component of the emitted electric field (i.e., IOA FID) after the sample length L is
given as

E⊥(ω) =
(

πωL

cn(ω)

)
�χ(ω)E||(ω), (8.22)

where n(ω) and c is the refractive index and speed of light, respectively. We will hereafter
denote Ex (ω) and Ey (ω) as E⊥(ω) and E||(ω), respectively, because Ex (ω) and Ey (ω)

are the perpendicular and parallel components, respectively, with respect to the incident
electric field polarization direction (y axis). The complex function �χ(ω) corresponds
to the linear chiral susceptibility in frequency domain. This clearly shows that once the
phases and amplitudes of both E⊥(ω) and E||(ω) are measured in the frequency domain,
the linear optical activity susceptibility �χ(ω) whose imaginary and real parts correspond
to the VCD and VORD spectra, respectively, can be fully characterized.

8.4.3. Fourier-Transform Spectral Interferometry of IOA FID

A simple way to characterize the spectral phase-and-amplitude information would be to
record the FID signal in the time domain and then to Fourier-transform it into a com-
plex spectrum. In pulsed NMR spectroscopy, a RF-pulse-induced FID signal is relatively
slowly varying because its frequency is in the range of a few hundred megahertz. There-
fore, its time-domain signal variation can be directly measured with high-speed detector
and electronics currently available. However, this is not the case for much faster optical
signal fields such as the present IOA FID. Therefore, to measure the highly oscillating
IOA FID field, we need to use an interferometric detection technique.

Fourier-transform spectral interferometry (FTSI) has proven to be of exceptional use
to precisely determine both the phase and amplitude of an unknown optical field and has
been widely used in linear and nonlinear spectroscopy [18–25]. The prominent features
of the FTSI method are that the heterodyned interferometric detection is achieved in the
frequency domain and that the resultant spectral interferogram is analyzed using a well-
established inverse-FT-and-FT procedure [18]. To obtain phase information, the former
is necessary; note that such information is lost in the conventional FT-IR spectroscopy
that is based on the homodyned interferometric detection. Figure 8.3 depicts the spectral
interferometric heterodyned detection scheme. A reference field called local oscillator
whose phase and amplitude are well-defined is combined with the signal field, and the
interference spectrum called the spectral interferogram is recorded. In contrast to the time-
domain interferometry requiring a large number of data points with high time accuracy, a
spectral interferogram between the pulsed signal (Es ) and local oscillator (ELO ) fields is
measured in the frequency domain at a fixed time delay (τd ) without any time scanning as

S het (ω) = 2Re
[
Es(ω)E ∗

LO (ω) exp(iωτd )
]
. (8.23)

Since the measured spectral interferogram S het (ω) itself is a real function, it does
not directly provide spectral phase information of Es(ω). The standard inverse-FT
(F−1) and FT (F ) transformation enables one to convert such real function into its
complex form, and its stepwise procedure follows as (1) inverse FT of S het (ω) →
F−1{S het (ω)}, (2) multiplying the time-domain signal F−1{S het (ω)} by a Heavyside
step function θ(t) → θ(t)F−1{S het (ω)}, and (3) FT of the positive time-domain



FEMTOSECOND INFRARED CIRCULAR DICHROISM AND OPTICAL ROTATORY DISPERSION 213

spectrometer

0

In
te

ns
ity

Time

Sket (ω)  = 2 Re [EsE*LO exp(iwtd)]

Sket (w)

F −1 F

Es ELO

τd

θ (t ) F −1 {Shet (w)}

phase P
hase 

A
m

pl
itu

de
Frequency

amplitude

Es(w)
2E*LO exp(iωτd)

F [θ(t)F −1 {Sket (w)}]
=

In
te

ns
ity

Frequency(fixed)

In
te

ns
ity

Frequency

(a)  Frequency - Domain Heterodyned Interferometry

(b)  Inverse-FT-and-FT Procedure
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signal → F [θ(t)F−1{S het (ω)}]. Therefore, the complex electric field Es(ω) can be
retrieved as

Es(ω) = F
[
θ(t)F−1{S het (ω)}]

2E ∗
LO (ω) exp(iωτd )

. (8.24)

Here, ELO (ω) and τd should be predetermined to obtain the phase and amplitude of
Es(ω) with Eq. (8.24).

In principle, a complete characterization of the local oscillator field ELO (ω) is pos-
sible by using well-known nonlinear techniques such as FROG [26], SPIDER [27], and
so on. However, such field characterization unfortunately requires an additional compli-
cated measurement equipment, which is by no means an easy task. Furthermore, a precise
determination of τd within an optical period (less than a few femtoseconds) is still quite
a challenging problem. We found that such difficulties can be overcome using the linear
relationship between the complex chiral susceptibility �χ(ω) and the ratio of the chiral
field (E⊥(ω)) to the achiral field (E||(ω)), that is, �χ(ω) ∝ E⊥(ω)/E||(ω). This requires
measurements of both E⊥(ω) and E||(ω) by controlling the second linear polarizer P2
in Figure 8.2. From Eq.(8.24), they can be, in practice, obtained by using the following
equation,

E⊥,||(ω) = F [θ(t)F−1{S het
⊥,||(ω)}]

2E ∗
LO (ω) exp(iωτd )

, (8.25)

where S het
⊥ (ω) and S het

|| (ω) are the perpendicular- and parallel-detected spectral interfer-
ograms. Here, for example, the perpendicular detection means that the direction of the
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heterodyne-detected signal field is perpendicular to that of the incident beam. Since both
electric fields E⊥,||(ω) have common factor in the denominator of Eq. (8.25), the ratio
E⊥(ω)/E||(ω) does not depend on the details of ELO (ω) and τd . However, still suffi-
ciently good phase stability of the entire setup during the measurements of S het

⊥ (ω) and
S het

|| (ω) is required. Finally, combining these results, we find that the chiral susceptibility
is experimentally measured as

�χ(ω) ∝ F [θ(t)F−1{S het
⊥ (ω)}]

F [θ(t)F−1{S het
|| (ω)}] . (8.26)

This clearly demonstrates that the present method is capable of characterizing the complex
�χ(ω) without precise characterizations of ELO (ω) and τd .

8.5. ACTIVE- AND SELF-HETERODYNE DETECTIONS
OF IR OPTICAL ACTIVITY

The electric field approach discussed here can be viewed as an active heterodyne-detection
technique because the signal field itself is deliberately allowed to interfere with an addi-
tional reference field. Here, the cross-polarization geometry for selective elimination of
the achiral background field was one of the important elements for the success of this
measurement method. In this regard, it should be mentioned that the so-called ellipsomet-
ric technique using a quasi-null geometry with two linear polarizers [2, 28, 29], which
was pioneered by Kliger and co-workers, shares a very similar optical setup (Figure 8.4).
Much like the cross-polarization scheme, two crossed linear polarizers were used. How-
ever, instead of a linearly polarized radiation, an elliptically polarized beam with vertical
major axis (y axis), which is produced by a phase-retarder, was used to generate an
electronic OA FID field in visible frequency domain. It is then detected by allowing its
interference with the residual horizontal (parallel to the x axis) component of the incident
elliptically polarized beam; note that an elliptically polarized radiation can be described
as a linear combination of linearly polarized (along the y axis) and circularly polarized
beams. Even though this technique is still an intensity (not phase-and-amplitude) mea-
surement method, it can be considered to be a self-heterodyne-detection scheme because
the in-quadrature phase-different horizontal beam component essentially acts like a local
oscillator interfering with the generated chiral signal field whose polarization direction
is parallel to the x axis. Recently, Helbing and co-workers experimentally demonstrated
that such an ellipsometric technique can be extended to the IR region to measure the
VCD and VORD spectra with a significantly enhanced detection sensitivity [30].

A major difference between this and ours is how to control the relative phase between
signal and reference fields during the heterodyning process. In the ellipsometric detection
geometry, the chiral signal field interferes with the incident horizontal electric field itself,
which acts as a local oscillator (for self-heterodyning) as well as an excitation field.
Thus, the phase delay between the chiral signal and intrinsic local oscillator fields is not
experimentally controllable. As a result, the imaginary (VCD) and real (VORD) parts of
the IOA response should be measured separately. On the other hand, the present cross-
polarization interferometric technique utilizing a Mach–Zehnder interferometer shown
in Figure 8.4 (upper left) uses an external local oscillator (for active-heterodyning) so
that both the imaginary and real parts of �χ(ω) can be simultaneously obtained via the
FTSI procedure discussed above.



FEMTOSECOND INFRARED CIRCULAR DICHROISM AND OPTICAL ROTATORY DISPERSION 215

2D photon echo
2D pump-probe

Ellipsometric techniqueLinear CPD technique (present)
P0(H)

P1(V) P2(H)CS

EIOA

ELO

ELO

τd

(controllable)

Delay
stage

LEP

PR

P1(V)

P2(H)REP CS

(LEP:+π/2)

(REP:–π/2)

ELO

E||
phase shift
= ±π/2
(fixed)

SP

Active-heterodyning scheme

SP

sample

probe

SP
pump
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EPE
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EIOA + ELO
(internal)

Figure 8.4. Comparison between active- and self-heterodyning schemes for optical activity

(upper) and 2D signal (lower) measurements. P0–P2; linear polarizers; (V), vertical; (H), horizontal;

PR, phase-retarder; SP, spectrometer; CS, chiral sample. In the active-heterodyning scheme, the

local oscillator (ELO) is externally controlled so that the time delay between ELO and the signal

(EIOA/EPE) is controllable. In contrast, the phase shift between them is fixed in the self-heterodyning

scheme because the incident excitation field itself acts as the local oscillator.

Interestingly, the relationship between these two methods is quite similar to that
between self-heterodyne-detected pump probe with two pulses and active-heterodyne-
detected stimulated photon echo with four pulses (lower panel of Figure 8.4). These
measurement methods have been widely used to obtain the 2D optical spectra of
biomolecules [31–33], light-harvesting systems [23, 34], semiconductors [24, 35, 36],
chemical exchange systems [37, 38], and so on. In the case of the self-heterodyned
pump-probe spectroscopy, essentially only two pulses are enough to carry out such a
measurement. The first two field-matter interactions occur with the pump pulse, and the
third field-matter interaction with a time-delayed (T ) probe pulse creates a third-order
polarization P(3)

PP (t , T ), which is linearly proportional to the generated signal electric
field, i.e., E(3)

PP (t , T ) ∝ iωP(3)
PP (t , T ). If a homodyne detection of the signal field is

performed, the measured quantity is the intensity |E(3)
PP (t , T )|2 of the pump-probe signal

not its amplitude. Consequently, the homodyne-detected pump-probe signal does not
carry information on the phase of the signal field. On the other hand, one can use the
probe pulse itself as a local oscillator so that the measured transient dichroism signal in
this case is given as

SPP (T ) ∝ Re

[∫ ∞

−∞
dt E∗

probe(t) · E(3)
PP (t , T )

]
. (8.27)

As can be seen in Eq. (8.27), the measured pump-probe signal is linearly proportional to
the third-order polarization (or signal field).
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In contrast, the heterodyne-detected photon echo uses the same type of Mach–
Zehnder interferometer to record the spectral interferogram,

S het
PE (ω) = 2Re[EPE (ω)E ∗

LO (ω) exp(iωτd )], (8.28)

where the spectrum of the photon echo signal field generated by the third-order polariza-
tion is denoted as EPE (ω). Then, the measured spectral interferogram can be converted
into the photon echo spectrum by using the same inverse-FT-and-FT procedure. A
notable difference between the present interferometric detection technique for the IOA
measurement and the 2D photon echo measurement is that the latter requires accurate
characterization of ELO (ω) and τd . In fact, this phasing problem was indirectly resolved
by comparing the projected 2D spectrum with the dispersed pump-probe spectrum; note
that the two spectra should be the same so that an arbitrary phase correction factor is mul-
tiplied to the measured 2D spectrum to make the two spectra identical. Overall, despite
the fact that the frequency-resolved pump-probe experiment is comparatively easy to
perform, information on the absorptive part of the 2D response spectrum can only be
extracted from the measured pump-probe signal. In contrast, the heterodyned photon
echo techniques can be of use to measure both the absorptive and dispersive parts of the
complex 2D response spectrum.

8.6. EXPERIMENTAL DEMONSTRATION: VCD AND VORD SPECTRA
OF (1S)-β-PINENE

To demonstrate the experimental feasibility of the present IOA FID measurement method,
we considered (1S)-β-pinene dissolved in CCl4, which is a standard chiral organic
molecule studied before. By tuning the center frequency of the femtosecond IR pulse
whose spectral width is ∼200 cm−1, we examined four distinctively different groups
of vibrational modes: C–C stretch modes (1000–1350 cm−1), C–H bending modes
(1400–1500 cm−1), a C=C stretch mode (1600–1700 cm−1) and C–H stretch modes
(2850–3000 cm−1). One of the crucial optical elements is a pair of crossed linear polariz-
ers (P1 and P2 in Figure 8.2) having extremely small extinction ratio to effectively remove
huge vertically polarized achiral background noise. For typical chiral molecules with
�A(VCD) = 10−4 –10−5, the ratio of the chiral signal to the achiral noise (horizontal-to-
vertical signal ratio) is about 10−9 so that extremely high-quality polarizers are required
to suppress such noise. Brewster’s angle germanium polarizers having extinction ratio
of about 10−9 over the broad IR frequency range from 20 to 10,000 cm−1 [11, 39] have
been used for this purpose.

Figure 8.5 depicts the step-by-step FTSI procedure for retrieving the frequency-
(VCD and VORD spectra) and time-domain chiral susceptibilities from the measured
spectral interferograms S het

⊥,||(ω). The dispersed heterodyned spectral interferograms
S het

⊥ (ω) (solid) and S het
|| (ω) (dashed) measured in each target vibrational mode region are

plotted in Figure 8.5a, and they exhibit distinct spectral shapes (phases and amplitudes).
In particular, a highly oscillating feature of S het

⊥ (ω) in comparison to that of S het
|| (ω)

immediately shows that the S het
⊥ (ω) contains more complicated positive/negative sign

information on the optical activity. As a first step of the retrieval procedure, an inverse
FT (iFT) is performed to convert the frequency-domain interferograms S het

⊥,||(ω) into
time-domain signals F−1{S het

⊥ (ω)} (black) and F−1{S het
|| (ω)} (gray) that are displayed

in Figure 8.5b. Then, these are multiplied by a Heavyside step function θ(t) to obtain
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(a) (b) (c) (d)

Figure 8.5. Stepwise procedure for retrieving the IR chiral susceptibilities of four different

vibrational modes of (1S)-β-pinene. (a) Perpendicular- and parallel-detected spectral interfero-

grams Shet
⊥ (ω) (solid) and Shet

|| (ω) (dashed). (b) Inverse-Fourier-transformed (iFT) time-domain signals

F−1{Shet
⊥ (ω)} (lower black) and F−1{Shet

|| (ω)} (upper gray). For the sake of comparison, F−1{Shet
|| (ω)}

is offset from F−1{Shet
⊥ (ω)}. To take the positive time-domain part of F−1{Shet

⊥,||(ω)} as well as to

remove residual DC noise near time zero, θ (t − 0.5 ps) is multiplied to the time-domain functions

F−1{Shet
⊥,||(ω)}. (c) Imaginary (VCD, solid) and real (VORD, dashed) part spectra of chiral susceptibility

�χ (ω) obtained from Eq. (8.26). (d) Time-domain chiral response function �χ (t) obtained by

carrying out an inverse-Fourier-transformation of the �χ (ω).

a complex form of �χ(ω). In practice, θ (t − 0.5 ps) instead of θ(t) was used to take
the signal in the positive time domain and to remove any residual DC noise of S het

⊥,||(ω)

that appears near time zero. The time-domain function θ(t)F−1{S het
|| (ω)} is essentially

the convolution product of ELO (t) and E||(t), which is the interference term between
the input field and the achiral FID. On the other hand, θ(t)F−1{S het

⊥ (ω)} corresponds to
that of ELO (t) and E⊥(t), which is in turn given by the convolution between �χ(t) and
E||(t). It is noted that such transformed signals θ(t)F−1{S het

⊥,||(ω)} can be obtained in
a different way—that is, time-domain interferometry, which measures the convolution
product of ELO (t) and E⊥,||(t) directly in the time domain.

Next, an FT conversion of the θ(t)F−1{S het
⊥,||(ω)} yields the complex spectra

F [θ(t)F−1{S het
⊥,||(ω)}]. The complex chiral susceptibility �χ(ω) is then simply obtained

by taking their ratio [see Eq. (8.26)]. The imaginary (solid) and real (dashed) part
spectra of the �χ(ω) associated with the VCD and VORD, respectively, are plotted
in Figure 8.5c. Characteristic VCD features of (1S)-β-pinene are observed and found
to be fully consistent with the results obtained by using a FT-IR VCD spectrometer
[40]. The VCD spectrum of the C=C stretch mode (1600–1700 cm−1) appears to be
comparatively noisy, however. This is likely to be due to IR absorption by water vapor.

The perpendicular-detected time-domain signal θ(t)F−1{S het
⊥ (ω)} shown in

Figure 8.5b is not identical to the chiroptical response function �χ(t) itself, but it is
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given by a complicated convolution product of �χ(t), E||(t), and ELO (t) as mentioned
above. Although it is not an easy task to deconvolute such signal in the time domain, by
performing the inverse FT of the �χ(ω), the time-domain chiral susceptibility �χ(t)
can be obtained. Figure 8.5d depicts the �χ(t) of the four different vibrational modes
probed here, and each of them is closely related to the electric dipole–magnetic dipole
correlation function 〈μ(t) · M(0)〉 of the corresponding vibrational mode.

8.7. SUMMARY AND A FEW CONCLUDING REMARKS

In this chapter, we presented a detailed discussion on the time-domain measurement
method for vibrational CD and ORD spectra of chiral molecules in condensed phases,
where a femtosecond IR pulse is used to create IOA FID field and to detect it in a
phase-and-amplitude-sensitive manner. We first discussed the time-correlation function
theory for the optical activity, where the chiral signal field was expressed in terms of the
electric dipole–magnetic dipole cross-correlation function. It was shown that a combina-
tion of cross-polarization detection and spectral interferometry with a properly designed
Mach–Zehnder interferomer is useful to selectively eliminate the achiral background
signal and to characterize the relative phase of the chiral field with respect to the local
oscillator. The present electric field measurement method using an active heterodyne-
detection scheme was compared with the self-heterodyned ellipsometric electronic and
vibrational CD spectroscopy. The relationship between the two is analogous to that
between the heterodyne-detected photon echo and the self-heterodyned pump-probe mea-
surement methods. To illustrate the underlying principles and experimental procedures,
we specifically considered (1S)-β-pinene solution and presented measured spectral inter-
ferograms and VCD and VORD spectra. The present phase-and-amplitude-sensitive VCD
and VORD measurement technique utilizing a femtosecond IR pulse has a superior time-
resolution in comparison to the VCD spectroscopy based on the differential absorption
measurement with a continuous-wave radiation source. Consequently, one can directly
extend this method to study ultrafast dynamics of chiral molecules in solutions with
unprecedented time-resolution achievable, which is what we are currently investigating
in our laboratory.
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9
CHIROPTICAL PROPERTIES

OF LANTHANIDE COMPOUNDS IN
AN EXTENDED WAVELENGTH RANGE

Lorenzo Di Bari and Piero Salvadori

9.1. INTRODUCTION

Lanthanides constitute a fascinating family of elements, endowed with some unusual
chemical and photophysical properties, which make them useful in the most diverse
fields of chemistry, material science, and biomedicine. At the same time, they constitute
powerful and widely used probes for studying structure and dynamics of molecules. It
is most common that in an Ln3+ coordination sphere a high degree of stereodiscrim-
ination takes place, which justifies their use as enantioselective catalysts or as chiral
auxiliaries and reagents, for example. The correct understanding of these processes
calls for appropriate investigation techniques; to this end, chiroptical methods play a
major role.

9.2. THE F SHELL

Lanthanides are also called f elements, because they are characterized by the progressive
filling of the 4f shell: The (III) ions go from the f 0 configuration of La3+ to the completely
filled f 14 of Lu3+ through, for example, the semifilled Gd3+ (f 7). These orbitals are inner
with respect to those with 5- and 6-principal quantum number, which constitute the outer
shell of Ln3+ and display weak hybridization with them. This is the main origin of their
peculiar properties. In the first place, they’re characterized by similar chemical behavior,
since they interact with the environment practically with the same frontier. Moreover, it

Comprehensive Chiroptical Spectroscopy, Volume 1: Instrumentation, Methodologies, and Theoretical
Simulations, First Edition. Edited by N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody.
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also justifies that they have very weak tendency to forming covalent bonds, but rather
give rise to electrostatic interactions, similarly to alkali or alkali earth ions. The result
is a very poor directionality of the bonds, variable coordination numbers, and marked
Lewis acidity of their salts, which must be classified as hard and oxophilic, small crystal
field interactions with the ligands [1].

To a first order, one may neglect the existence of the ligands environment and obtain
a series of electronic states (terms) whose relative energies are determined primarily by
angular momentum (spin orbit and jj couplings) interactions and not by the influence
of crystal field. The first very simple example is provided by Ce3+, which has only one
unpaired electron in the f orbitals. It is endowed with spin quantum number S = 1

2 and
orbital quantum number L = 3, which combine to a total value of J = L ± S = 7/2, 5/2
and are represented through the symbols 2F5/2 (fundamental) and 2F7/2 (excited). The
energy splitting between these two terms is about 2250 cm−1 in all Ce3+ compounds.
The situation is closely similar for Yb3+, having f 13 configuration (i.e., with just one
hole): The two terms describing this ion are again 2F7/2 and 2F5/2, but this time with
this inverted order and a splitting of 10,200 cm−1. The other paramagnetic elements have
more unpaired electrons and give rise to richer manifolds of terms, as found e.g. in refs.
1 and 3 and depicted in Figure 9.1.

In a completely symmetrical environment, all the projections of J (MJ ) are degen-
erate, which means that, for example, 2F7/2 contains four degenerate Kramers doublets
with MJ = ±7/2, ±5/2, ±3/2, ±1/2. Crystal field splitting (CFS) may lift this degen-
eracy, conducting to up to four nondegenerate states for this level: In the absence of a
magnetic field acting on the electron spins, Kramers doublets degeneracy persists. The
number of nondegenerate states after introducing CFS depends upon its symmetry and
upon J . Since we shall not enter into any further detail about this, we refer the reader
to more specific literature [1–3].

The extinction coefficients of lanthanides are very small, because the purely intra-
configurational f – f transitions are Laporte forbidden (can’t interact with electric field
radiation); thus most Ln3+ salts and compounds are colorless or display pale hues.

On the contrary, almost all Ln3+ compounds are luminescent: Ce3+, Pr3+, Sm3+,
Eu3+, Tb3+, Dy3+, and Ho3+ emit in the visible, Gd3+ emits in the UV, and Pr3+,
Nd3+, Ho3+, Er3+, and Yb3+ are near-infrared (NIR) emitters [4]. Consequently, they
find wide applications in light-emitting devices. We shall not enter the complex field
of how sensitization of a Ln3+ is achieved and the general principles of lanthanide
isotropic luminescence, but only consider its chiroptical counterpart: circular polarization
of luminescence (CPL) [4, 5].
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Both absorption and emission spectra of Ln3+ have narrow lines, typical of atomic
spectroscopy, which is once more due to the weak coupling of f orbitals with the envi-
ronment. Thus, they result in multiplets, which are often well-resolved. We can divide
the structure of these spectra into two levels: A coarse spacing is provided by spin–orbit
coupling—that is, by the individual terms, shown in Figure 9.1; to make things clearer,
for example the absorption spectrum of Tb3+ has the 7F6 →7 F5 at 2115 cm−1, the
7F6 →7 F4 at 3270 cm−1, and so on. A finer structure arises because the crystal field
splits each electronic state (like 7F6 in the above example) into sublevels. Owing to the
weak interaction between f electrons and ligands, this latter fine structure is usually of
the order of 10–1000 cm−1 [6].

9.3. ELECTRONIC CIRCULAR DICHROISM AND CIRCULARLY
POLARIZED LUMINESCENCE

Electronic optical activity may take place in absorption (electronic circular dichroism,
ECD) and in emission (circularly polarized luminescence, CPL), the former associated
with the difference in absorbance (A) toward left- and right-circularly polarized radiation
(�A = Aleft − Aright ), the latter with differential intensity of left- and right-polarized
luminescence (�I = I left − I right ). In both cases, a relevant derived quantity is the so-
called anisotropy g factor, which we can define as

gAbs = �A

A
= Aleft − Aright

A
(9.1)

for ECD (in absorption), and

glum = �I

I
= I left − I right

I
= 2

I left − I right

I left + I right
(9.2)

for CPL (in emission).
We may recall that optical activity (ECD or CPL) of an electronic transition a → b

is gauged by the rotational strength

Rab = Im{μab · mab}, (9.3)

where μab and mab are the electric and magnetic dipole transition moments (EDTM
and MDTM) vectors relative to the transition a → b, respectively. If the energy of the
initial state a is less than that of b, then during the transition a photon is absorbed and
Rab refers to ECD; if a is above b, we deal with an emission process and Rab is allied
to CPL.

The rotational strength can be rewritten with explicit reference to the scalar product
between μab and mab expressed in Eq. (9.3) as

Rab = |μab ||mab | cos τab , (9.4)

where τab is the angle between the EDTM and MDTM vectors.
The fundamental rule for magnetic dipole transitions is �J = 0, ±1 (excluding J =

J ′ = 0). On the contrary, for electric dipole we should expect vanishing moment, because
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Scheme 9.1. Molecular structures of DOTA derivatives.

f – f transitions are intraconfigurational and consequently parity-forbidden, hence the very
small extinction coefficients mentioned above [2].

We shall see now the two fundamental mechanisms through which the chiral environ-
ment brings about the necessary EDTM to give rise to optical activity. We shall represent
static and dynamic couplings as separate and alternative, although in the general case
they must be regarded as two facets contributing simultaneously to the observed ECD or
CPL spectra [2].

9.3.1. Static Coupling

For a purely Ln3+-centered transition, in order to have μab �= 0, some degree of
hybridization must be invoked, which means that the 4f orbitals mix (for example)
with the 5d , gaining the necessary odd-parity interconfigurational character. This can be
actuated by a dissymmetric ligand field in the so-called “static coupling” mechanism.
To make an analogy with what is customary in the description of ECD of organic
molecules, we can consider this case as an intrinsically chiral chromophore [7], because
we must identify the whole coordination sphere as the locus where radiation absorption
or emission takes place.

An example may be provided by Ln DOTMA (Scheme 9.1; see also Section 9.5.4).
The stereochemistry of this molecule has been extensively studied [8–10], because it
is closely analogue to one of the most successful contrast agents for magnetic reso-
nance imaging (MRI), namely Gd DOTA (Scheme 9.1) [10–12], the difference between
DOTMA and DOTA consisting in the fact that the latter lacks the four methyl groups in
the side arms and is therefore achiral.

The coordination polyhedron of Ln DOTMA is defined by the four nitrogen and the
four carboxylate oxygen atoms and is a twisted square antiprism, shown in Figure 9.2,
which is obviously chiral. It is worth noting that the ligand is essentially devoid of
significant chromophores, the strongest one being the carboxylate with only a weak
absorption at about 200 nm. Thus, we may consider Ln DOTMA as an intrinsically
chiral lanthanide chromophore, essentially not perturbed from polarizable groups.
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Figure 9.2. The coordination cage of Ln DOTMA in its two main diastereomeric conformations.

Accordingly, metal-centered transitions can be considered as solely responsible for
the observed ECD. Because of the lack of significant couplings, the f shell must be
considered as practically isolated and the sum rule must apply to it. This means that the
integral of the CD spectrum over all the f transitions must be vanishing. In some cases
this may be hard to check or to be useful, because a very wide spectral range should be
covered, often extending from the IR (possibly NIR) to UV. For the simplest systems
having one electron or one hole, instead, it has an immediate consequence. The two
ions where this applies are Ce3+ and Yb3+, respectively, with f 1 and f 13 configuration.
They have only one term, 2F5/2 →2 F7/2 for Ce3+ in IR and the 2F7/2 →2 F5/2 for
Yb3+, which is in the NIR, rather close to the edge of visible light and reached by
some commercial ECD instruments working in the UV–vis. The ECD of Ce3+ may be
coupled to vibrational transitions (see Section 9.4) and will not be considered here. On
the contrary, there are many reports about Yb3+ chiroptical spectroscopy [13]. The first
ECD spectrum of a structurally well-defined Yb3+ compound is the one of Yb DOTMA
and is reproduced in Figure 9.3 [8].

It is evident that it is composed of a manifold of lines allied to positive and negative
Cotton effects. One can appreciate that the integral over the whole ECD multiplet is
close to zero, because positive and negative rotational strengths largely compensate. The
same feature can be found in the spectra of similar species. One immediate consequence
is that, within the limit of perfect static coupling, we are able to see an ECD or a CPL
spectrum only if the crystal field components of the multiplet are sufficiently splitted,
because otherwise they would sum up to zero. “Sufficient” in this context means that the
lines must be separated more than their apparent widths, which in turn is a combination
of a natural linewidth, plus a broadening term depending on the instrument and on its
settings. The most relevant aspects to take into account are the passing band, which is
regulated by the slit opening and the combination scan speed/time constant (this latter is
an interval over which the instrument averages the signal). A rule of the thumb states that

time constant(s) · scan speed(nm · s−1)

passing band(nm)
≤ 1

2
(9.5)
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Figure 9.3. Absorption and NIR-ECD spectrum

of Yb DOTMA in water (c = 14.5 mM,

pathlength 1 cm).

Of course one has to make sure that the passing band is not wider than the natural
linewidths (remember that lanthanides spectra have very narrow lines!). The entity of
the ligand field splitting is very sensitive to the geometry and although there are no
general rules, we shall discuss some aspects in Section 9.3.4.

9.3.2. Dynamic Coupling

A completely different situation is shown by compounds where the coordination poly-
hedron is symmetrical with reference to rotoreflection operations; that is, it is achiral.
This is well represented by the family of complexes Ln Na3 BINOLate3, also known as
heterobimetallic Shibasaki’s catalysts (Scheme 9.2; see also Section 9.5.5).

Here the six oxygen atoms (anionic) define an almost perfect trigonal antiprism
(Figure 9.4) and the lanthanide chromophore must be considered intrinsically achiral,
notwithstanding the stereodefined axes of the BINOLate units. This can’t break the parity
of the f orbitals and should result in vanishing metal-centered ECD. A different type

O O

O
O

O
O

Ln

M M

M

M = Li, Na, K
Scheme 9.2. Chemical structure of Shibasaki’s

heterobimetallic catalysts.
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Figure 9.4. Solution structure and

coordination polyhedron of of Yb Na3

BINOLate3 Left: View from the side.

Right: View along the C3 symmetry

axis, the two dark gray triangles

enhance the top and bottom faces of

the trigonal antiprism defined by the

oxygen atoms.

of interaction can be invoked in this case, referred to as “dynamic coupling” or ligand
polarization, whereby the spectroscopic basis set is expanded to include ligand-localized
excitations. Indeed the ligands bring about six naphthoate groups, disposed as the blades
of a pinwheel around Ln3+ and endowed with a manifold of electronic transitions with
EDTM character.

The result of this expansion is a coupling where the f – f transition borrows electric
dipole character from the ligand-centered ones. Symmetrically, this also brings about
some magnetic dipole onto the naphthoate transitions [14].

The NIR-ECD spectrum of Ln Na3 BINOLate3 is depicted in Figure 9.5 and we
can see that, although bands of different sign alternate in this case as well, the integral
over the whole multiplet is grossly negative. The sum rule implies that positive rotational
strength compensating for this unbalance must be found elsewhere in the ECD spectrum
of this molecule. This very likely occurs in connection with the naphthoate transitions
in the UV. Unfortunately, this spectral region is dominated by very intense ECD bands,
largely determined by degenerate and nondegenerate exciton coupling (described, for
example, in Chapter 3 of Volume 2), which makes it unviable to recognize the relatively
small missing rotational strength.
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Figure 9.5. NIR-ECD spectrum of Yb Na3

BINOLate3 (YbSB, continuous line) and Yb K3
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(c = 5 mM, pathlength 1 cm).
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Significantly here one can observe ECD or CPL also in cases when the ligand field
splitting is very small or when the spectral resolution is poorer. Notably, this may be the
case when one is forced to open the slit in order to harvest more light. We may quote
at least two such situations, from our personal experience. In the first place, when one
has background absorbance, which reduces the light reaching the detector. Lanthanide
transitions often fall in uncommon spectral regions, where there are hardly contributions
from other sources, but it may nonetheless be that there are tails from, for example,
the solvent or other chromophores. This is true in particular for Yb3+ in water, because
around 1000 nm there is a relevant contribution from H2O (but not from D2O) due to an
O–H stretching overtone which makes it difficult to use optical paths above 2 cm, unless
opening the slit. Secondly, this may be the case with CPL with poorly emissive samples;
here one may try to collect as many photons as possible. A third situation we encountered
sometimes is the presence of turbid samples, which scatter light and sizably reduce
transmittance, which should be anyway avoided because it may be a source of artifacts.

9.3.3. Total and Relative Intensity of Chiroptical Properties

Lanthanides offer practically isostructural complexes throughout the transition with most
ligands. The main differences between one versus the other Ln3+, from the point of
view of chemical behavior, must be found: (1) in the more or less accessible reduced
or oxidized states (e.g. Ce4+ or Sm2+); (2) in the variable coordination number, as a
consequence of lanthanide contraction. The latter primarily affects one labile coordination
site (often identified as axial ), which can be more or less occupied by water or by
another ligand [15–17]. In this family of very similar members, how does one choose
between one or another? While structure and chemistry can be considered homogeneous,
the spectroscopic properties of the various Ln3+ are very diverse. We shall naturally
concentrate on chiroptical properties and make reference to the electronic terms depicted
in Figure 9.1. It is evident that for most elements there is a manifold of transitions,
spanning a wide spectral range. As mentioned, to a first approximation, all of them
are electric dipole forbidden and must borrow intensity from the surroundings via static
coupling, dynamic coupling, or both.

In the following we shall make reference to the absorption part, ECD, although the
same arguments may be used for CPL, as well. We can elaborate Eqs. (9.1) and (9.2) by
recalling that for a given transition a → b, �A ∝ Rab and A is proportional to the dipolar
strength Dab , primarily determined by |μab |2. Taking advantage of (9.4) and assuming
the same lineshape in absorption and in ECD, we may write

gAbs = 4Rab

Dab
= 4|μab ||mab | cos τab

|μab |2
= 4|mab |

|μab |
cos τab . (9.6)

The angle τab depends on the specific geometry of the system and does not lend itself
to general considerations, but the two electric and magnetic dipole do provide some
indications. In order to have strong ECD, both mab and μab must be nonvanishing, but
to have large dissymmetry, the best situation is when μab ≈ 0. This means that good
transitions to observe chiroptical spectra are all those with �J = 0, ±1, which ensures
mab �= 0 (�MJ also plays a role, which we’ll neglect for simplicity here), while those
with largest dissymmetry factors are those where J or J ′ = 0. We notice immediately
that among a multitude, a few transitions stand out in Figure 9.1 and they are indicated
in Table 9.1. Table 9.1 helps choosing the lanthanide to use, according to the following
guidelines: (a) if one wants to focus of ECD or CPL; (b) the type of interferences one
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TABLE 9.1. List of Ln3+ Transitions with Strong Rotational Strength [2]

Ion Transition ṽ (cm−1)

Ce3+ 2F5/2 →2 F7/2 2100
Pr3+ 3H4 →3 H5 2150
Nd3+ 4I9/2 →4 I11/2 2000
Sm3+ 5I4 →5 I5 1600
Eu3+ 7F1 →7 F2 1400
Tb3+ 7F6 →7 F5 1100
Dy3+ 6H15/2 →6 H13/2 2100
Ho3+ 5I8 →5 I7 3500
Er3+ 4I15/2 →4 I13/2 5000
Tm3+ 3H6 →3 H5 5800
Yb3+ 2F7/2 →2 F5/2 10000

likes to avoid (e.g., blank absorbance); (c) which wavelength range one’s instrumentation
can cover.

In our own experience about Ln3+ ECD, working with Yb3+ in the NIR offers several
advantages: The manifold 2F7/2 →2 F5/2 is among the intense ECD. Its transitions are
often associated to very high gAbs factors, often above 10%. Moreover, they is hardly
ever perturbed by other absorptions apart from the OH stretching overtone, mentioned
above, which may be a problem only when working with long paths (and may be reduced
by using deuterated solvents).

For CPL, in the visible range, the most popular ones are Eu3+5D0 →7 F1 around
17,000 cm−1 and Tb3+5D4 →7 F5 at 18,000 cm−1 and 5D0 →7 F3 at 16,000 cm−1 while
in the Near infrared Yb3+ and Nd3+ were reported. In emission, however, there is one
more aspect that needs to be taken into account: a suitable condition to excite lumines-
cence. This is a very important issue in emission spectroscopy, which has been recently
and very clearly reviewed by Bünzli and Piguet and will not be treated here [4].

In our opinion, the good understanding of the nature and the geometry of the complex
under investigation is a necessary requisite for a rational approach. We shall see in
Section 9.3.4 how chiroptical spectroscopy can contribute to this knowledge, but in
general most of the information must come from other techniques, and very notably
from paramagnetic NMR. The degree of structural detail that one can obtain from the
analysis of lanthanide-induced pseudocontact shifts and relaxation rates—that is, from
the analysis of NMR spectra (1H, 13C as well as of other nuclei)—is often impressive and
can be compared to X rays. In contrast to diffractometric methods, NMR measurements
are run in solution—that is, exactly on the same species that one often wants to observe
by means of chiroptical methods. From this point of view, ytterbium is again the ideal
choice, because it provides the highest accuracy of the ligand geomtetry in a sphere of
about 7-nm radius [13].

9.3.4. Multiplet Structures in Yb3+ Complexes

The Yb3+ NIR-ECD multiplet is rich in information concerning the structure, nature,
and charge distribution of the donor atoms participating in the coordination polyhedron.
Some aspects relative to structure and nature will be discussed in Section 9.4.1 below,
while here we wish to briefly treat charge distribution.
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Figure 9.6. Energy level diagrams

for the f states of Yb3+ in the

complexes K3 Yb(BINOLate)3 (left)

and Na3 Yb(BINOLate)3 (left) (right)

[19].

Shibasaki’s heterobimetallic complexes of formula M3 Ln (BINOLate)3 introduced
in Section 9.3.2 change significantly their chemical behavior according to the alkali ion
M+ = Li+, Na+, K+, which bridge to adjacent oxygen atoms on different BINOLate
units [18]. This is very clearly reflected in the NIR-ECD spectrum of the Yb compounds,
shown in Figure 9.5. Paramagnetic NMR data clearly demonstrated that the structure
of the complexes in solution are independent of the nature of M [14], which proves
that any difference in NIR-ECD must arise from crystal field parameters. Indeed even if
static coupling can’t be a source of ECD, because the coordination polyhedron is achiral
(Section 9.3.2), the coordination polyhedron nonetheless modulates the splitting of the
ground and excited electronic states of Yb3+. Because this is only a small perturbation,
the barycenter of the multiplet is preserved at 10,200 cm−1 (980 nm), while the individual
wavenumbers of the bands become closer to or farther from this value like an accordion,
depending on crystal field parameters. The complete analysis of the transition, by means
of low temperature measurements, as described below, provides the energy levels shown
in Figure 9.6. A nice feature of this finding is that it correlates very well with NMR
parameters, specifically with the paramagnetic anisotropy constant [13].

Similarly, in Yb THP (Scheme 9.1), a complex based on tetraazacyclododecane, by
changing the solution pH one can modulate the state of protonation of the hydroxyls and
the charge borne on the oxygen atoms, which again is reflected in a similar accordion
movement of the Cotton effects [20].

We should observe that the intensity of the CD bands is also modulated by the CFS,
although to a rather modes extent.

9.3.5. Low-Temperature Measurements

Variable temperature (VT) is a well-known practice especially in conformational analysis
through ECD. The idea is simply to change the distribution of conformers according
to Boltzmann’s law in order to disentangle the contributions arising from each single
form and to provide temperature-dependent mole fraction for each component, which are
related to the relative formation enthalpies. Such an approach has been applied in many
cases and is thoroughly discussed in Lightner and Gurst’s book [21].
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In the context of Ln3+, VT-ECD measurements may play a different and really major
role, because they provide insight not only into conformational manifolds but also on the
true structure of transitions manifolds. Consequently, within the literature on Ln3+, they
have been used relatively more often than for the rest of chiroptical studies.

The ligand field splitting is usually small compared to kT at room temperature (about
0.6 kcal · mol−1 or 2.4 kJ · mol−1), which gives rise to so called “hot bands.” These are
transitions originating not from the state of lowest energy, but rather from the fact that
the first excited one(s) may be (partially) populated according to Boltzmann distribution.

Consequently, the ECD spectrum contains a manifold of bands, which are necessarily
at lower frequency to the those starting from the fundamental state. In itself this is a nice
feature, because a highly structured ECD spectrum can be regarded as a fingerprint of
the complex and of its structure. On the contrary, for its quantitative interpretation this
feature needs to be simplified, which can be achieved by means of low-temperature
ECD data.

Suitable solvents for low temperatures (down to −80◦C or even lower) provide
several advantages: a conformationally homogeneous system and significant population
of only the fundamental electronic state. This should be regarded as the most correct
way to obtain crystal field parameters through ECD.

ECD and CPL of a single term-to-term transition normally consist (or at least should
consist) of a series of lines arising from CFS sublevels of the initial and final states.
Let us take, for example, once more Yb DOTMA (Scheme 9.1), introduced in Section
9.3.1. The C4 coordination polyhedron splits the fundamental 2F7/2 into four and the
excited state 2F7/2 into three sublevels. Since the splitting is small, not only the lowest
energy, but all the sublevels, may be populated at a given temperature, to an extent
determined by Boltzmann distribution, as shown in Table 9.2. The observed absorption
or ECD spectrum will consist of up to 12 components, whose position (wavenumber or
wavelength) is solely determined by the CFS, but whose intensities depend on (a) the
intrinsic dipolar or rotational strength of the transition and (b) the temperature-dependent
Bolzmann population of the initial sublevel [8].

At 0 K, only the lowest energy state would be populated, and only three transitions
should survive, which justifies the fact that the other ones are called “hot bands.”

The multiplet structure may be analyzed in terms of energy levels of the fundamental
and excited states by exploiting such temperature dependence—that is, by recording
a spectrum at high and low temperature (provided that the sample does not undergo
phase transitions or any other modification). One fundamental advantage of using ECD
compared to total absorption consists of the fact that chiroptical spectra may contain
bands of alternate sign, which enhances the resolution when two lines are nearer than
their linewidth: If they have the same sign, they will simply merge into one (broader)
peak, but if one is positive and the other is negative, there is a cancellation effect,

TABLE 9.2. Energy Sublevels and Relative Boltzmann Populations B (T) at Room (298 K) and
Low (193 K) Temperature of the Fundamental State (2F7/2) of Yb DOTMA in Water

Energy (cm−1) Sublevel B (298 K) B (193 K)

0 1 0.616 0.718
124 2 0.338 0.283
652 3 0.029 0.005
715 4 0.015 0.003
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which anyway leaves two components, which may be recognized. This fact is of utmost
importance in degenerate exciton coupling in ECD of organic chromophores (ECCD): In
most cases the exciton couplet, consisting of a sigmoidal feature (bisignated doublet of
bands) in ECD, corresponds to one absorption band where there is hardly any trace of
the interaction between the chromophores.

Another, more elegant and possibly reliable way of achieving the assignment of the
CFS sublevels would consist of combining ECD and CPL data.

Our long experience on Yb3+ complexes allows us to generalize what follows: Usu-
ally C4 symmetry is allied to larger CFS compared to threefold, although other parameters
such as the degree of twist or axial coordination may also play a role [15–17, 22]. This
has an immediate consequence on the appearance and ultimately on the possibility of
detection of ECD spectra. In the case of static coupling, where one can expect that the
rotational strength integrated over the whole multiplet vanishes, only fourfold symmetry
guarantees sufficient separation of the components to see a strong ECD spectrum. On
the contrary, for threefold symmetry, the static coupling contribution may often get lost
and only one line survives, thanks to dynamic coupling. From this point of view, it
is indeed remarkable that most (pseudo)-C4 complexes that have been studied, such as
those depicted in Scheme 9.1, lack strongly polarizable groups in the first coordination
sphere of Ln3+; that is, they are likely under a strong influence from static coupling. On
the contrary, (pseudo)-C3 systems are practically dominated by conjugated ligands like
diketonates or binaphthoates, endowed with strong electric-dipole-allowed transitions,
responsible for relevant dynamic coupling.

9.4. COUPLING OF ELECTRONIC AND VIBRATIONAL STATES
AND VCD ENHANCEMENT

This is a new field that will require further investigation, but may be expected to provide
new pieces of information.

In the stem paper on VCD, Nafie, Keiderling, and Stephens reported the spectra of
a wide range of compounds, fully demonstrating the power of this technique [23], which
has become since a reference method for stereochemical assignments (see Chapters 4 and
24 of this volume). Among the others, they took into account two lanthanide complexes
Pr (tfc)3 and Eu (tfc)3 (tfc stands for trifluoromethyl hydroxymethylene-d -camphorate;
at the time of that paper the complexes were abbreviated as Pra-Opt and Eu-Opt), in
the C–H stretching region. The two spectra, reproduced in Figure 9.7, are remarkably
similar in position, sign, and relative amplitudes of the bands, although the Eu derivative
has much stronger Cotton effects that the Pr. This fact was interpreted as a possible
contribution from the electronic CD of Eu3+, which has several states in the IR region.
Against this explanation is the fact that the electronic transition nearest to 3000 cm−1

is 7F0 →7 F4, at about 2870 cm−1, which is magnetic dipole forbidden because �J = 4
and, consequently, should also have very weak ECD (note that the rules for optical
activity of Ln3+ compounds were reported by Richardson in 1980 [2] while Stephens’
paper was published in 1976).

A few years later, Mason et al. described an interesting effect, assigned to the
coupling of C–H stretching with a broad underlying d –d transition in Co2+ and Ni2+-
spartein complexes [7, 24]. There are two main aspects that characterize this phenomenon:
(1) the fact that the metal-centered transition has nonvanishing strength at the stretching
energy and (2) the VCD lineshape is dispersive, changing sign within the width of the
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Figure 9.7. Total absorption, VCD, and baseline of Pr (tfc)3 (top) and Pr (tfc)3 (bottom) [23].

corresponding absorption [24]. This is strongly at variance with what had been observed
by Stephens et al. for lanthanides: The spectra of Eu (tfc)3 and Pr (tfc)3 are very similar
in shape and definitely share the same sign sequence [23].

In 2001 Nafie et al. reported that for Co2+ and Ni2+-spartein complexes not only
the C–H stretching region but also the mid-IR is strongly affected by the presence of an
open-shell metal center, although the oscillator strength of the d –d electronic transitions
of the metal cations in this spectral region can be considered negligible [25]. A few more
recent articles related to d -metal complexes can be found in the literature [26, 27], and
very recently some degree of VCD variation depending on the specific nucleus (Ln = La,
Eu, Yb) in camphorate derivatives has been observed [26].

A complete theory accounting for the interaction of low-lying electronic states
(LLES), as often found in metal complexes, was provided by Nafie [28]; but although it
is meant for d metals as well as for f metals, the question for lanthanides seems to have
been completely overlooked in the literature.

What we have seen in the previous sections demonstrates that Ln3+ are indeed pecu-
liar and may not always be looked at with the same eye as d metals. As we repeatedly
said, the degree of orbital mixing between metal and ligand is very modest, which means
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that the electronic properties of the ligand are perturbed to some extent by the interac-
tion, but not completely mixed up, which is at odds with transition metal complexes.
Essentially, the ligand oscillators, responsible for vibrational spectra, are independent of
the coupling with a Ln3+ and are responsible for a good deal of EDTM. Once more,
we deal with ligand-centered electric dipole transitions, which couple with the magnetic
dipole brought about from f – f terms—that is, with a dynamic coupling, which this time
involves vibrational states of the ligand and is observed on these latter ones.

The effect of this coupling is to increase the rotational strength of intrinsically weak
VCD bands, but what makes it particularly interesting and appealing is the fact that the
overall appearance of the VCD spectrum is not really altered; that is, position and signs
of the bands remain the same, while the amplitudes of the Cotton effects are larger.
An example is provided in Figure 9.8, where the VCD spectra in the mid-IR of Yb,
Gd, and La DOTMA are compared. This figure demonstrates that some of the low-
energy Cotton effects are strongly enhanced in Yb DOTMA, compared to the other two
compounds. This may be ascribed to the fact that La3+ is diamagnetic, while Gd3+ has f 7

configuration, two situations preventing the existence of LLES. On the contrary, Yb3+

features a fundamental state 2F7/2, which generates four CFS sublevels, as discussed
above. This indeed provides electronic states that are splitted by up to about 1000 cm−1

and which may provide an MDTM, useful to generate rotational strength.

9.5. APPLICATIONS

9.5.1. Lanthanides as Spectroscopic Probes for Ca2+ Binding
Biomolecules

There are many reports on some similarities between lanthanide and alkali earth ions,
notably Ca2+ and Mg2+, two very relevant cations in biological chemistry, which are
unfortunately spectroscopically silent. There have been many reports where alkali earth
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metals have been substituted isostructurally with Ln3+, with the benefit that, one can
take advantage of the rich variety of spectral data made available by f elements. The
two techniques that by and large have dominated this field of applications are emission
spectroscopy and NMR [29].

Chiroptical methods may be a formidable tool for investigating biomolecule Ln3+
binding events, because the ions by themselves are achiral and all observed ECD or CPL
must arise from adducts involving the biomolecule. The small extinction coefficients and
the possibly large anisotropy factors are very suitable for ECD applications, especially
considering the transitions listed in Table 9.1. Indeed, the first ECD of Yb3+ around
980 nm was measured for its complex with calcium-binding antibiotic rifampicin and is
depicted in Figure 9.9 [30].

Unfortunately, the small absorption of Ln3+ means also that dichroism is weak
and requires the use of rather concentrated solutions. Typically, 1–10 mM in a 1-cm
cuvette must be used even for most sensitive cases, like Yb3+. Of course, one may use
longer pathlengths, which may have two consequences. First, solvent or blank absorbance
may be no longer negligible, which is the case for the 980-nm band of Yb3+, where a
vibrational overtone of OH around 1000 nm may disturb the measurement. Second,
by increasing the pathlength, one increases the volume, which ultimately means that
the quantity of sample required may be a limiting factor, when dealing with costly or
difficult to isolate biomolecules. It may be interesting to observe, however, that the type
of sample suited for ECD measurements may match (quantity, concentration and solvent)
those required for NMR, and in our experience exactly the same solution may be used
for both (at least when using a 1-cm semi-micro cuvette). Thus, one may take advantage
of the structural detail made available by paramagnetic NMR and of the chiral response

900

0

+0.5

+1.0

+1.5

1000

λ(nm)

Δe
.1

00

Figure 9.9. NIR-ECD spectrum of the complex

Yb-rifampicin in MeOH/water [30].
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at once. This kind of approach has been used successfully in at least two cases: the
anthracycline family of anticancer drugs [31] and the widely used veterinary antibiotic
lasalocid A [32].

NMR allows one to identify which parts of the ligand molecule are close to the
paramagnetic center, and it can also provide conformational restraints about the way
the ligand folds around Ln3+. In the last few years, we have developed the program
PERSEUS, which takes as input: (a) experimental data readily accessible from NMR
experiments and (b) a tentative structure for the complex. The NMR data are used as
constraints to build an optimized (“ultimate”) solution structure, which best fits the para-
magnetic shifts and nuclear relaxation information [13]. Of course, chirality is completely
out of reach for NMR, which at best may provide insight into relative configuration but
is insensitive to mirror-image structures and here is where chiroptical methods come
into play.

The three cases cited so far (rifampicin, anthracycline, lasalocid A) and shown in
Figures 9.9 and 9.10 fall largely in the category of dynamic coupling. Indeed, all of them
feature one line dominating the NIR-ECD spectrum (which reveals also that at least for
rifampicin and anthacycline the ligand field splitting is small). This is not surprising,
considering the presence of UV–vis chromophoric groups in the ligands.
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It should be noted that these results are especially interesting because ytterbium (or
any other lanthanide) may play the same structural role of biologically relevant ions,
notably Ca2+. This assumption may be proved inter alia by using ligand -centered ECD:
One should measure the ECD spectrum of the drug molecule alone, in the presence of
the spectroscopically silent cation (Ca2+, Mg2+) and in the presence of the Ln3+ probe.
Identity of the latter two cases (and possibly difference from the free form) are a positive
indication of isostructurality. Of course this is possible only for chromophoric ligands.

Emission spectroscopy is one of the spectroscopic tools able to reveal the interac-
tion between Ln3+ and biomolecules. Thus, Eu3+ and Tb3+, which have red and green
fluorescence, have been largely used to this end. Ln3+ emission is efficiently quenched
by O–H oscillators [4]. Upon binding to inner pockets e.g. of proteins, where water is
excluded, they may yield a bright state, leading to a rather optimal situation of a probe
that is off , when it is not ligated, or on , when it is ligated to a hydrophobic pocket of the
biomolecules and thus sheltered from water. In principle, one should be able to observe
CPL, as well, because biomolecules are usually chiral nonracemic, which would lead to
an independent demonstration of binding. For example, interaction between Tb3+ and
sugars has been demonstrated through CPL, as shown in Figure 9.11 [33].

Here we may notice at least one relevant feature: The integral over the multiplet
is close to 0, which agrees well with the fact that ribose has no chromophores and that
static coupling should largely dominate in determining the spectrum. Note also that for
an ion with a rich manifold of f – f transitions like Tb3+, it is the integral over the whole
set which should vanish, not for one individual term-to-term component.

Spectra like those shown in Figure 9.11 demonstrate the interaction between lan-
thanide and sugars. They also encode relevant information on the organic moiety chirality
and on the complex structure, aspects that will require further studies in the future.

9.5.2. Studies in the Solid State and Ln (ODA)3

For many years the literature on chiroptical properties of lanthanide compounds has been
dominated by the work of Richardson group on single crystals of Ln3+ (ODA)3 (ODA
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Figure 9.11. Total luminescence (continuous line) and CPL (dashed) spectra for (a) 1:3 Tb3+/D-

arabinose and (b) Tb3+/D-fructose in DMF. [Tb3+] = 10 mM and λexc = 488 nm. Adapted from

reference 33.
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stands for 1,3-oxydiacetate). The ligand is achiral and the complex in solution consists
of the rapidly exchanging enantiomers due to � and � pseudooctaedric coordination.
It crystallizes from water as a conglomerate and gives rise to a spontaneous resolution,
whereby each crystal is of homogeneous chirality. ECD and CPL measurements on single
crystals for a variety of Ln3+ ions provided extremely high resolution spectra, covering
the whole UV–vis range. These data were used in connection with a comprehensive
theoretical treatment of static and dynamic couplings. Covering this subject goes far
beyond our scope, and we shall refer the reader to the literature [34–38].

9.5.3. Ln3+ in the Determination of Absolute Configurations
with No Interferences

Determination of absolute configuration of chiral molecules is still a very urgent question,
which has not yet found a general solution, as largely demonstrated in this book. One
specific issue that raised a special interest is the 1,2-diol moiety, a common feature in
natural as well as in synthetic products and intermediates. A wide set of methods for
assigning the configuration of this moiety have been proposed, each one with merits and
limitations; among them, at least two make use of lanthanide ECD and, more specifically,
of Yb3+ NIR ECD.

At the time when spectral resolution was a major problem in NMR, one would
often use lanthanide shift reagents; among them, Ln (fod)3 (Figure 9.12) was a popular
choice, because it can bind to mono- and bifunctional groups such as 1,2-diols. The fact
is that Ln (fod )3 is only formally achiral, because it is indeed the racemate of � and
� pseudooctaedric coordination, which rapidly (typically in the s−1 range) exchange.
When these bind to a chiral 1,2-diol, an asymmetric transformation of the first kind
takes place; that is, the �/� mixture deracemizes on account of the diastereomeric
interactions with the chiral species. As a consequence, there is an ECD signature both
in the UV, allied to the exciton coupling of the diketonates chromophores, and in the
vis-NIR, allied to the metal-centered f – f transitions. These two chiroptical signatures
are both very important and useful. The former gives rise to an intense couplet, about
300 nm, which is strong and falls in a spectral region covered by every ECD instrument;
although it occurs at relatively low energies, it may suffer from some interferences, when
the analyte is endowed with red-shifted transitions or possibly due to other absorbing
entities in solution. As for the latter, one can choose the Ln3+ that best suits one’s
needs and the available experimental setup, as described above; once more, we can
take advantage of Yb3+ at the very start of NIR [39]. As one can appreciate from
Figure 9.12, the NIR-ECD consists of essentially one band, which should be mostly
due to the dynamic coupling between metal-centered magnetic dipole transitions and the
diketonates EDTM.

The induction of stereoselection operated by the chiral diol upon Yb (fod )3 can
hardly be predicted a priori ; but by observing coherence over a wide range of prod-
ucts, one can put forward an empirical rule, by which if the diol is of (R)- or of
(R,R)-configuration (provided that the sequence rule reflects the size and bulk of the
substituents), the observed NIR-ECD band is negative. The only weakness point in this
correlation is provided by the simplest structure, namely 2,3-butandiol, which apparently
leads to a complex of different structure. Interestingly, its NIR-ECD signature is com-
pletely different from the others, because it contains a large band at high energy, which
renders clear that one deals with a unique species that can’t be considered analogous to
the other ones [39].
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Figure 9.12. NIR ECD spectra of Yb (fod)3 bound to the diols depicted on the right.

Taking inspiration from this correlation and also from the experience of the mixtures
of sugars (which contain several 1,2-diol moieties) with Tb3+ salts (see Figure 9.11),
it becomes easily rationalized that one can obtain relevant NIR-ECD spectra by simply
mixing chiral nonracemic diols with Yb salts like chloride or triflate. [40]. Here, the only
element of chirality is the diol itself, and the only spectroscopically active part is Yb3+.
The fact that a non-vanishing NIR-ECD spectrum is observed reveals the intimate inter-
action between cation and chiral ligand. Moreover, since the diol lacks relevant electronic
transitions, dynamic coupling can’t be the source of metal-centered ECD, but rather a
static coupling mechanism. Luckily, the CFS induced by the diol is strong enough to
split the electronic sublevels of the excited state (2F5/2) of Yb3+, as a necessary requisite
to observe a nonvanishing CD spectrum (see Section 9.3.2). Figure 9.13 represents the
spectrum obtained by mixing Yb (TfO)3 with (R,R)-2,3-butanediol in different solvents.
One can immediately note that (1) the spectra are complex and consist in a series of
bands within at least 60 nm (about 650 cm−1), (2) the integral over the whole multiplet
is close to 0, and (3) the overall multiplet shape is very similar in different solvents. On
analyzing different diols, one can find again a regularity in the sequence of bands, which
can once more be used as an empirical tool for assigning the absolute configuration of
diols. For both correlations outlined above, namely Yb (fod )3 and Yb X3 (X = Cl or
TfO), not only diols with one but also with two chiral centers (of like chirality) were
employed and provided coherent results [39].

In principle, not only ECD but also CPL can be used to monitor the formation of
chiral nonracemic Ln3+ chelates with 1,2-diols [41].

9.5.4. MRI: Conformation SAP/TSAP

One of the fields where lanthanide compounds have found the most applications is MRI
(magnetic resonance imaging) contrast agents, where Gd DOTA constitutes a successful
example in clinical practice and a benchmark for the evaluation of alternative products.
A wide number of structural variations of this motif have been prepared; and all of them,
to a larger or a smaller extent, feature a common stereochemical problem. When the four
nitrogen atoms are engaged in Ln3+ coordination, tetraazacyclododecane (cyclen) can
exist in one conformationm represented by the symbol [3333]. This indicates that the
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macrocycle consists of four “straight” segments of three bonds each (hence four times
“3”), as depicted in Figure 9.14 (see also paragraph 11-5.d, pp. 762–769 in reference 42).

The [3333] form is chiral, because it consists of the repetition of gauche conforma-
tions of the same sign for all the four ethylene groups. Two enantiomers are possible:
They are named (λλλλ) and (δδδδ) according to the g−/g+ geometry of the four NCCN
moieties, as shown in Figure 9.14 [5, 43]. The pendant acetate arms bearing further
donor groups must all lean from the same side (Figure 9.14). The concerted arrange-
ment of these pendant groups leads to a type of chirality similar to the � and � metal
coordination of octahedric complexes with bidentate ligands. These two conformational
chirality elements, namely the macrocycle arrangement described through (λλλλ)/(δδδδ)
and the side-arm orientation, leading to �/� metal coordination combine to provide four
stereoisomers, which are two pairs of enantiomers and otherwise diastereomers. In all
Ln DOTA complexes the rate of interconversion at room temperature is around 1 s−1,
and consequently the four species must be considered labile and cannot be isolated.

This stereochemical issue is particularly relevant in the context of MRI contrast
agents, because the two diastereomeric forms as � (λλλλ) and � (δδδδ) have a different
bite angles (O–Ln–O) and consequently different access to a nineth-coordination site
along the C4 axis, where water binds. The fact is that the exchange rate between bulk and
ligated water is one of the primary parameters determining the contrast agent properties of
a compound, which makes a correct knowledge of the bite angle of paramount importance.

Paramagnetic NMR has provided a rich harvest of structural and dynamic detail
on these compounds but, very surprisingly, it may fail to distinguish between the two
diastereomers.[9, 11–13, 44, 45] NIR-ECD applied on Yb DOTA derivatives containing
chiral centers on the side arm [8, 16, 20] or on the macrocycle [22] have demonstrated
that they have completely different chiroptical signatures and that they can immedi-
ately be recognized by a simple spectrum, as demonstrated in Figure 9.15, where one
takes advantage of conformationally locked derivatives, obtained by introducing a bulky
p-nitrobenzyl group onto the macrocyclic ring of DOTMA (see Scheme 9.1 for the struc-
tures). Moreover, the fine structure of the NIR-ECD spectrum is a faithful reporter of the
state of axial binding [17].
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In the literature, one can find several other cases where NIR-CD was used to monitor
extent and type of ligation at a labile axial positions at least for Yb3+, a fact that can be
possibly extrapolated to the other Ln3+ [15, 16].

The spectral signature of the two diastereomers is so characteristic that it could
be used for studying the inclusion process of Ln DOTA into γ -cyclodextrin [46]. It is
known that the lanthanide complex can be hosted in the large macrocyclic cavity of the
sugar, but while paramagnetic NMR provided insight into the thermodynamics of the
process, it could not access safely which of the four stereoisomers of Ln DOTA, namely
� (λλλλ), � (δδδδ), � (λλλλ), � (δδδδ), would bind to γ -cyclodextrin. This problem
was easily solved by means of NIR-ECD of Yb-DOTA, which revealed that there is total
stereoselection and that only � (δδδδ) binds [47].

Parker and Dickins used achiral analogues of Ln DOTA to report the chirality of
anions, which would bind to the lanthanide cation and by so doing would enforce a
definite configuration of the macrocycle, which is profitably observed by metal-centered
ECD or CPL [48–50].

9.5.5. Catalysts: Structure and Dynamics

The field where stereodefined lanthanide compounds have met the largest interest at the
moment appears to be enantioselective catalysis [51, 52]. In several cases, metal-centered
ECD has greatly helped understanding structural details of the catalytic precursors and
about the reaction pathways. The most successful family in this context has been the
so-called heterobimetallic Shibasaki catalysts, of general formula M3 Ln BINOLate3,
introduced above in Sections 9.3.2 and 9.3.4.

There is at least one more interesting feature that one can observe, and measure
only by means of metal-centered ECD: it is the ligand-exchange process, through the
following experiment.

One can start with a homochiral complex prepared with enantiopure (R)-BINOLate,
which we shall briefly call RRR. This has well-defined UV-ECD as well as NIR-ECD
spectra. The former is allied to (R)-BINOLate and is largely dominated by the negative
couplet due to the exciton coupling between the 1Bb transitions of directly connected
naphthoates. Inter-binaphthoate coupling—that is, between transitions located on differ-
ent ligands—also plays a role, because they are kept closed in space by participating in
the coordination of the same Yb3+. The metal-centered NIR-ECD only senses the chiral-
ity of the coordination polyhedron of Yb3+. If we now add to the solution a 20% molar
excess of the ligand of opposite configuration (S )-BINOL, we may have a certain degree
of ligand exchange, while keeping in mind that NMR demonstrates that the amount of
heterochiral diastereomers of the complex, (i.e., species like RRS ) is in any case small
(below 10%). The UV-ECD of such a mixture is difficult to interpret and disentangle,
because the contributions arising from free and bound ligand are superimposed and can
hardly be separated. On the contrary, the NIR-ECD shown in Figure 9.16 is very neat and
informative, revealing that complete reversal of chirality can be attained by the dynamic
ligand shuffling. It is noteworthy that this process is very rapid and it is completed within
a few seconds.

More recently, an apparently very similar system based on a modification of BINOL
was proposed for enantioselective aldol reaction [53–55]. In this case the formation
of diastereomers occurs to a much lesser extent and indeed it cannot be revealed by
NMR. Nevertheless, the very same exchange experiment briefly described above could
be followed by NIR-ECD, demonstrating that the same chirality inversion takes place in
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this case as well, although on a much slower pace (it takes several hours and its kinetics
can be easily followed) [56].

9.5.6. Frontier Applications of Ln3+ CPL

We wish to conclude this overview by mentioning a field that we believe may be relevant
in the future: namely, applications of CPL in new and potentially “responsive” materials.
As we’ve discussed at length, lanthanides nicely join several very useful features: (1)
They can be strongly emissive, with high glum anisotropy factors; (2) the experience of
MRI contrast agents provides a solid knowledge of stable chelates that are globally achiral
but can sense the chirality of ancillary ligands; (3) mostly from the field of enantiose-
lective catalysis one can derive concepts and inspiration for preparing stable nonracemic
chelates of known or predictable structures; and (4) paramagnetic NMR provides the
necessary structural detail for understanding what goes on in solution (or even in the
solid state). There are at least two fields where all of this may find applications: lumi-
nescent devices such as LEDs and stains for fluorescence microscopy. Recently, Kaizaki
et al. proposed a stable chiral Eu3+ diketonate, Cs[Eu((+)-hfbc)4], with the exceptional
glum = 1.38, which means that there is an enantiomeric excess of the emerging photons
at 595 nm close to 70% (Figure 9.17a, 9.17b) [57].

It is interesting to observe that in our own finding this high degree of CPL is
maintained also after dispersing this product in a polyvinyl carbazole (PVK) polymeric
film—that is, i.e. in the solid state, as shown in Figure 9.17c.

9.6. CONCLUSIONS

At the end of this discussion, we may conclude that not only chiral lanthanide com-
pounds are interesting per se, but rather they can be used as powerful spectroscopic and
chiroptical probes to address a large number of very different questions and to solve struc-
tural problems in a manifold of situation. Their almost homogeneous chemical behavior
together with their widely different spectroscopic signatures lends itself to a fine tuning
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Figure 9.17. (a, b) CPL (upper curves) and total luminescence (lower curves) spectra for the
5D0 →5 F1 transition of the complex Cs[Eu((+)-hfbc)4] (a) and Na[Eu((+)-hfbc)4] (b) solutions in

CHCl3 ([Eu] = 2 mM, λexc = 352 and 335 nm, respectively) [57]. (c) CPL spectrum of Cs[Eu((+)-hfbc)4]

dispersed in a PVK film. Notice that only the low-energy band (590 nm) should be compared with

those depicted in (a) or (b), because the one at 610 nm belongs to 5D1 →7 F0 transition.

of the choice of the specific lanthanide to be used as a probe according to the specific
problem under investigation. We are aware that in this limited space we could give just
the taste of it, but we hope this will stimulate the readers.
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LIST OF ABBREVIATIONS

CFS Crystal field splitting
CPL Circular polarization of luminescence
ECD Electronic circular dichroism

EDTM Electric dipole transition moment
LLES Low-lying electronic states

MDTM Magnetic dipole transition moment
MRI Magnetic resonance imaging
NIR Near infrared
PCS Pseudocontact shift
PVK Polyvinyl carbazole

UV Ultraviolet
VCD Vibrational circular dichroism

vis Visible
VT Variable temperature
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NEAR-INFRARED VIBRATIONAL
CIRCULAR DICHROISM: NIR-VCD

Sergio Abbate, Giovanna Longhi, and Ettore Castiglioni

10.1. INTRODUCTION

In a general way, near-infrared (NIR) spectroscopy may be defined as the spectroscopy
in the ∼4000 to 15,000 cm−1 (or equivalently, from ∼2500 to 700 nm) region; the latter
figures bring us to the edge of the visible region. In 1976 Keiderling and Stephens, in
their effort toward measuring circular dichroism (CD) spectra in the infrared region (a
technique named, a few years later, vibrational circular dichroism or VCD), reported
[1] the first examples of NIR-VCD spectra. They did not make any attempt to interpret
their nice data, and VCD in this region remained unattended for years. Even now, after
considerable progress has been made in instrumentation, measurements, theory, and cal-
culations of NIR-VCD spectra [2], the usefulness of this form of chiroptical spectroscopy
is not yet fully recognized. The low-lying electronic transitions, namely either atomic
f – f or d –d transitions, as in inorganic complexes, or transitions associated with larg-
erly delocalized π states, as in organic solids, can appear in the NIR region, and CD
spectra associated with such transitions [3] are discussed in another chapter of this book.
Our concern here is just vibrational spectroscopy. The fact that the sea is blue is due
to NIR absorption by the higher OH-stretching overtones of water molecules [4], which
allow only lower-wavelength light to emerge after passing through meter- to kilometer-
long layers of seawater. NIR absorption spectroscopy has been used extensively in the
food industry to determine and quantify the parameters for highly absorbing materials,
tied to smell, taste, and other organolectic characteristics; in the pharma industry, NIR
absorption data [5] have been employed for quality controls. Are there similar reasons
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that may support the use of NIR-VCD? The answer is still difficult, but some significant
steps forward have been made recently such as to justify moderate optimism, both in the
direction of fundamental knowledge and in that of applied research.

Before entering this discussion, however, let us identify the vibrational transitions
that appear in the NIR-VCD spectra. They are from the ground state toward two sets of
vibrational states: The first set is the succession of the overtones of XH-stretching vibra-
tions (X = C, O, N, etc.), together with their own proper combinations, and the second
one is the succession of the combination bands of v quanta XH stretching excitations with
one quantum HXH bending excitation or with one quantum C=O stretching excitation
[6, 7]. These last ones will be ignored here because their detection is increasingly difficult
with increasing vibrational energy level due to intrinsically weaker signals. Furthermore,
the interpretation of the first set of transitions appears simpler or at least is more studied in
the literature for NIR absorption spectroscopy [8, 9], as discussed later in Section 10.2.2.
As an example of the first set of transitions, we report in Figure 10.1, the absorption
and VCD spectra of (+)-(R)-limonene, for transitions from the ground vibrational state
(v = 0) to excited vibrational states, v = 1, 2, 3, 4, and 5 of CH stretchings. These
transition regions are, respectively, called the fundamental transition (�v = 1) region,
the first overtone (�v = 2) transition region, the second overtone (�v = 3) transition
region, and so on. All these spectra were taken in our lab, with different instruments
and cells. For �v = 1, we employed a Jasco-FVS 4000 FTIR spectrometer with a InSb
detector measuring a 0.33 M CCl4 solution in a 0.1 mm BaF2 cell; for �v = 2, 3, and 4
we employed a home-made instrument, described in reference 2, with the neat sample in
a 0.1-cm, 0.5-cm, and 10-cm quartz cell, respectively. For �v = 2 an extended InGaAs
Peltier-cooled detector was employed, whereas for �v = 3 and 4 a narrow-band InGaAs
Peltier-cooled detector was used. Finally the spectrum for �v = 5 was obtained by using
a Jasco 815 SE spectrometer with its standard multiakali photomultiplier tube, but with
a large enough sample compartment to fit a specially manufactured 19-cm quartz cell,
which was a generous gift from Professor Dave Lightner of the University of Nevada,
Reno. The acquisition times for the spectra were ∼1 h for �v = 1 and 2, 20 min for
�v = 3 and 4, and several hours for �v = 5: the required times correspond to measuring
different numbers of spectra and adding them up, for need of signal averaging. The data
for �v = 5 are in accordance with earlier measurements on a Jasco J600 instrument
[10]. The fact that our instrumentation is optimized for �v = 3 and 4 is proven by the
signal-to-noise ratio of the spectra. The �v = 1, 2, and 3 data are in good agreement
with the data reported independently by Nafie and co-workers [11]. We have chosen
limonene, since it was the first compound, together with a related group of molecules,
on which systematic studies were conducted [12]. An important feature of Figure 10.1 is
that the ratio of the VCD �ε values to the absorbance ε values, called g ratio, as defined
for example in reference 13, is in the 10−4 range for all �v . This interesting feature
was predicted first by Faulkner et al. for �v = 2 [14]. In a context more appropriate
to the present chapter and for a generic �v , Polavarapu [15] and Abbate et al. [16]
showed that the same magnitude of g is expected for all �v , on the basis of a sim-
plified local Morse oscillator model and of an anharmonically perturbed normal mode
model, respectively. Noticeably, reference 14 predicts also a decrease of two orders of
magnitude in �ε and ε values, individually, while going from the fundamental to the
first overtone transitions, as indeed observed. The �v = 3, 4, and 5 NIR-VCD spectra
of Figure 10.1 look very similar, with a negative feature corresponding to the absorption
maximum and a positive feature of slightly higher intensity at higher wavelengths. The
same bisignate feature can be recognized also in the �v = 1 and �v = 2 NIR-VCD
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spectra; however, the latter spectra and the corresponding absorption spectra look more
structured and more complicated. Do these simple observations bear simple explanations
based on ab initio-type calculations, without resorting to modeling arguments, as, for
example, done in references 15 and 16? As will be shown later in Sections 10.2 and
10.3, we can now conduct ab initio analyses with just very few simplifying hypotheses
on a number of cases obtaining quite good results.

10.2. ACQUIRING AND INTERPRETING NIR-VCD SPECTRA

The NIR region is special for several reasons. It requires dedicated or, at least, extended
instrumentation from the one that had been originally designed for other spectroscopic
regions. At the same time it requires adequate theoretical modeling, which, in large part,
may be viewed (probably incorrectly) as an extension of the approach employed in the
mid-IR region (4000–900 cm−1), but with some complications that are not encountered in
the mid-IR region. In this section we will consider the basic features of these two aspects,
starting with instrumentation. Before this discussion, we wish to remind the reader that
the cells that need to be employed for NIR are also different from those employed for the
mid-IR region, and the needed sample concentrations are different as well. One should
remember that the signals, both in absorbance and in CD, are progressively less intense
with the overtone order. This point may be appreciated by going back to Figure 10.1,
where one may notice that the ε and �ε decrease approximately by two orders of
magnitude in going from �v = 1 to �v = 2 and then by one order of magnitude for
each next higher �v . This means that one has to employ progressively longer pathlength
cells or more concentrated samples. In reality, the OH stretching overtone region is more
difficult to investigate than the CH stretching overtone region, and beyond �v = 2 not as
many experiments have been reported for the OH stretching overtones due, among other
reasons, to a different decrease behavior in absorption from fundamental to overtones
and also due to complications related to hydrogen bonding. On the other hand, the cells
that one uses for the NIR region are made of quartz and thus are easier to handle, to
fill, and to clean than those used for the mid-IR region, which are porous, sometimes
hygroscopic, and prone to breaking.

10.2.1. Instrumentation

As stated above, one may use standard mid-IR instrumentation modified for the NIR
region. However, we should state that the data of Nafie and co-workers [11] were obtained
with FTIR instrumentation, while those from our lab at Brescia [2, 17], were obtained
on specially designed dispersive instruments. Indeed the data for �v = 2, 3, and 4 of
Figure 10.1 and most of the VCD data of the NIR region published by us [2, 17]
were obtained with a noncommercial instrument, the picture of which is presented in
Figure 10.2. A brief description of this instrument is given here: On the left-hand side is
the source, a 20-W halogen lamp, followed by an Optometrics f 3/9 74-mm focal length
Ebert single grating monochromator equipped with an 830-grooves/mm ruled grating
blazed at 1.2 μm. Next to the monochromator is a big compartment divided in two
halves: In the first half, just after the monochromator exit slit, there is a collimating lens
to create a nearly parallel beam and a Glan Taylor linear polarizer to generate linearly
polarized (LP) light in the vertical plane which passes through the sample and a PEM
crystal. Note that this instrument is designed with two sample compartments (vide infra).
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Figure 10.2. Picture of the instrument used for NIR-VCD spectroscopy (�v = 2–4), located in

Brescia.

The PEM, mounted with the principal optical axis at 45◦ to the axis of LP, introduces a
phase difference (maximum ±λ/4) between the two orthogonal components of LP light.
The PEM is driven by a sinusoidal signal (∼50 kHz) with circularly polarized (CP) light
of two sorts generated at the extrema of the sinusoidal wave. Following the PEM, there
is another sample holder. Finally, at the extreme right, one has an additional quartz lens
focusing the beam on to the sensitive surface of a InGaAs detector. For �v = 2 we use
another detector (1 mm φ active area), which, at −20◦C, has a useable sensitivity range
from 1.3 μm to 2.5 μm. For �v = 3 and 4 we use the standard InGaAs detector (2 mm φ

active area), with useable sensitivity range from 0.9 μm to 1.7 μm (at −20◦C). The low
temperature of the detector is ensured by Peltier cooling working in the interval from
−50◦C to RT. The PEM is kept at 40◦C all the time. The AC signal at the detector is
synchronously amplified and demodulated by a lock-in amplifier (both lock-in and PEM
were taken from a JASCO polarimeter).

An important feature of our instrument is the double sample compartment: For the
CD measurements we place the sample on the right of the PEM. After collecting CD
data in the right compartment, we take another spectrum by placing the sample in the
left half, in a position that is normally called the absorption baseline (ABL) position.
The CD spectrum that we provide, as done for example in Figure 10.1 for �v = 2–4,
is the difference of the CD and ABL spectra divided by the DC signal (which is related
to the transmittance spectrum) and is taken simultaneously with the modulated data. This
procedure, which we first adopted in reference 18, after making the first measurements
in just the CD mode [17] is quite efficacious and was first suggested in the context
of VCD by Holzwarth and Chabay [19, 20]; they stressed that most CD artifacts are
due to “leaks” of the absorption DC features into the AC demodulated signals as well
as from residual linear anisotropies of the optical components. The simple approach
illustrated here is very effective in this regard, since the ABL spectrum is collected
using the chiral sample itself and not its solvent (if any) or its racemic form, whose CD,
ABL, and DC signals may be recorded independently. The scanning system is controlled
directly from the old Jasco electronics (J-500A) and we output simultaneously the AC
demodulated and the DC signals into a recently assembled microprocessor-controlled
data logger interfaced to a PC, from which we can fully control scan parameters, spectra
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acquisition/real time visualization, and, when necessary, spectra accumulation for signal-
to-noise (s/n) improvements.

10.2.2. Theory

The interpretation of NIR-VCD experimental spectra is associated with calculating NIR-
VCD spectra on the basis of the following quantities to be computed for each vibrational
transition: (a) frequency ω; (b) rotational strength, defined as [21]

R = Im
3∑

i=1

〈0|μi |v〉〈v|mi |0〉 (10.1)

where μi and mi are the Cartesian components (i = 1, 2, 3 or x, y, z ) of the electric and
magnetic dipole moment operators, respectively; |0 > represents the ground state and |v >

the vibrational excited state defined by a set of quantum numbers, which we collectively
denote by the boldface symbol v; (c) bandwidths associated with the transitions under
study. Together with the NIR-VCD spectra, it is useful or even necessary to study the
NIR absorption spectra, which implies the calculation of the quantities recalled in parts
a and c, plus the step (d) for calculating dipole strengths:

D =
3∑

i=1

|〈0|μi |v〉|2. (10.2)

The above quantities are the same as those for the mid-IR region, where they can all,
except for bandwidth, be obtained nowadays using ab initio programs such as those of
reference 22; the method for conducting these calculations was set up more than 25
years ago [23]. In the NIR, there are, however, fundamental differences that prevent
one from making full ab initio calculations unlike in the mid-IR case: Indeed there is
a much larger number of states to deal with (dimensionality), and vibrational motions
imply large displacements (anharmonicity , i.e. nonlinearity). Regarding the first type of
difficulty, one should remember that in the mid-IR range one has to deal, in principle,
with (3N − 6) vibrational excited states, when N is the number of atoms in the molecule,
each state depending on just one coordinate, called the normal mode coordinate. The
states are described by special wavefunctions, built from Hermite’s polynomials [6, 7];
vibrational transitions in the IR imply going from the ground state |0 > = |0, 0, . . . > to a
fundamental state |v > = |0, . . . , 1, . . . , 0 >, with excitation of just one quantum number
of the (3N − 6) possible. On the contrary, the transitions giving rise to NIR absorption or
VCD imply more than one quantum number being excited and/or one quantum number
being excited more than once—in the first case originating combination bands, in the
second case overtone bands [6, 7]. This makes the dimensionality of the problem in
the NIR too large, if no approximations are made. Indeed in Eqs. (10.1) and (10.2),
v is meant to be a collection of integer quantum numbers (v1, v2, . . . , v3N − 6) for all
stretching and bending modes. The earliest interpretations of NIR absorption spectra,
however, were prompted by the observation that signals are intense only for vibrations
involving XH stretchings, and, despite the increasing number of states, spectra get simpler
with increasing quantum number [24]. This observation provided a basis for simplified
models, enough to describe the so-called “bright modes” (see, e.g., reference 25); the
latter do not include the contributions of XY-bond stretching modes (X and Y both
different from H), of XYZ bending modes, and of XYZW deformation modes (torsions,
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out-of-plane modes, puckering modes, etc.). This approximation is useful to interpret the
spectral regions of the sort presented in Figure 10.1. This is justified by the fact that
larger vi quantum numbers are needed for the bending and for the XY stretching modes
than for the XH stretching modes to participate in the NIR region, and it is known that
transition probabilities decrease with increasing powers of vi [6, 7]. We may call the latter
modes “dark modes,” borrowing the name from the literature of IVR (internal vibrational
redistribution) phenomena [25]: Only through resonance the latter modes may contribute
to the spectra of Figure 10.1. It should be reminded that some of the NIR spectra that
were recorded in references 1, 11, and 18 contain combination bands of �v ≥ 1 XH
stretching modes with specific deformation modes, namely the �v = 1 bending modes
or the �v = 1 C=O stretching modes, but we will not consider them here.

Due to all these considerations, one can assume a model of just XH stretching
modes (X = C, O, N, etc.) that we may call “bright modes.” The problem starts to show
a tractable dimensionality, since one has, for each overtone order �v , transitions from
the ground state to manifolds of vibrational states |v > = |v1, v2, . . . > in a limited energy
range (“almost degenerate”) and thus possibly influencing each other, depending on v
and m , the latter integer number being the number of interacting XH stretching modes.
v is given by

v = ‖v‖ =
m∑

i=1

vi (10.3)

where vi (= 0, 1, 2, 3, . . .) is the vibrational quantum number for the i th XH stretching
in the homogeneous group of m XH bonds (let us say aromatic or aliphatic CHs or
something else). The number v = ‖v‖, which we have defined through Eq. (10.3),
is kind of the norm of vector with integer components v and is the number that we
refer to in defining the overtone order in, for example, Figure 10.1. The dimensionality

N (v , m) of the problem is, by standard combination analysis,
(m + v − 1)!

v !(m − 1)!
. N (v , m)

increases with v approximately as the v th power of m (for limonene at v = 5, one
has a figure of the order of 135 for aliphatic CHs). For small v and small m , N (v,
m) is a small enough number. The dimensionality of the problem can be still high, if
one wants to calculate all anharmonic corrections, and this initially discouraged setting
up ab initio methods. A fruitful hypothesis has then been put forward on an empirical
basis, which was justified first with classical mechanics arguments, namely the “local
mode” hypothesis [8, 9]. In 1983 Lehman [26] was able to demonstrate that for m = 2
vibrational modes are completely equivalently described assuming as zero-order modes
either normal modes, which are mixed at high v by Darling–Dennison anharmonicities,
or strongly anharmonic local modes, having the form of Morse oscillators [7], mixed
by harmonic couplings. The implication of this—discussed thereafter for m≥3 by Mills
and Robiette [27], Sibert [28], Halonen [29], and many others—is that a system of m
equivalent or almost equivalent XH stretchings is well represented by normal modes
when v = 1, while the local mode scheme is more appropriate at high v . For this reason,
when considering the NIR spectroscopy of m XH stretching systems, one can examine
electrical and magnetic properties referring to local modes, and one may assume pure
overtones [29] as the principal bright states.

This hypothesis allowed F. Gangemi et al. [2, 30, 31] to arrive at an interpretation
of NIR-VCD spectra on a quantitative basis, adopting ab initio/DFT procedures previ-
ously devised by Bak et al. [32], who used the classic APT/AAT approach (vide infra)
developed by Stephens [23, 33]. Let us briefly review their approach by reporting the
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fundamental equations to calculate frequencies, dipole strengths, and rotational strengths,
which will be used in the next paragraph to calculate the NIR-VCD spectra of (S )- and
(R)-epichlorohydrin. This approach is based on the use of vibrational Morse eigenfunc-
tions and eigenvalues [9, 34] that allow one to derive the vibrational frequencies and
dipole and rotational strengths, comprised in the steps a, b, and d outlined above, as
follows.

(a) Calculations of Frequencies. ωnv for the nth local mode excited v times. One
has

ωnv = ω0n

(
v + 1

2

)
− χn

(
v + 1

2

)2

, (10.4)

where ω0n is the harmonic frequency and χn is the anharmonicity of the nth XH local
mode under the action of a Morse potential function of the form [9, 34]

Un(z ) = Dn(1 − ean (z−ze))2, (10.5)

an =
√

8π2mRcχn

h
, (10.5′)

Dn = ω2
0n

4χn
, (10.5′′)

where ω0n and χn are calculated in our approach as follows. One first calculates ab
initio (at the Hartree–Fock or DFT level) the molecular energies at equilibrium and
by displacing the nth XH bond under investigation (backward and forward) in several
steps. The plots of energy values as function of the (z − ze) XH stretching coordinate
are fit with a polynomial interpolation. The second, third, and fourth derivative of the
potential energy are Knn , Knnn , and Knnnn , which represent harmonic and anharmonic
force constants. Therefrom, according to a suggestion of Kjaergaard et al. [35], one
derives ω0n from Knn , and χn from the relation

χn = h

64π2mc

(
5

3

K 2
nnn

K 2
nn

− Knnnn

Knn

)
. (10.6)

A fourth-order anharmonic local oscillator Hamiltonian treated by perturbation theory,
up to second order for the cubic term and at first order for the quartic, gives the energy
levels of Eq. (10.4) if χ satisfies Eq. (10.6) [27].

(b and d) Calculations of Dipole and Rotational Strengths. Looking at Eqs.
(10.1) and (10.2) of Section 10.2.2, one understands that it is necessary to derive an
expression for the transition probabilities for the electric dipole moment and magnetic
dipole moment operators. An ab initio program, like Gaussian03 or Gaussian09 [22]
or other similar packages (like ADF, GAMESS, TURBOMOLE, or DALTON [36–39]),
provides such information (completely or in part) generally only for one-quantum number
transitions (we have used the Gaussian package so far and throughout this work). The
following procedure deals also with higher quantum numbers taking into account electric
and magnetic anharmonic terms as well as mechanical ones (Morse eigenfunctions) and
treats just local mode coordinates with no cross terms. One calculates the first and higher
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derivatives with respect to the XH stretching coordinates (z − ze) of the electric dipole
moment (called APT, which stands for atomic polar tensor) and of the magnetic dipole
moment (called AAT, which stands for atomic axial tensor) as explained later and inserts
them in Eqs. (10.7) and (10.8) [30–32].

〈0|μi |v〉 =
∑

α=H ,X


0
αi3Ln

α3

√
mR

mG
〈0|z − ze |v〉+ 1

2

∑
α=H ,X

(
∂
αi3

∂z

)
0
Ln

α3

√
mR

mG
〈0|(z −ze)

2|v〉

+ 1

6

∑
α=H ,X

(
∂2
αi3

∂z 2

)
0

Ln
α3

√
mR

mG
〈0|(z − ze)

3|v〉 + · · · , (10.7)

〈v |mi |0〉 = 2�

∑
α=H ,X

A0
αi3

Ln
α3√

mRmG
〈v |p|0〉 + 2�

∑
α=H ,X

(
∂Aαi3

∂z

)
0

Ln
α3√

mRmG
〈v |(z −ze)p|0〉

+ 1

2
�

∑
α=H ,X

(
∂2Aαi3

∂z 2

)
0

Ln
α3√

mRmG
(〈v |(z − ze)

2p|0〉−〈0|(z − ze)
2p|v〉) + · · · .

(10.8)

In Eqs. (10.7) and (10.8), mR = MH MX /(MX + MH ) and mG = [
∑
αj

(S n
αj )

2]−1 are mass

coefficients; the first one is the reduced mass of the XH bond, and the second one is the
normalization constant of the vibrational eigenvectors, Ln

αj = √
mG S n

αj · S n
αj relates the

nth normal mode (here the local XH oscillator: z − ze = Qn/
√

mR) to the Cartesian j th
coordinate of the αth atom, namely, rαj = ∑

n
S n

αj Qn .

In Eqs. (10.7) and (10.8) the coordinate number 3 is coincident with the z coordinate
and thus

Ln
H 3 = MX√

M 2
H + M 2

X

, Ln
X 3 = − MH√

M 2
H + M 2

X

(as a consequence, mG = mR
M 2

XH

M 2
H +M 2

X
). The integrals < 0|z − ze |v)>, . . . , < v |(z − ze)

2

p|0 > are known if one assumes the wavefunctions |v > to be eigenfunctions of the
vibrational one-dimensional problem with the Morse potential. These eigenfunctions are
constructed from Laguerre’s polynomial and are known [9, 34]. The integrals are tabu-
lated in many papers and books. For convenience we refer to reference 30.

Last but most important, let us discuss the APTs, 
αi3, and their derivatives and
AATs, Aαi3, and their derivatives. We point out first that in Eqs. (10.7) and (10.8) we
need to take into account only the APTs and AATs of the X and H atoms of the XH
stretching local mode we are interested in, and that each local oscillator is treated in its
own reference system, with the z axis directed from X to H. Then we consider the plots
of the x, y, z components of the H and X APTs and AATs versus (z − ze); as done for the
calculations of ω0n and χn in point a above, we perform polynomial interpolations of the
derived plots. The zeroth-order term gives the first coefficient in Eqs. (10.7) and (10.8),
namely 
0

αi3 and A0
αi3; the first-order terms yield coefficients

(
∂
αi3

∂z

)
0

and
(

∂Aαi3
∂z

)
0
, and

so on.
After calculating a, b, and d, the program would be considered complete, if one

were content with a bar representation of the calculated spectra. In other words, one
could place a bar whose height is proportional to Rnv (with the calculated + or − sign)
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or Dnv at frequencies ωnv for each local mode. However, a more direct representation
of the NIR and NIR-VCD spectra is obtained by applying a bandshape that accounts for
the heterogeneous phenomena undergone by the molecule in the solvent or in the neat
liquid. As a matter of fact, not much work has been done in this sense; only a general
discussion has been provided for VCD at reference 40. So, as done in mid-IR VCD, one
attributes Lorentzian bandshapes to all transitions; the half-width at half-height is decided
on an empirical basis, and it increases with overtone order as indicated by Reddy et al.
[41] for transitions up to �v = 10, in a study of NIR–vis absorption spectra. We may
say that this is the only empirical part of the calculation scheme presented here, if one
abstracts from the local mode hypothesis made above. We wish to conclude this section
by stating that the local mode hypothesis and the approach just presented has allowed us
to go from a mere generic discussion of NIR-VCD spectra to a quantitative interpretation
thereof, with the consequent possibility of gaining physical insight into phenomena such
as conformations, hydrogen bonding, differences in the electrical behavior of XH bonds,
solvent effects, and so on.

10.3. A WORKED-OUT EXAMPLE: EPICHLOROHYDRIN

Epichlorohydrin is a small molecule, used for the synthesis of chiral compounds of
pharmaceutical interest. Both enantiomers have been obtained from Sigma-Aldrich, and
measurements have been done without further purification on neat liquids and, in the case
of the fundamental stretching region, for 2.5 M CCl4 solutions. For this spectroscopic
region, absorption and VCD measuraments have been made with a JASCO 4000-FVS
instrument equipped with an InSb detector, using a BaF2 0.1-mm pathlength cell. The
spectra are presented in Figure 10.3 (left) after solvent subtraction. In the NIR spectro-
scopic regions, 1800–1600 nm for �v = 2 and 1250–1050 nm for �v = 3, spectra have
been measured with the instrument and the procedure described in a previous section.
The absorption spectra for �v = 4 and �v = 5 transitions have been recorded with a
commercial Jasco V-670 instrument. The absorption spectrum is intrinsically weak for
�v = 1, as may be realized by comparing the data of Figure 10.3 with the data of
Figure 10.1; on the other hand, overtone absorption data exhibit comparable intensities
to the data of Figure 10.1. VCD is quite weak for epichlorohydrin, and in the following
we will provide the reasons why this happens.

Assuming that the observed wavenumber at the absorption maximum corresponds
to the average transition frequency of the m oscillators ωv − ωv = 0, the Birge–Sponer
plot, (ωv − ωv = 0)/v versus v , is obtained (see Figure 10.4a). If Eq. (10.4) holds, one
obtains that (ωv − ωv = 0)/v is proportional to v , namely, (ωv − ωv = 0)/v = (ω0 − χ) −
χv . Figure 10.4a indicates that this is indeed valid for epichlorohydrin: the slope of the
straight line is a direct measure of χ (58.2 cm−1 from Figure 10.4a) and intercept yields
the harmonic frequency ω0 (3114 cm−1); these are the “experimental” ω0 and χ values.

In the following we calculate the observed NIR absorption and VCD spectra
without introducing ad hoc parameters except for bandwidths, using the approximate
methods based on the local mode scheme previously discussed. Before doing this, we
recall what already is known in the literature, and we present a “standard” calculation
for fundamentals.

Epichlorohydrin has already been studied by VCD spectroscopy in the mid-IR region
[42]. A thorough discussion of its conformational properties as determined by various
spectroscopic techniques is given in the same paper, where different population ratios for
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�v = 1–3 (middle panels): black traces (S)-(+)-epichlorohydrin, gray traces (R)-(−)-epichlorohydrin.

See text for experimental conditions.

the three conformers are proposed for different solvents, as deduced by mid-IR absorption
spectra (thereafter confirmed by VCD data). Figure 10.5 displays the three conformers
of (S )-epychlorohydrin, along with the adopted atom numbering: As done in reference
42, we keep the nomenclature of cis , gauche I and gauche II with reference to the
dihedral angle formed by the C–Cl bond and the bisector of the ring. Based on the
study in reference 42, we assume as population ratios gauche II:gauche I:cis the values
35.7%:54.6%:9.7% in the case of neat liquid, and 58.6%:34.0%:7.4% in the case of CCl4
solution. Since a good interpretation of the recorded mid-IR spectra was obtained with
B3LYP functional and 6-311G(2d,2p) basis sets, we have adopted the same DFT method
also in our case to interpret the VCD of fundamental and overtone CH stretchings.

When considering the data relating to �v = 1, we calculate transition frequencies,
dipole strength, and rotational strength within the harmonic approximation; however,
a frequency scaling factor (in this case we have preferred to apply a shift related to
anharmonicity) is necessary. We present in Figure 10.6 the spectra calculated for the three
conformers and their weighted average, assuming the population factors proposed for
CCl4 solutions. First of all, it should be noted that the calculations also predict intrinsically
low intensities, both for absorption and for VCD spectra. Furthermore, we observe that
the two most populated conformers gauche I and gauche II show VCD spectra that
are nearly mirror images. The matching between calculated and experimental spectra is
less satisfactory than that obtained for the mid-IR [42]; it is good enough, though, for a
configurational assignment since the plus and minus sign pattern is reproduced. It is clear,
however, that something important has not been taken into account: In particular, there
can be Fermi resonances between bending overtones or combinations and CH stretching
fundamentals affecting the region between 2800 and 2900 cm−1. The treatment of these
anharmonic interactions between bending and stretching modes and their signature in a
VCD spectrum is beyond the scope of this work.
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ing coordinate, with superimposed energy levels. (c) Correlation diagram between DFT calculated

harmonic frequencies ω0 and equilibrium bond lengths for all epiclorohydrin CH bonds for all

conformers.

To calculate overtone spectra, we consider the molecule as a set of five CH oscillators
generating five local modes: As explained in the previous section, for the case of CH
stretchings, �v > 2, this local mode scheme accounts well for the pattern observed for the
absorption spectra; a higher-order approximation introducing couplings is necessary to
account for possible combination bands and to gain the normal mode pattern, which on the
contrary is based on coupled purely harmonic oscillators. For the set of local oscillators
we have first calculated the mechanical parameters as explained in point a. Single-point
energy calculations have been carried out to obtain the potential energy as function of
each internal stretching coordinate; the harmonic frequency and the anarmonicity can be
obtained from the lower derivatives [second, third, and fourth from Eq. (10.6)] of the
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polynomial curve that best fits the calculated energy values. The χ value is quite sensitive
to the uncertainties in the numerical calculations: We find that, in the fitting procedure,
one needs, at least, sixth-order polynomial. The lower derivatives needed in Eq. (10.6)
are stable for polynomial fittings of degrees 6–12. In our case we have considered quite a
small step of 0.01 Å and an interval of about (−0.27 Å, +0.52 Å) around the equilibrium
geometry since vibrations are asymmetric due to anharmonicity. An example of calculated
energy curve for one of the considered CH bonds is shown in Figure 10.4B. Also, steps of
0.025 Å give comparable results. With the mechanical parameters ω0 and χ derived from
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TABLE 10.1. Calculated Mechanical and Electrical Parameters for CH Bonds of
(S )-Epichlorohydrin in Its Three Conformersa

Configuration r0 χ ω0 
0
H 33

(
∂
H 33

∂z

)
0

(
∂2
H 33

∂z 2

)
0

√
A0

H 13
2 + A0

H 23
2

gauche II
4 1.0845 61.4 3144 −0.11 −0.51 −0.19 0.17
5 1.0836 61.6 3153 −0.12 −0.61 −0.21 0.11
7 1.0851 61.9 3136 −0.10 −0.57 −0.34 0.04
8 1.0850 60.7 3142 −0.05 −0.44 −0.36 0.11
9 1.0858 61.6 3132 −0.07 −0.54 −0.49 0.10

gauche I
4 1.0847 62.1 3138 −0.12 −0.55 −0.21 0.20
5 1.0841 61.7 3145 −0.13 −0.65 −0.21 0.14
7 1.0853 61.9 3134 −0.10 −0.55 −0.33 0.06
8 1.0866 62.1 3123 −0.07 −0.52 −0.50 0.09
9 1.0851 60.8 3143 −0.05 −0.42 −0.36 0.09

cis
4 1.0821 60.1 3174 −0.06 −0.42 −0.13 0.13
5 1.0842 62.0 3144 −0.15 −0.66 −0.20 0.09
7 1.0895 63.6 3083 −0.15 −0.68 −0.33 0.05
8 1.0868 61.7 3120 −0.07 −0.53 −0.51 0.11
9 1.0870 61.9 3119 −0.07 −0.53 −0.46 0.12

a Equilibrium bond length r0 (Å), anharmonicity χ(cm−1), mechanical Frequency ω0(cm−1), 
0
α33 (e: electron

charge), first and second derivatives (e/Å and e/Å2), and modulus of AAT transverse component ((ea0)/(�c),
where a0 is the Bohr radius, h is the reduced Planck’s constant, and c is the velocity of light) (see Figure 10.5
and text).

such curves and reported in Table 10.1, we can easily calculate all transition frequencies
using Eq. (10.4). We observe that all CH bonds are quite similar in all conformations,
the only relevant differences being observed in the cis conformer for the H7 atom trans
to the chlorine atom (low frequency and high anarmonicity) and for H4. It is well known
[43] that the harmonic frequencies correlate nicely with the equilibrium bond lengths.
NIR absorption spectroscopy has been used in cases more favorable than here (larger
differences among CH bonds and higher resolution), but, just on the basis of calculations
we still may appreciate from Figure 10.4C that this correlation holds.

After characterizing mechanical coefficients, we next need to calculate the electric
and magnetic parameters of Eqs. (10.7) and (10.8): 
0

αi3 and A0
αi3 and their derivatives

with respect to the internal coordinate z . Tensors of both atoms C and H for each bond
need to be considered and, due to the local mode scheme, just the variation along the local
coordinate z (index 3) is needed. Each atomic tensor APT and AAT is referred to the local
Cartesian system assuming the z axis along the CH bond; the two perpendicular axes
x and y are consequently chosen. Similar to what was previously done for evaluating
anharmonicity χ , tensors are calculated for 25 steps of +0.08 Å and −0.08 Å. We
present plots of the results for α = H in Figures 10.7A and 10.7B. All components

0

αi3 and A0
αi3 are interpolated by an eighth-order polynomial. The zeroth-order term

and the first and second derivatives thus obtained are used in Eqs. (10.7) and (10.8).
This calculation is less problematic than that for the mechanical anharmonicity; that is,
it does not show a strong dependence on the polynomial degree and on the chosen step.
As expected, 
0

α33 and its derivatives assume values higher than the other components,
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0
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toward O for atoms 4, 5, and 7; in the plane HCC, pointing toward C for atoms 8 and 9.
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which, however, must be taken into account to calculate rotational strenghts. 
0
H 33 are

negative for all H atoms, as it is well known in the overtone intensity literature [44]; the
opposite holds for OH stretchings [31]. Since the latter values are related to the electro-
optical parameters, we report in Table 10.1 just these components: all hydrogen atoms
exhibit a quite similar behavior, even though a clear effect of chlorine in lowering these
parameters for the nearby hydrogens is observed. Opposite to the case of APT, the most
important contributions of AAT are the components xz and yz , transverse to the CH z
axis. In any case, the electric dipole term is not exactly parallel to the CH bond, and the
magnetic contribution is not perpendicular to the bond direction, a condition that would
generate vanishing rotational strengths.

Using the calculated 
0
αi3 and A0

αi3 and their derivatives, and after evaluating the
transition elements of Eqs. (10.7) and (10.8) on the basis of Morse oscillator eigenfunc-
tions, we have computed dipole and rotational strength for each transition, which we
report in Table 10.2. Through introduction of a Lorentzian bandshape for the transitions,
with an ad hoc bandwith value (the same for all transitions in each overtone region), we
have obtained the calculated spectra. For each conformer we show them in Figures 10.8
and 10.9 for �v = 2 and �v = 3, respectively; we show there the different contributions
of the successive “electric” anharmonic corrections. We use the following notation: ABS0
and CD0 for the use of only the first term of Eqs. (10.7) and (10.8), that is, no tensor
derivative; ABS1 and CD1 for the use of also the second term of Eqs. (10.7) and (10.8)
with the first tensor derivatives; ABS2 and CD2 for the use of also the third term of
the two equations, with second tensor derivatives. As expected from the trends observed
for absorbtion intensities [44] and VCD signals [12] and from perturbative theory [45,
46] the successive correction terms increase in importance with quantum number v: the
first corrections ABS1 and CD1 are sufficient for the first overtone region, the second
order corrections have some influence for the second overtones. These facts may be
appreciated also from Table 10.2. We notice that, while for absorption the perturbative
terms count only for increasing intensity, for VCD the different expansion terms can
generate also a change in sign of some rotational strengths. One could easily get average
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Figure 10.8. (S)-(+)-epichlorohydrin: �v = 2 calculated absorption (top) and VCD spectra

(bottom) for the three conformers. Contributions of the different approximations are evidenced

as explained in the text. A 10-nm bandwidth was adopted.
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rules for the relative signs of the successive corrections involving the z component of
μ, since they depend on the sign of < 0|(z − ze)

n |v > and of 
0
α33 and its derivatives,

which have usually the same sign for all CHs. In fact the opposite sign of < 0|z − ze |v >

and < 0|(z − ze)
2|v > [30], in conjunction with the fact that 
0

α33 and (∂
0
α33/∂z )0 are

calculated with the same sign (Table 10.1), explains the larger decrease in intensity from
the fundamental to the first overtone as compared to the decrease observed for successive
overtones. On the contrary, the correct sign of the rotational strengths requires detailed
calculations of all components of APT and AAT. From Figures 10.8 and 10.9 it is clear
that zero-order results are not acceptable for overtones so that in general the electric
anharmonic terms are crucial.

Given these calculations, we present in Figure 10.10 the comparison of experimental
and calculated spectra, after due average over contribution from the three conformers,
assuming the population factors proposed in reference 42. The comparison appears quite
good, considering that we obtain the correct sign for �v = 2: Due to our approximation
we cannot obtain bands on the high-energy side of the spectroscopic region (1640 nm)
which are most probably due to combinations, |0, 0 > → |1, 1 > transitions. In the case
treated here, the interpretation is facilitated by the fact that the two principal conformers
generate practically monosignate spectra of opposite sign: Thus combination of local
modes, due to possible couplings, neglected here, would in any case conserve the sign.
Also at �v = 3, where the local mode hypothesis is more appropriate, we obtain good
results. The two features of opposite sign are generated by the two principal conformers:
the positive band at higher energy is due to gauche II, oscillator 5 (see Figure 10.5 for
numbering); at lower energy, oscillator 4 brings in negative rotational strength followed
by positive contributions of oscillators 7 and 9. The latter are balanced by the negative
band of the conformer gauche I which is largely due to oscillator 7: The specific rotational
strength of gauche I is smaller than that due to gauche II at the same wavelength (higher
than 1150 nm), but gauche I has a larger population factor.

The case presented here is just an illustrative example, which we have used to
analyze the role of the terms that enter in the calculations; in fact we have assumed
population values derived by studies of other spectroscopic regions: However, this study
provides an independent support for the existence of two main conformers in neat liquid
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TABLE 10.2. Calculated Wavelengths (nm) and Dipole and Rotational Strengths (three levels
of approximation) for �v = 2 and �v = 3 CH bond stretching transitions for
(S )-epichlorohydrin in its Three Conformersa

�v = 2 local mode # nm D0 D1 D2 R0 R1 R2

gauche II
4 1689 2.2E-01 4.0E-01 4.1E-01 −1.9E-01 −7.0E-02 −7.7E-02
5 1685 2.7E-01 5.6E-01 5.8E-01 2.1E-01 7.6E-02 8.9E-02
7 1695 1.9E-01 5.0E-01 5.4E-01 −5.6E-02 2.0E-01 1.9E-01
8 1689 7.4E-02 4.5E-01 4.9E-01 5.0E-02 5.7E-02 6.9E-02
9 1697 1.1E-01 6.0E-01 6.5E-01 −3.9E-02 1.2E-01 1.2E-01

gauche I
4 1694 2.7E-01 4.3E-01 4.5E-01 −1.4E-01 4.3E-02 3.4E-02
5 1689 3.0E-01 6.5E-01 6.7E-01 1.6E-01 −2.6E-02 −1.4E-02
7 1696 1.9E-01 4.8E-01 5.2E-01 −7.9E-02 −1.1E-01 −1.1E-01
8 1702 1.2E-01 5.7E-01 6.2E-01 2.8E-02 −1.5E-02 −1.6E-02
9 1689 8.4E-02 4.3E-01 4.6E-01 1.8E-02 −4.9E-02 −5.2E-02

cis
4 1670 1.0E-01 3.5E-01 3.6E-01 −5.6E-02 8.3E-02 8.6E-02
5 1690 3.7E-01 5.7E-01 6.0E-01 1.6E-01 4.7E-02 6.2E-02
7 1729 3.6E-01 6.3E-01 6.8E-01 −2.2E-01 3.5E-02 2.2E-02
8 1704 1.2E-01 6.1E-01 6.8E-01 1.5E-02 2.4E-01 2.6E-01
9 1704 1.4E-01 5.7E-01 6.2E-01 −9.3E-02 −1.3E-01 −1.5E-01

�v = 3
gauche II

4 1150 6.1E-03 3.9E-02 3.3E-02 −7.6E-03 −2.1E-02 −1.7E-02
5 1147 7.5E-03 5.4E-02 4.6E-02 8.5E-03 2.4E-02 1.8E-02
7 1154 5.4E-03 4.8E-02 3.7E-02 −2.3E-03 1.7E-02 1.9E-02
8 1150 2.0E-03 3.5E-02 2.6E-02 2.0E-03 3.7E-03 2.1E-03
9 1155 3.2E-03 4.9E-02 3.4E-02 −1.6E-03 1.7E-02 1.3E-02

gauche I
4 1154 7.6E-03 4.4E-02 3.7E-02 −5.6E-03 −4.8E-03 −2.3E-03
5 1150 8.4E-03 6.2E-02 5.4E-02 6.5E-03 1.0E-02 6.5E-03
7 1155 5.3E-03 4.6E-02 3.5E-02 −3.2E-03 −2.3E-02 −2.2E-02
8 1159 3.4E-03 4.7E-02 3.2E-02 1.1E-03 −1.1E-02 −6.6E-03
9 1150 2.3E-03 3.3E-02 2.4E-02 7.1E-04 6.9E-05 −1.8E-03

cis
4 1136 2.7E-03 3.0E-02 2.6E-02 −2.2E-03 4.5E-03 3.0E-03
5 1151 1.0E-02 5.9E-02 5.1E-02 6.7E-03 1.8E-02 1.2E-02
7 1178 1.0E-02 6.6E-02 5.3E-02 −9.4E-03 −4.0E-03 −1.3E-05
8 1160 3.4E-03 5.0E-02 3.4E-02 6.1E-04 1.7E-02 1.5E-02
9 1161 3.8E-03 4.8E-02 3.4E-02 −3.8E-03 −1.0E-02 −8.8E-03

a D0 and R0 were obtained with only the first term of Eqs. (10.7) and (10.8), D1 and R1 were obtained using
also the second term of Eqs. (10.7) and (10.8), and D2 and R2 were obtained using the complete expressions
of the two equations. Units for dipole strengths are 10−40 esu2cm2, and units for rotational strengths are
10−44 esu2cm2.
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Figure 10.10. Comparison of �v = 2 (left) and �v = 3 (right) experimental absorption and VCD

spectra of (S)- and (R)-epichlorohydrin (black and gray respectively) with the calculated spectra

for (S)-epichlorohydrin. Population factors are used from reference 42.

epichlorohydrin, as was evaluated earlier by Wang and Polavarapu [42]. Next we will
describe other situations in which NIR-VCD provides precious physical insight in other
molecular systems.

10.4. PERSPECTIVES AND CONCLUSIONS

In this conclusive paragraph we examine first what is possible to investigate by NIR-
VCD and what kind of information one may get from NIR-VCD spectra, and we then
indicate what is needed in order to make NIR-VCD to advance. In thinking of possible
applications of NIR-VCD, one should remember that nonlinear phenomena enter into
several aspects of NIR-VCD spectra. Not all anharmonic phenomena are fully under
control, as we shall see later. However, two types of problems can be considered at
a satisfactory point on both theory and experimentation with respect to what has been
expounded above, and we start this conclusive chapter just from them.

(a) Exploiting the �v = 2 OH-Stretching Region, for Truly Local Mode
Problems. As presented in reference 31, recording the �v = 2 NIR-VCD and NIR
absorption spectra of dilute 0.1 M solutions of (1R)- and (1S )-borneol and applying the
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of 176 cm−1 accounting for anharmonicity (black); isolated local OH stretching characterized
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spectra of (1S)-(+)-endo-borneol at the �v = 2 OH stretching region. Bars indicating dipole
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conducted on 0.06 M/CCl4 solution in a 5-cm pathlength cell. In both cases, calculated spectra

are obtained from averages with statistical weights based on �G. B3LYP functional and 6-31G**

basis set were used.

theory of Section 10.2.2 allowed us to “detect” and characterize with good confidence
the conformational states of the single and isolated OH bond. This is similar to what
was reported for epichlorohydryn in Section 10.3, where different conformers have been
associated to bands of opposite sign. We reproduce from reference 31 the comparison of
calculations and experiments in Figure 10.11b. The theoretical approach of Section 10.2.2,
adopted in reference 31, is quite appropriate in this case, since the main assumption of
the theory, namely the uncoupled local mode hypothesis, is intrinsic to the system.
Indeed borneol has just one OH oscillator, with ω0 and χ values quite different from
those of the CH bonds in the same molecule [30, 31]; this prevents interaction among
the CH and OH oscillators. Besides, for �v = 2 the difference in frequency between
local modes is larger than that for �v = 1 [see Eq. (10.4) of Section 10.2.2)], and this
increases the resolution of the signals associated with different conformational states of
the OH bond in the overtone with respect to the fundamental region. Moreover, we notice
that the predicted VCD spectrum of the fundamental �v = 1 OH-stretching exhibits a
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couplet of low intensity and in reverse order with respect to the first overtone (see
Figure 10.11a).

Considering intermolecular hydrogen bonding phenomena, we may expect that the
�v = 2 OH stretching signals be spread out on a twice wider spectroscopic region
than that for �v = 1; this has the consequence that intramolecular hydrogen bonding
phenomena be easier to study by NIR-VCD �v = 2 spectroscopy. We think that this
kind of expectation motivated the very early studies by Sugeta and co-workers [47] on
�v = 2 NIR VCD spectra of alcohols, esters, and amines. On the basis of what we
have just reported, we may expect some indication on internal hydrogen bonds from the
�v = 2 NIR-VCD spectra. An example is provided in Figure 10.12 with the NIR-VCD
spectra of 2,2,2-trifluorophenylethanol, where we tentatively assign the intense negative
band for the (R)-species to the OH stretching in the conformational state where the OH
is pointing toward the CF3 group. All of this is quite important, since the OH or NH/CF3

interaction is under investigation nowadays [48]. Calculations are underway to support
our assignment.
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Figure 10.12. Experimental absorption

and VCD spectra of both enantiomers of

2,2,2-trifluorophenylethanol in the �v = 2 OH

stretching region; 0.13 M/CCl4 solution, 2-cm

pathlength.
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Figure 10.13. Experimental absorption (top) and VCD spectra (bottom) of D-dimethyltartrate

(DDT) in CCl4 in the presence of AOT, for the first overtone OH stretching region. Left panels: (a)

DDT/AOT/CCl4 ([AOT] = 0.158 M; R = 2), (b) DDT/AOT/CCl4 ([AOT] = 0.158 M; R = 0.7), (c) AOT/CCl4
([AOT] = 0.158 M); 2-cm pathlength. Right panels: (a, b) DDT/AOT/CCl4: superimposed spectra at

two different concentrations, AOT absorption subtracted; (d) DDT/CCl40.04M solution absorption

and VCD spectra.

Another, similar example of the use of the OH overtone NIR-VCD spectroscopy
is provided in Figure 10.13, where we present on the left the superposition of the
NIR and NIR-VCD spectra of D-dimethyltartrate (DDT) in the presence of AOT
(sodium-ethyl-bis-octyl-succinate) surfactant molecule in CCl4 in two different ratios
R = [DDT]/[AOT]. AOT is known to aggregate in the form of reverse micelles in the
presence of apolar solvents and provides a means to solubilize larger tartrate quantities
[49]. In this spectroscopic region we observe also absorption due to AOT (combination
bands corresponding to one quantum CH stretching and one bending) which does not,
however, interfere with the DDT NIR-VCD signals. On the right, after subtraction of
AOT absorption, we observe how for the two R ratios one has superimposable ε and
�ε spectra; we compare them to the corresponding spectra for a 0.04 M solution of
DDT in CCl4. We may assume the 0.04 M solution to be representative or close to
what happens for the isolated molecule. On the contrary, in the presence of AOT, DDT
molecules form intermolecular hydrogen bonds with themselves and with AOT; we
surmise that in the latter case the DDT molecules are not associated to the surfactant
molecules. From the literature it is known that association through intermolecular H
bonds increases OH stretching fundamental absorption intensity, while it decreases
intensity at the first overtone [50, 51].

(b) Exploiting the CH Stretching Regions for �v ≥ 3 for Qualitative
Characterization of Different Types of CH Bonds. It is well known that aromatic
CH bonds and aliphatic CH bonds have quite distinct IR fundamental frequencies and
intensities [44]: The aromatic ω0 is higher than the aliphatic ω0, and the aromatic inten-
sities are much weaker than the aliphatic ones. The NIR absorption spectra provide a
different perspective, since the NIR aromatic intensities are comparable to the NIR
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aliphatic intensities [44]. This is dramatically seen when the two types of oscillators, aro-
matic and aliphatic, are co-present as in the 4-COOCD3-[2.2]-paracyclophane case [52].
We provide in Figure 10.14 the succession of �v = 1 to �v = 3 spectra of 4-COOCD3-
[2.2]-paracyclophane in CCl4 and the succession of �v = 1, �v = 2, and �v = 3 NIR
VCD spectra of (R)-and (S )-4-COOCD3-[2.2]-paracyclophane. Not only do the aromatic
overtones have comparable NIR absorption spectra as the aliphatic ones, but they have
even larger NIR-VCD spectra at �v = 3 (and possibly at �v = 2, where the signal is
quite noisy since in that region the detector is less efficient). In reference 52 a semiquan-
titative explanation was provided in terms of the

(
∂
H 33

∂z

)
0

=
(

∂2μ

∂z 2

)
0

parameter, on the
basis of the local mode hypothesis for the CH stretching vibrations (see Figure 10.15).
In that paper it was also noticed that the correct sign of the NIR-VCD spectrum could be
obtained only by introducing electrical anharmonicity. The calculated rotational strengths,
compared to experimental values, are weak due to the approximations adopted: (1) Just
two different values for (∂μ/∂z)0 and two for (∂2μ/∂z 2)0 were proposed to represent on
the average aromatic and aliphatic CHs, and (2) no magnetic anharmonicity correction
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Absorption and rotational strengths have been evaluated as explained in the text (see also

reference 52).

was taken into account as the magnetic contribution was obtained just from calculations
of the fundamental region, with due correction factor deduced from the dependence of
transition moments 〈0|z − ze |v〉 and 〈v |p|0〉 on quantum number v .

In the same line of reasoning, following the theory of Section 10.2.2 with both
electric and magnetic anharmonic corrections of Eqs. (10.7) and (10.8), it was shown for
camphorquinone in reference 30 that the CH bond in position 4, close to the C=O bond
in position 3, has a special nonlinear electrical and mechanical behavior, giving rise to
an intense and isolated NIR-VCD band.

(c) Future Directions in Instrumentation and Measurements. The instru-
ment used in our laboratory (Figure 10.2) is somewhat limited because the light source
has very low power (20 W); the monochromator has a low reciprocal linear disper-
sion (∼15 nm/mm) and uses only fixed (even if interchangeable) 300-μm slits, and the
working wavelength range of the quartz PEM itself is limited to 2.0 μm. Progress in
these aspects is easily possible and will be pursued. We also point out that FTIR-based
NIR-VCD measurements are pursued by Nafie and co-workers [53], especially in the
region 4000–6000 cm−1. Quite recently they have been able to characterize the NH
overtone stretchings bands and the NH stretching C=O stretching combination bands
for peptides and proteins. This is an exciting success that opens the door to important
applications.

(d) Future Directions in Calculations/Theory. The derivation of the anhar-
monicity constant χ illustrated in Sections 10.2 and 10.3, while giving pretty accurate
predictions of the NIR absorption and NIR VCD bands, is time-consuming. It involves
studying molecular properties for large numbers of geometries, corresponding to stretch-
ing XH bonds off-equilibrium for at least 10 positions. We are currently exploring
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alternative methods [54], possibly less accurate but more efficient, especially in view
of the fact that it will be necessary to consider stretching simultaneously more than one
XH bond, when relaxing the pure local mode hypothesis. This last remark takes us to the
direction that we wish to explore, which, as a matter of fact, constitutes the very early
motivation of our research in this area [12]: the normal mode/local mode transition.
The two vibrational regimes are simultaneously accounted for with coupled anharmonic
oscillator models as illustrated in the literature as well as with anharmonically perturbed
harmonic normal modes [29, 46, 55, 56]. After defining multidimensional mechanical
and electrical anharmonic constants—that is, after calculating cross anharmonic force
constants and after calculating the APT and AAT dependence on more than one (z − ze)

XH stretching coordinate—a perturbative treatment needs to be conducted. One can
follow a second-order perturbative treatment taking into account effective intramanifold
couplings [29, 55, 56] or a Van Vleck perturbation treatment based on S matrices [14,
15, 32, 57]. We applied the latter method in references 16 and 45 for model systems,
without the ab initio determination of electrical and mechanical quantities. We expect to
gain much insight from this approach, especially for understanding the �v = 2 region.
The latter region is transitional from normal to local modes and does not require, on
the experimental side, the large amounts of samples needed at higher �v . Also, for this
reason we think that progress in this area could attract more people to explore NIR VCD.

Of course the above steps are not at all exhaustive to make the experiments and theory
better. Other studies are also necessary, but we defer them to a more distant future:
On theoretical grounds, calculating higher-order terms in the electrical anharmonicity
constants [see Eqs. (10.7) and (10.8)] to study the �v ≥ 4 NIR-VCD spectra and, related
to this, worrying about the influence of non-Born–Oppenheimer effects, as expounded in
reference 2, are needed; relaxing the separation of bending/deformation and XH stretching
modes could enlighten the role of large-amplitude motions in highly excited states. In
the experimental direction, the use of alternate sources, like lasers, could allow one to
study less abundant samples or in vapor phase. Finally, measurements should also regard
the NH stretching overtone regions, which are important for proteins and peptides, as
done for example in reference 53 and the CH stretching overtone regions of heterocyclic
molecules as model systems for the nucleic acid bases.

REFERENCES

1. T. A. Keiderling, P. J. Stephens, Chem. Phys. Lett . 1976, 41 , 46–48.

2. S. Abbate, E. Castiglioni, F. Gangemi, R. Gangemi, G. Longhi, Chirality 2009, 21 ,
S242–S252.

3. (a) P. Salvadori, C. Rosini, C. Bertucci, J. Am. Chem. Soc. 1984, 106 , 2439–2440. (b) X.
Peng, N. Komatzu, S. Battacharya, T. Shinawaki, S. Aonouma, T. Kimura, A. Osuka, Nature
Nanotechnol . 2002, 2 , 361–365.

4. L. J. F. Hermans, “Blue Skies, blue seas”, Eur. Phys. J . 2006, 37 , 16–16.

5. H. W. Siesler, Y. Ozaki, S. Kawata, Editors Near Infrared Spectroscopy. Principles, Instru-
ments, Applications , Wiley-VCH, Weinheim, 2002.

6. E. B. Wilson, Jr., J. C. Decius, P. C. Cross, Molecular Vibrations , McGraw-Hill, New York,
1955.

7. G. Herzberg, Molecular Spectra and Molecular Structure, I. Spectra of Diatomic Molecules ,
2nd ed., Van Nostrand Reinhold, New York, 1950.

8. M. S. Child, L. Halonen, Adv. Chem. Phys . 1985, 57 , 1–58.



272 COMPREHENSIVE CHIROPTICAL SPECTROSCOPY, VOLUME 1

9. B. R. Henry, Acc. Chem. Rev . 1987, 20 , 429–435.

10. S. Abbate, G. Longhi, J. W. Givens, S. Boiadjiev, D. A. Lightner, A. Moscowitz, Appl.
Spectrosc. 1996, 50 , 642–643.

11. C. Guo, R. D. Shah, R. K. Dukor, T. B. Freedman, X. Cao, L. A. Nafie,. Vibr. Spectrosc.
2006, 42 , 254–272.

12. S. Abbate, G. Longhi, L. Ricard, C. Bertucci, C. Rosini, P. Salvadori, A. Moscowitz, J. Am.
Chem. Soc. 1989, 111 , 836–840.

13. J. A. Schellman, Chem. Rev . 1975, 75 , 323–331.

14. T. R. Faulkner, C. Marcott, A. Moscowitz, J. Overend, J. Am. Chem. Soc. 1977, 99 ,
8160–8168.

15. P. L. Polavarapu, Mol. Phys. 1996, 89 , 1503–1510.

16. S. Abbate, G. Longhi, C. Santina, Chirality 2000, 12 , 180–190.

17. E. Castiglioni, F. Lebon, G. Longhi, S. Abbate, Enantiomer 2002, 7 , 161–173.

18. G. Longhi R. Gangemi, F. Lebon, E. Castiglioni, S. Abbate, V. M. Pultz, D. A. Lightner, J.
Phys. Chem. A 2004, 108 , 5338–5352.

19. I. Chabay, E. C. Hsu, G. Holzwarth, Chem. Phys. Lett . 1972, 15 , 211–214.

20. I. Chabay, Infrared Circular Dichroism Measurements, Ph.D. thesis, University of Chicago,
1972.

21. L. Rosenfeld, ZS Phys . 1928–29, 52 , 161–174.

22. GAUSSIAN 09, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam,
S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida,
T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian,
J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev,
A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth,
P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain,
O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui,
A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.
Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara,
M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople,
Gaussian Inc., Pittsburgh, 2009.

23. P. J. Stephens, J. Phys. Chem . 1985, 89 , 748–750.

24. (a) R. L. Swofford, M. S. Burberry, J. A. Morrell, A. C. Albrecht, J. Chem. Phys . 1977, 66 ,
5245–5246. (b) M. S. Burberry, A. C. Albrecht, J. Chem. Phys . 1979, 71 , 4631–4640.
(c) M. S. Burberry, A. C. Albrecht, J. Chem. Phys . 1979, 70 , 147–152.

25. (a) G. A. Bethardy, X. Wang, D. S. Perry, Can. J. Chem . 1994, 92 , 652–659. (b) E. L. Sibert
III, W. P. Reinhardt, J. T. Hynes, J. Chem. Phys . 1984, 81 , 1115–1134.

26. K. K. Lehman, J. Chem. Phys . 1983, 79 , 1098–1099.

27. I. M. Mills, A. G. Robiette, Mol. Phys . 1985, 56 , 743–765.

28. E. L. Sibert III, J. Chem. Phys . 1988, 88 , 4378–4390.

29. L. Halonen, Adv. Chem. Phys . 1998, 104 , 41–179.

30. F. Gangemi, R. Gangemi, G. Longhi, S. Abbate, Vibr. Spectrosc. 2009, 50 , 257–267.

31. F. Gangemi, R. Gangemi, G. Longhi, S. Abbate, Phys. Chem. Chem. Phys . 2009,
11 , 2683–2689.

32. K. L. Bak, O. Bludskỳ, P. Jørgensen, J. Chem. Phys . 1995, 103 , 10548–10555.

33. P. J. Stephens, F. J. Devlin, J. J. Pan, Chirality 2008, 20 , 643–663.

34. (a) P. M. Morse, Phys. Rev . 1929, 34 , 57–64; (b) D. Ter Haar, Phys. Rev . 1946, 70 , 222–223.

35. D. A. Howard, P. Jørgensen, H. G. Kjaergaard, J. Am. Chem. Soc. 2005. 127 , 17096–17103.



NEAR-INFRARED VIBRATIONAL CIRCULAR DICHROISM: NIR-VCD 273

36. ADF: Amsterdam Density Functional program. Theoretical Chemistry, Vrjie Universiteit, Ams-
terdam. URL: http://www.scm.com V. P. Nicu, J. Neugebauer, S. K. Wolf, E. J. Baerends,
Theor. Chem. Acc. 2008, 119 , 245–263.

37. GAMESS: General Atomic and Molecular Electronic Structure System, M. Dupuis, D. Span-
gler, J. J. Wendoloski, NRCC, Software Catalog, University of California, Berkeley, 1980.

38. TURBOMOLE: V6.3 2011, A development of University of Karlsruhe and Forschungszen-
trum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007; available from
http://www.turbomole.com.

39. DALTON: A molecular electronic structure program, Hans Ågren et al. Release Dalton, 2011,
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OPTICAL ROTATION AND INTRINSIC
OPTICAL ACTIVITY

Patrick H. Vaccaro

11.1. INTRODUCTION

In the transparent region of the spectrum, natural optical activity commonly manifests
itself as a rotation in the plane of polarization for electromagnetic radiation passing
through an isotropic ensemble of enantiomerically enriched chiral molecules [1, 2]. The
resulting “optical rotation” represents the progenitor of all chiroptical phenomena, having
first been discovered by Arago [3] in 1811 during investigations of crystalline quartz and
subsequently elaborated by Biot [4, 5] in seminal studies performed on solids, liquids,
and gases. Reduced to most basic terms, this effect arises from the action of an intrin-
sic (optical) anisotropy known as circular birefringence, whereby the index of refraction
in a chiral medium differs slightly for the two helical “directions” of light polarization.
The characteristic dependence of optical rotation on incident wavelength, sample concen-
tration, and other experimental variables was recognized from the onset and exploited
extensively as an analytical tool [6]; however, the precise relationship of such physi-
cal measurements to underlying molecular structure took a substantially longer time to
mature. Indeed, as highlighted by recent reviews [7–13], much of the current interest in
chiroptical spectroscopy stems from the emergence of reliable computational paradigms
for correlating the unique signatures of these processes to the absolute stereochemistry
of targeted substrates.

Electromagnetic radiation propagating through an isotropic chiral medium experi-
ences a complex index of refraction that differs in both the real (in-phase) and imaginary
(in-quadrature) parts for the right-circular and left-circular polarization states that together

Comprehensive Chiroptical Spectroscopy, Volume 1: Instrumentation, Methodologies, and Theoretical
Simulations, First Edition. Edited by N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody.
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define the helicity basis [1, 2]. The resulting phenomena of circular birefringence (CB)
and circular dichroism (CD) lead to observable effects in the form of dispersive rota-
tion and absorptive elliptization for an impinging beam of plane-polarized light, which
commonly are measured under conditions of nonresonant and resonant excitation, respec-
tively. The molecules of opposite handedness that compose an enantiomeric pair long
have been known to display wavelength-resolved optical activities (CB and CD) of equal
magnitude yet inverse sign, thereby affording a viable means for their relative discrim-
ination [14]. Unfortunately, the a priori correlation of a specific chiroptical response
with an individual enantiomer still presents formidable challenges, usually requiring
supplementary physical and/or chemical information to reach a definitive assignment
[15, 16]. Historically, this crucial task has relied on empirical rules (e.g., chromophore-
based octant/sector correlations [14] and the conformational dissymmetry relationships
of Brewster [17]) or quasi-classical models (e.g., the induced polarization-anisotropy
schemes proposed by Kirkwood [18] and Applequist [19]); however, recent years have
witnessed the rapid development of quantum-chemical techniques designed to compute
such properties from first principles [7–13]. The advent of robust ab initio methods
for reliably predicting the frequency-dependent response evoked from a chiral molecule
has led to a veritable renaissance in the applications of chiroptical spectroscopy [7,
20], with numerous experimental and theoretical endeavors highlighting the ability to
determine absolute stereochemical configurations, as well as secondary structural and
conformational parameters, for diverse species.

This chapter focuses on the dispersive phenomena of natural optical rotation or
circular birefringence (CB) exhibited by isotropic ensembles of chiral molecules main-
tained under thermally equilibrated liquid-phase and vapor-phase conditions. Particular
emphasis will be directed towards elucidation of the intrinsic behavior obtained in the
absence of environmental perturbations, the quantitative measurement of which has been
made possible by recent advances in polarimetric instrumentation. Ancillary discussion
of the absorptive events arising from resonant circular dichroism (CD) will be presented,
thereby affording a means for relating the provenance and manifestation of these comple-
mentary linear processes (viz., observed signals scale in direct proportion to the intensity
of incident electromagnetic radiation) [21–23]. While electronic variants of chiroptical
spectroscopy, as revealed by wavelength-resolved optical rotatory dispersion (ORD) and
electronic circular dichroism (ECD) profiles, will be of primary concern, the need to con-
sider nuclear motion (e.g., vibrational displacements and conformational flexibility) will
be made apparent by the consequences arising from nonrigidity of the molecular frame-
work. Indeed, the recommended protocol and de facto standard for stereochemical studies
based upon such probes advocates the simultaneous use of multiple techniques [24],
including the vibration-mediated schemes [13] of vibrational circular dichroism [10, 25]
(VCD) and Raman optical activity [26] (ROA) that explicitly rely on nuclear degrees of
freedom for their spectral signatures. The International System of Units [27] (SI ) will be
employed throughout the ensuing discussion; however, measurable chiroptical parameters
often will be converted to their commonly accepted (albeit nonstandard) metrics.

11.2. THEORETICAL BACKGROUND

11.2.1. Notation and Conventions

The semiclassical treatment of matter–field interactions, whereby quantized molecules
are acted upon by classical electromagnetic radiation, affords a convenient framework



OPTICAL ROTATION AND INTRINSIC OPTICAL ACTIVITY 277

for describing chiroptical phenomena [1, 2]. From this viewpoint, light can be decom-
posed into coherently oscillating electric-field, E(r,t) (in V/m), and magnetic-field, B(r,t)
(in tesla or Vs/m2), vectors that propagate through free space at a characteristic speed
related to the electric permittivity (ε0) and magnetic permeability (μ0) of a vacuum,
c = (ε0μ0)

−1/2. For a monochromatic plane wave having angular frequency ω (rad/s) and
angular wavevector k (rad/m), the spatial and temporal dependencies of these quantities
can be specified by [21, 28]:

E(r, t) = Eωei (k·r−ωt) ⇒ 1

2
[Eωei (k·r−ωt) + E∗

ωe−i (k·r−ωt)], (11.1)

B(r, t) = Bωei (k·r−ωt) ⇒ 1

2
[Bωei (k·r−ωt) + B∗

ωe−i (k·r−ωt)], (11.2)

where the exponential representation provides a compact means for simultaneously encod-
ing amplitude and phase information. As highlighted by the final equalities in these
expressions, the transcription of complex fields into their physically meaningful counter-
parts implicitly assumes that only the real part is of significance. The angular wavevector
points in the direction of wave propagation, with the angular wavenumber derived from
its magnitude, k = |k| (rad/m), being related to the corresponding linear wavenumber
ν̃ (osc/m) and wavelength λ (m/osc) by k = 2πν̃ = 2π/λ. Similarly, the angular fre-
quency can be recast in terms of the linear frequency ν (osc/s) and period of oscillation
T (s/osc) such that ω = 2πν = 2π /T. The spatial (k ) and temporal (ω) properties for any
viable wave phenomenon must be connected through a specific dispersion relationship
[29], which can be formulated as ω = ck (or ν = c/λ) for electromagnetic radiation
traversing a vacuum. In the case of a transparent (nonabsorbing) dielectric medium char-
acterized by (pure-real) index of refraction n(ω) [30], this expression must be modified
by introducing the frequency-dependent speed of light, υ = c/n(ω) [where n(ω) = 1 in
vacuo].

The vector amplitude of the electric field in Eq. (11.1) can be partitioned as the
product of a complex scalar amplitude (Eω) and a vector of unit magnitude (�ε) such that
Eω = Eω�ε [28]. In particular, �ε specifies the direction of optical polarization [31], with
the arrow symbol affixed to this quantity (and others below) reinforcing its status as a
unit vector. The vector amplitude for the magnetic (induction) field in Eq. (11.2) can be
decomposed in a similar fashion, Bω = Bω

�b, where �b and �ε are orthogonal to k. Since
Maxwell’s Equations demand that electromagnetic radiation propagating through a trans-
parent dielectric satisfy k × Eω = ωBω where |k| = k = ω/υ, it also follows that �b⊥�ε
and Bω = Eω/υ [29]. While the monochromatic plane wave defined by Eqs. (11.1) and
(11.2) affords a convenient framework for discussing matter–field interactions, this ansatz
can be extended to encompass the more realistic situation of quasi-monochromatic exci-
tation by incorporating temporal envelope functions, Eω(t) and Bω(t), that vary slowly on
the timescale of ω−1 (where ω now represents the central or carrier frequency) [21, 28].

For a monochromatic plane wave propagating along the z axis such that k = k�ez

(where �ez denotes the pertinent Cartesian unit vector), the optical polarization vector
must reside in the transverse x –y plane and have the general form [28, 31]

�ε = εx�ex + εy�ey , (11.3)

with proper normalization demanding that the complex scalar quantities εx and εy satisfy
|εx |2 + |εy |2 = 1. Of special importance for analyses of optical activity are the definitions
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of right-circular (R) and left-circular (L) polarization [1, 31]:

�εR/L = 1√
2
(�ex + e∓π/2�ey ) = 1√

2
(�ex ∓ i�ey ), (11.4)

which (following the convention used in optics as opposed to that of physics) [30, 31]
represent clockwise (for R) and anticlockwise (for L) rotation of the electric field vector
as viewed by an observer towards whom the wave is propagating. The two vectors
of Eq. (11.4) define a helicity basis for describing all situations of pure polarization
(i.e., sans depolarization effects [31]), with the orthogonal states of linear (or plane)
polarization along the x and y axes being readily decomposed as linear combinations of
their right-circular and left-circular counterparts [1, 31]:

�εx =
√

2

2
(�εR + �εL) = �ex , �εy = i

√
2

2
(�εR − �εL) = �ey . (11.5)

The exponential notation introduced by Eqs. (11.1) and (11.2) proves especially useful
when dealing with states of complex polarization. For example, the time derivative of
the magnetic vector for a right-/left-circularly polarized monochromatic plane wave,
Ḃ

R/L
(r, t) ≡ ∂BR/L(r, t)/∂t , readily can be shown to be proportional to the corresponding

electric field vector, ER/L(r, t):

Ḃ
R/L

(r, t) = −iωBR/L(r, t) = −ik × ER/L(r, t) = ±ω

c
ER/L(r, t). (11.6)

Other quantities of interest for spectroscopy can be evaluated with similar ease, including
the intensity of light, I (W/m2), passing through a transparent dielectric medium [29, 30]:

I = 1

μ0
〈〈|E(r, t) × B(r, t)|〉〉T = 1

2μ0
Re[E ∗(r, t)B(r, t)] = 1

2
ε0cn(ω)|Eω|2, (11.7)

where 〈〈· · ·〉〉T denotes the temporal (or cycle) average taken over one oscillation
period [28].

11.2.2. Phenomenological Description of Optical Activity

As first elaborated by Fresnel after advancing his hypothesis that light is a transverse wave
phenomenon [32, 33], natural optical activity can be ascribed to the circular differential
properties of matter. From this perspective, dispersive (ORD) and absorptive (ECD)
chiroptical effects can be rationalized uniformly by postulating a complex, frequency-
dependent index of refraction, ñ(ω), that differs slightly for left-circular and right-circular
polarizations [1, 2]:

ñR/L(ω) = nR/L(ω) + i n ′
R/L(ω), (11.8)

where the real and imaginary parts (distinguished by affixing a prime to the latter)
respectively govern the velocity and the amplitude of a propagating electromagnetic
wave [29, 30]. Circularly polarized light passing along the z axis through a homoge-
neous (spatially isotropic) and steady (temporally invariant) medium characterized by
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ñR(ω) �= ñL(ω) will display an electric field vector that depends explicitly on the initial
state of helicity (R or L):

ER/L(z , t) = ER/L
ω e

i
(

ω ñR/L (ω)

c z−ωt
)

= Eω�εR/L e− ω n′
R/L(ω)

c z e
i
(

ω nR/L (ω)

c z−ωt
)
, (11.9)

where the angular wavenumber has been recast as kR/L = ωñR/L(ω)/c. The chiral nature
of the medium thus has been transcribed onto the properties of the traversing light,
with the real part of the refractive index, nR/L(ω), imparting a circular-differential phase
shift (or CB) while its imaginary counterpart, n ′

R/L(ω), introduces a circular-differential
attenuation (or CD) [1, 2].

Owing to the small disparity that exists between ñL(ω) and ñR(ω), it proves con-
venient to introduce average [n(ω) and n ′(ω)] and differential [	n(ω) and 	n ′(ω)]
quantities for describing their real and imaginary parts:

nR/L(ω) = n(ω) ∓ 	n(ω)

2
, (11.10)

n ′
R/L(ω) = n ′(ω) ∓ 	n ′(ω)

2
, (11.11)

with summation and subtraction of the two helicity components yielding:

n(ω) = 1

2
[nL(ω) + nR(ω)], n ′(ω) = 1

2
[n ′

L(ω) + n ′
R(ω)], (11.12)

	n(ω) = nL(ω) − nR(ω), 	n ′(ω) = n ′
L(ω) − n ′

R(ω). (11.13)

For the transparent region of the spectrum, where the frequency of impinging electromag-
netic radiation is far removed from resonant transitions [i.e., n ′(ω) ≈ 0 and 	n ′(ω) ≈ 0],
the dispersive phenomena of circular birefringence typically dominate [1, 2]. Assum-
ing the light incident on a sample of length 
 to be plane-polarized along the x axis,
�εin = √

2[�εR + �εL]/2, the transmitted wave will exhibit a normalized polarization vector
of the form

�ε =
√

2

2
[�εRe−iω	n(ω)
/2c + �εLe+iω	n(ω)
/2c]

= cos

[
ω	n(ω)

2c



]
�ex − sin

[
ω	n(ω)

2c



]
�ey , (11.14)

with the emerging electric-field vector specified by E(
, t) = Eω�εei (ωn(ω)
/c−ωt). These
expressions describe a linearly polarized beam of light that has its plane of polarization
reoriented from the (initial) x axis by a frequency-dependent angle, φ(ω) (rad) [1, 31]:

φ(ω) = ω


2c
	n(ω), (11.15)

which defines the direction and magnitude of optical rotation in terms of the associated
circular birefringence, 	n(ω) = nL(ω) − nR(ω). In particular, a positive (negative) value
of φ(ω) implies that the incident plane of polarization has been rotated clockwise (coun-
terclockwise) as viewed by an observer looking towards the light source, thereby leading
to the designation dextrorotatory (levorotatory) for the traversed medium.
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Measurements of circular birefringence typically are expressed in terms of the spe-
cific optical rotatory power (or specific optical rotation), [α]T

λ , which describes the angle
of linear polarization rotation (deg) observed at a specified temperature T (◦C) and wave-
length λ (nm) per pathlength (dm) and per concentration (g/mL) [1, 34]. This pivotal
quantity follows directly from Eq. (11.15) by taking into account the requisite conversion
between angular units:

[α]T
λ = 180

π

φ(ω = 2πc/λ)

C 

, (11.16)

where, by convention, the sample pathlength (
) and species concentration (C ) are
expressed in dm and g/mL, respectively, with the latter reflecting either the density
(ρ) for a pure liquid or the mass concentration (γ ) for a solution. A less common metric
for circular birefringence is the molar optical rotatory power, αm , which requires C in
Eq. (11.16) to be replaced by the molarity [C ] (mol/L) of the target medium [34].

The absorptive phenomena of CD usually dominate the chiroptical response when
the incident frequency of electromagnetic radiation is proximate to a molecular resonance
[1, 2]. By neglecting circular-differential dispersion effects [	n(ω) ≈ 0] and assuming
the light incident on a chiral medium of length 
 to be plane-polarized along the x axis,
the normalized polarization vector for the emerging wave now will have the form:

�ε =
√

2

2

�εRe+ω	n ′(ω)
/2c + �εLe−ω	n ′(ω)
/2c

[e+ω	n ′(ω)
/c + e−ω	n ′(ω)
/c]1/2

= N
{

cosh

[
ω	n ′(ω)


2c

]
�ex − i sinh

[
ω	n ′(ω)


2c

]
�ey

}
, (11.17)

with the electric-field vector specified by E(
, t) = Eω�εe−ωn ′(ω)
/cei (ωn(ω)
/c−ωt)/N where
N 2 = sech[ω	n ′(ω)
/c]. These expressions describe an elliptically polarized electro-
magnetic wave that has major and minor semi-axes of lengths a = Ncosh[ω	n ′(ω)
/2c]
and b = Nsinh[ω	n ′(ω)
/2c] oriented along �ex and �ey , respectively [1, 31]. The
frequency-dependent ellipticity of this polarization state, η(ω), is defined by [1, 35]:

tan[η(ω)] = b

a
= |ER(
, t)| − |EL(
, t)|

|ER(
, t)| + |EL(
, t)| = tanh

[
ω	n ′(ω)


2c

]
, (11.18)

where |ER(
, t)| and |EL(
, t)| denote the distinct transmitted field amplitudes of
the helicity components. For typically small values of η(ω) and 	n ′(ω), truncated
power-series expansions of the trigonometric and hyperbolic functions in Eq. (11.18)
lead to

η(ω) ≈ ω


2c
	n ′(ω), (11.19)

which defines the direction and magnitude of optical ellipticity in terms of the asso-
ciated circular dichroism, 	n ′(ω) = n ′

L(ω) − n ′
R(ω). In particular, a positive (negative)

value of η(ω) implies a net clockwise (counterclockwise) sense of circulation for the
emerging polarization vector when viewed by an observer looking towards the light
source, as demanded by preferential absorption of the left-handed (right-handed) circular
polarization component.
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Measurements of circular dichroism can be expressed in terms of the specific ellip-
ticity, [θ ]T

λ [deg dm−1(g/mL)−1], as defined by analogy to Eq. (11.16) [1, 31]:

[θ ]T
λ = 180

π

η(ω = 2πc/λ)

C 

, (11.20)

or the related molar ellipticity, θm , obtained upon replacing concentration C by molarity
[C ]; however, the intimate relationship that exists between the imaginary part of the
refractive index and the process of absorption affords other metrics for characterizing
such phenomena. The dimensionless transmittance T for light passing through a medium
that spans the 0 ≤ z ≤ 
 region is defined by the ratio of transmitted (I
) and incident
(I0) intensities:

T = I

I0

= e−κ(ω)
 = 10−ε(ω)[C ]
, (11.21)

where κ(ω) = 1
2 [κL(ω) + κR(ω)] and ε(ω) = 1

2 [εL(ω) + εR(ω)] denote the linear-
napierian and molar-decadic absorption coefficients [27], with κ(ω) = ε(ω)[C ] ln 10 =
2ωn ′(ω)/c [the factor of two in the final equality follows from I (z ) ∝ |E (z , t)|2 ∝∣∣∣Eωe−ωn ′(ω)z/c

∣∣∣2
]. The circular-differential variants of these quantities similarly are

related by:

	n ′(ω) = c

2 ω
	κ(ω) = c

2 ω
	ε(ω)[C ] ln 10, (11.22)

thus allowing the circular dichroism to be recast as absorption-related metrics: [1, 2, 35]

	κ(ω) = 4



η(ω) = 2 ω

c
	n ′(ω), (11.23)

	ε(ω) = 4


[C ] ln 10
η(ω) = 2 ω

c[C ] ln 10
	n ′(ω), (11.24)

where 	κ(ω) = κL(ω) − κR(ω) and 	ε(ω) = εL(ω) − εR(ω) commonly are expressed in
units of dm−1 and L dm−1 mol−1, respectively.

While the phenomenological description of natural optical activity presented above
has separated the dispersive [	n(ω) �= 0] and absorptive [	n ′(ω) �= 0] aspects of lin-
ear chiroptical response, actual chiral species will manifest both effects simultaneously,
thereby leading to concurrent reorientation and elliptization of impinging plane-polarized
light [1, 2, 31]. The distinct frequency dependencies of CB and CD will govern the
behavior observed during a given laboratory measurement, with the polarization rotation
arising from the former usually found to dominate in transparent spectral regions far
removed from molecular resonances.

11.2.3. Microscopic Origins of Optical Activity

Theoretical treatments of frequency-dependent dispersion and absorption in achiral media
typically invoke the electric-dipole (E1) approximation [36], where the assumption that
molecular dimensions (d ) are much smaller than the wavelength of incident light (λ � d)

leads to strong matter–field interactions induced by a spatially uniform (albeit time-
varying) electric field. Quantitative analyses of chiroptical phenomena necessitate moving
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beyond this E1 premise [1, 2, 37], so as to incorporate higher-order magnetic-dipole
(M 1) and electric-quadrupole (E2) processes mediated, respectively, by the magnetic
field and the electric-field gradient of an impinging electromagnetic wave. The M 1 and
E2 interactions are substantially weaker than their E1 counterparts (i.e., by a factor
of d/λ ≈ 10−4) [38]; however, enantiomer-specific interferences among these processes
(viz., E1–M 1 and E1–E2) are responsible for the linear manifestation of natural optical
activity. While the M 1 and E2 terms stem from the same order of the multipole expansion
used to classify the hierarchy of matter–field couplings [38], the averaging over all
spatial orientations required to model an isotropic ensemble of target molecules causes
the inherently anisotropic electric-quadrupole contributions to vanish [1, 2]. In the case
of oriented samples (e.g., crystals [39] or single molecules [40]), E1–E2 chiroptical
effects have been shown to be important, often surpassing in magnitude those arising
from analogous E1–M 1 mechanisms.

The first quantitative attempts to rationalize the microscopic origins of chiroptical
phenomena can be traced back to before the dawn of modern quantum theory. Following
initial proposals for matter–field couplings that could lead to the appearance of circular
birefringence when incorporated into Maxwell’s Equations [41], Born [42], Oseen [43],
and Gray [44] independently formulated rigorous classical explanations for the optical
activity of chiral (“dissymmetric”) species. This ansatz was extended to the semiclas-
sical framework of quantum mechanics by Rosenfeld [45] in 1928, with subsequent
refinements being introduced by Condon [46], Eyring [47], and others. Such treatments
build upon the oscillating electric and magnetic multipoles created in a target medium
by an impinging electromagnetic wave of angular frequency ω. In the absence of static
external fields, time-dependent perturbation theory predicts a chiral molecule to exhibit
an electric dipole moment vector, μ(t), that embodies two distinct optically induced
contributions [1]:

μ(t) ≡ 〈�(t)|μ̂|�(t)〉 = μ(0) + α(ω) · E(t) + 1

ω
G′(ω) · ∂B(t)

∂t
+ · · · , (11.25)

where μ̂ denotes the electric dipole moment operator. The absence of spatial argu-
ments in electromagnetic field vectors implies that these quantities are being evaluated
at the origin of the coordinate system (i.e., the location of the molecule), while the
time derivative of B(t) reflects the quadrature phase of its contribution relative to that
of E(t), Ḃ(t) = −iωB(t) [cf. Eq. (11.6)]. Analogous expressions can be derived for
the induced magnetic-dipole and electric-quadrupole vectors [1], m(t) ≡ 〈�(t)|m̂|�(t)〉
and Θ(t) ≡ 〈�(t)|Θ̂|�(t)〉, where m̂ and Θ̂ represent the magnetic-dipole and electric-
quadrupole operators, respectively.

The induced electric-dipole moment of Eq. (11.25) contains two dynamic molecular
property tensors of the second rank that quantify the frequency-dependent response of
the system to impinging electromagnetic radiation [1]: (i ) the electric dipole (E1) polar-
izability tensor, α(ω), which governs achiral dispersion/absorption and (ii ) the mixed
electric dipole–magnetic dipole (E1–M 1) polarizability tensor, G′(ω), which is respon-
sible for the manifestation of optical activity. The Cartesian components of μ(t) follow
from expansion of the tensor contractions:

μα(t) = μα(0) +
∑
β

ααβ(ω)Eβ(t) + 1

ω

∑
β

G ′
αβ(ω)Ḃβ(t) + · · · , (11.26)
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where subscripts α and β independently can assume indices x, y , or z . The putative
role of G′(ω) as a mediator of chiroptical response readily can be appreciated by con-
sidering the case of incident light having either right-circular (R) or left-circular (L)
polarization [48]:

μR/L
α (t) = μα(0) +

∑
β

ααβ(ω)E R/L
β (t) + 1

ω

∑
β

G ′
αβ(ω)ḂR/L

β (t) + · · ·

= μα(0) +
∑
β

[
ααβ(ω) ± 1

c
G ′

αβ(ω)

]
E R/L

β (t) + · · · ,

(11.27)

where the second equality follows from Eq. (11.6). Taking into account that the induced
electric dipole moment μR/L(t) (when scaled by the target number density) serves as the
source term for radiating a new electromagnetic wave, the circular-differential response
of the system clearly resides in the components of the mixed E1–M1 polarizability
tensor, G ′

αβ(ω), which exhibit opposing signs for the two species constituting an enan-
tiomeric pair. For an isotropic and homogeneous ensemble of chiral molecules having
pathlength 
 (m) and number density N (m−3), detailed calculations predict the optical
rotation φ(ω) (rad) sustained by linearly polarized light of angular frequency ω (rad/s) to
be [1]

φ(ω) = −μ0
N ωG ′(ω), (11.28)

where μ0 (4π × 10−7Hm−1) denotes the permeability of free space. The chiroptical cou-
pling constant that appears in this expression, G ′(ω) (C2m3J−1s−1), stems from averaging
of the G′(ω) tensor over all spatial orientations [1, 2], a quantity that can be defined in
terms of the corresponding trace over Cartesian components:

G ′(ω) = 1

3
Tr[G′(ω)] = 1

3

∑
α

G ′
αα(ω). (11.29)

Since the three elements of the mixed E1–M 1 polarizability tensor added in Eq. (11.29)
often are found to partially cancel one another [e.g., G ′

xx (ω) ≈ −G ′
yy (ω) with |G ′

yy (ω)| �
|G ′

zz (ω)|], theoretical calculations of optical rotation in isotropic media must be capable
of predicting these quantities reliably with high levels of intrinsic accuracy.

Explicit expressions for ααβ(ω) and G ′
αβ(ω) follow from time-dependent perturbation

theory [1, 2], where eigenstates of the unperturbed (field-free) molecular Hamiltonian,
Ĥ

(0)
, afford a basis for expanding properties of interest [38]. In particular, the (lower-

lying) ground and (higher-lying) excited electronic states of the field-free system are
denoted by |g〉 and |e〉, respectively, with the attendant energy eigenvalues of Eg and
Ee allowing the angular frequency for the |e〉 ↔ |g〉 resonance to be specified as ωeg =
(Ee − Eg )/�. By focusing on wavelengths that reside in the transparent region of the
spectrum (sans resonant absorption) and assuming that only the ground state is populated
prior to the onset of matter–field interactions, the tensor elements for α(ω) are found to
be given by [1, 2]

ααβ(ω) = 2

�

∑
e �=g

ωeg Re[〈g |μ̂α|e〉〈e|μ̂β |g〉]
ω2

eg − ω2
= 2

�

∑
e �=g

ωeg

ω2
eg − ω2

eg Sαβ , (11.30)
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where ω denotes the incident optical frequency and the summation is taken over all
(excited) states excluding the initial (ground) state. The product of electric dipole moment
matrix elements in this expression can be recast as the elements (eg Sαβ) of a second-
rank tensor specifying spatial properties of the E1 transition moment for the |e〉 ↔ |g〉
resonance, eg S. The associated transition strength, eg S , which quantifies achiral dispersion
and absorption effects in an isotropic medium, follows from the trace of this quantity
over Cartesian components:

eg S = Tr[eg S ] =
∑

α

eg Sαα = Re[〈g |μ̂|e〉 · 〈e|μ̂|g〉] = |〈g |μ̂|e〉|2, (11.31)

where the final equality reflects the Hermitian nature of the electric dipole moment
operator [38]. The canonical spectroscopic oscillator strength for the |e〉 ↔ |g〉 transition,
eg f , is linearly related to eg S by a proportionality constant that depends on the mass (me)

and charge (−e) of the electron [49], eg f = (2ωeg me/3�e2)eg S .
For the transparent region of the spectrum, time-dependent perturbation theory pre-

dicts the components of the mixed E1–M 1 polarizability tensor to have the form [1, 2]

G ′
αβ(ω) = −2 ω

�

∑
e �=g

Im[〈g |μ̂α|e〉〈e|m̂β |g〉]
ω2

eg − ω2
= −2

�

∑
e �=g

ω

ω2
eg − ω2

eg Rαβ , (11.32)

where the pure-imaginary product of electric-dipole and magnetic-dipole matrix ele-
ments (vide infra) defines the elements (eg Rαβ) of the second-rank rotatory tensor for the
|e〉 ↔ |g〉 transition, eg R. The corresponding rotatory strength, eg R, as required for the
description of chiroptical phenomena in isotropic media, follows from the trace of this
quantity:

eg R = Tr[eg R] =
∑

α

eg Rαα = Im[〈g |μ̂|e〉 · 〈e|m̂|g〉]. (11.33)

The operators governing electric-dipole (μ̂) and magnetic-dipole (m̂) transitions are pro-
portional to those for linear momentum (P̂) and angular momentum (Ĵ) [38], respectively,
which, in turn, represent the generators for infinitesimal translation (along the direction
of P) and infinitesimal rotation (about the direction of J) [50]. Consequently, the jux-
taposition of matrix elements for these quantities in the definition of eg R suggests that
both a displacement and a (nonorthogonal) reorientation of electron charge density must
transpire for a contributing |e〉 ↔ |g〉 resonance, thereby imbuing an effective helical
motion to the attendant chiroptical process (the handedness of which depends on the
relative phases of 〈g |μ̂|e〉 and 〈e|m̂|g〉).

Since Eq. (11.32) shows that G ′
αβ(ω) is proportional to the frequency of incident

electromagnetic radiation, the mixed E1–M 1 polarizability tensor will vanish in the
static (ω → 0) limit, as will the manifestation of corresponding chiroptical effects. Such
behavior is subsumed by definition of the related Rosenfeld tensor, β(ω) [9]:

βαβ(ω) = − 1

ω
G ′

αβ(ω). (11.34)
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For isotropic media, averaging of β(ω) over all spatial orientations yields the scalar
Rosenfeld optical-activity parameter β(ω):

β(ω) = 1

3
Tr[β(ω)] = 1

3

∑
α

βαα(ω) = − 1

ω
G ′(ω), (11.35)

with the predicted polarization rotation of Eq. (11.28) now being reformulated as:

φ(ω) = μ0
N ω2β(ω). (11.36)

11.2.4. Resonant Chiroptical Behavior

While the expressions presented above for α(ω) and G′(ω) suffice for analyses of optical
phenomena taking place in the transparent region of the spectrum, they are not appropri-
ate for the description of resonant matter–field interactions (e.g., absorption) [1, 2]. This
assertion can be seen readily from the form of G ′

αβ(ω) in Eq. (11.32), where the simple
poles that exist at ω = ωeg lead to unphysical divergence of the mixed E1–M 1 suscep-
tibility whenever the incident frequency of electromagnetic radiation (ω) approaches the
resonance frequency of a specific |e〉 ↔ |g〉 transition (ωeg ). Such aberrant behavior can
be attributed to the implicit neglect of relaxation processes, which effectively assumes
molecular states to be infinitely long-lived. Nevertheless, since the frequency-integrated
intensity for an isolated ECD feature scales in proportion to the rotatory strength, e′g R,
for the pertinent |e′〉 ↔ |g〉 excitation [1, 2], requisite spectroscopic information still can
be deduced from the corresponding residue of G ′(ω):

e′g R = � lim
ω→ωe′g

[(ω − ωe′g )G ′(ω)]. (11.37)

As shown below, proper introduction of depopulation and dephasing rates will lead to
complex frequency-dependent property tensors [akin to ñ(ω) = n(ω) + i n ′(ω)], the real
and imaginary parts of which respectively serve to describe the dispersive and absorptive
aspects of the system.

A comprehensive scheme for elaborating molecular response properties can be
found in the density operator formalism [51], where temporal evolution of the system
under the simultaneous influence of electromagnetic fields and relaxation processes is
described through perturbative solution of the quantum-mechanical Liouville equation.
This approach has become the standard for frequency-domain analyses of nonlinear
optical spectroscopy [21, 22], with diagrammatic techniques serving to organize and
interpret successively higher orders of matter–field coupling. Application to linear
chiroptical phenomena yields a complex variant of the mixed E1–M 1 polarizability
tensor, χ(ω), the components of which can be specified by:

χαβ(ω) = − i

�

∑
e �=g

[ 〈g |μ̂α|e〉〈e|m̂β |g〉
ωeg − ω − i�eg

+ 〈g |m̂β |e〉〈e|μ̂α|g〉
ωeg + ω + i�eg

]
, (11.38)

where the two terms stem from complementary events taking place in the dual ket
(absorption) and bra (emission) spaces [22, 28]. The set of �eg rate parameters appearing
in this expression reflect the temporal dissipation of optical coherences induced between
the excited (e) and ground (g) states [51], where only the latter is populated initially.
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As such, these quantities embody the effects of intrinsic relaxation processes (e.g., radia-
tive/nonradiative decay) and extrinsic environmental perturbations (e.g., collisions and
other intermolecular interactions). Under quite general circumstances [22], they can be
related to the rates of population removal (�nn) or, equivalently, to the effective lifetimes
(τn = 1/�nn) for the optically coupled states:

�eg = 1

2
(�ee + �gg ) + �′

eg

�gg ≈ 0 & �′
eg ≈ 0−−−−−−−−−−→ 1

2
�ee = 1

2τe
, (11.39)

where �′
eg denotes the rate of pure-dephasing processes (e.g., elastic collisions) that

destroy molecular coherence without disrupting corresponding populations. The final
equality in Eq. (11.39) follows from the common assumption of an infinite ground-state
lifetime (�gg ≈ 0) combined with pure-dephasing mechanisms of negligible consequence
(�′

eg ≈ 0).
By assuming unperturbed wavefunctions for the ground (g) and excited (e) states of

the system to be nondegenerate (i.e., pure real), the matrix elements describing electric-
dipole (E1) and magnetic-dipole (M 1) interactions will be pure real and pure imaginary,
respectively [1, 2]:

〈g |μ̂α|e〉∗ = 〈e|μ̂α|g〉 = 〈g |μ̂α|e〉, (11.40)

〈g |m̂β |e〉∗ = 〈e|m̂β |g〉 = −〈g |m̂β |e〉. (11.41)

As such, the products of these quantities present in Eq. (11.38) must be pure imaginary:

〈g |μ̂α|e〉〈e|m̂β |g〉 = i Im[〈g |μ̂α|e〉〈e|m̂β |g〉], (11.42)

〈g |m̂β |e〉〈e|μ̂α|g〉 = i Im[〈g |m̂β |e〉〈e|μ̂α|g〉], (11.43)

and are related by:

eg Rαβ = Im[〈g |μ̂α|e〉〈e|m̂β |g〉] = −Im[〈g |m̂β |e〉〈e|μ̂α|g〉], (11.44)

where the leftmost equality restates the definition of rotatory tensor elements, eg Rαβ , in
Eq. (11.33). The complex E1–M 1 polarizability tensor now can be separated into real
and imaginary parts, χαβ(ω) = Re[χαβ(ω)] + i Im[χαβ(ω)], which have the following
forms:

Re[χαβ(ω)] = 1

�

∑
e �=g

[
ωeg − ω

(ωeg − ω)2 + �2
eg

− ωeg + ω

(ωeg + ω)2 + �2
eg

]
eg Rαβ

= 1

�

∑
e �=g

2 ω(ω2
eg − ω2 − �2

eg ) eg Rαβ

[(ωeg − ω)2 + �2
eg ][(ωeg + ω)2 + �2

eg ]
, (11.45)

Im[χαβ(ω)] = 1

�

∑
e �=g

[
�eg

(ωeg − ω)2 + �2
eg

+ �eg

(ωeg + ω)2 + �2
eg

]
eg Rαβ

= 1

�

∑
e �=g

2�eg (ω2
eg + ω2 + �2

eg ) eg Rαβ

[(ωeg − ω)2 + �2
eg ][(ωeg + ω)2 + �2

eg ]
. (11.46)
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Figure 11.1. Resonant chiroptical response.

The real (dispersive) and imaginary

(absorptive) parts of the complex E1–M1

polarizability tensor, χαβ (ω), are plotted as

functions of the incident frequency ω in the

vicinity of an isolated electronic resonance

ωeg (ωeg � 0). Solid curves denote the forms

obtained in the presence of dephasing and/or

depopulation processes characterized by rate

�eg, while dashed lines illustrate the behavior

expected in the limit of infinite lifetimes

(�eg → 0). For each graph, the ordinate scale

is defined in units of egRαβ/��eg, where egRαβ

denotes the corresponding element of the

rotatory tensor for the |e〉 ↔ |g〉 transition.

Figure 11.1 depicts the characteristic shapes of these quantities for an isolated |e〉 ↔ |g〉
resonance (ωeg � 0), highlighting the dispersive nature of Re[χαβ(ω)] (which passes
through zero at ω = ωeg ) and the absorptive nature of Im[χαβ(ω)] (which attains a
maximum value at ω = ωeg ). The homogeneous linewidth of the Lorentzian absorption
profile (full-width at half-maximum height) is specified by 2�eg , with the same quantity
also defining the separation between the positive and negative extrema of the dispersion
curve.

To make a formal connection with the previous expression for G′(ω), it proves useful
to consider the limit of χαβ(ω) when the dephasing parameters �eg uniformly approach
zero, which is tantamount to assuming that all excited states display infinite lifetimes.
Under such conditions, the real portion of the complex E1–M 1 susceptibility tensor
collapses to yield

lim
�eg →0

{Re[χαβ(ω)]} = 1

�

∑
e �=g

[
1

ωeg − ω
− 1

ωeg + ω

]
eg Rαβ

= 2

�

∑
e �=g

ω

ω2
eg − ω2

eg Rαβ , (11.47)

which equals the negative of G ′
αβ(ω) as defined in Eq. (11.32). As such, the frequency-

dependent optical rotation predicted for an isotropic ensemble of chiral molecules can



288 COMPREHENSIVE CHIROPTICAL SPECTROSCOPY, VOLUME 1

be reformulated as

φ(ω) = μ0
N ωRe[χ(ω)], (11.48)

where χ(ω) follows from averaging of the complex E1–M 1 polarizability tensor over
all spatial orientations [1, 2]:

χ(ω) = 1

3
Tr[χ(ω)] = 1

3

∑
α

χαα(ω). (11.49)

Equation (11.48) affords a consistent description of ORD that spans the nonresonant and
resonant portions of the spectrum, with the top panel of Figure 11.1 highlighting the
disparity that exists between Re[χαβ(ω)] and −G ′

αβ(ω) when ω ≈ ωeg .
Evaluation of Im [χαβ(ω)] in the limit of negligible dephasing requires use of the

Dirac delta function, δ(b), as defined by [50]:

lim
�→0+

a�

b2 + �2
= aπδ(b). (11.50)

Application of this identity to Eq. (11.46) yields:

lim
�eg →0

{Im[χαβ(ω)]} = π

�

∑
e �=g

[δ(ωeg − ω) + δ(ωeg + ω)] eg Rαβ

ω ≈ ωe′g−−−−→
ωe′g > 0

π

�
δ(ωe′g − ω) e′g Rαβ , (11.51)

where the final equality assumes that the excitation source has been tuned to coincide
with an isolated |e′〉 ↔ |g〉 transition having �ωe′g = E ′

e − Eg > 0. The bottom panel of
Figure 11.1 contrasts the infinitely sharp frequency dependence of this expression with the
gradual (finite-bandwidth) behavior suggested by Eq. (11.46); however, in both cases the
absorptive nature of the response is manifest. The imaginary part of the complex E1–M1
susceptibility tensor thus provides a uniform description of ECD that encompasses both
the resonant and nonresonant regions of the spectrum. For an isotropic ensemble of chiral
molecules characterized by number density N and pathlength 
, detailed analyses predict
that the ellipticity, η(ω), acquired by an impinging beam of plane-polarized light, will
be [1, 2]:

η(ω) = −μ0
N ωIm[χ(ω)], (11.52)

where the complex (orientation-averaged) quantity χ(ω) has been defined by Eq. (11.49).
Owing to the superposition of contributions from neighboring electronic manifolds and
the presence of fine structure from nuclear degrees of freedom (viz., vibrations), ECD
spectral profiles often appear congested, displaying effective (inhomogeneously broad-
ened [36]) linewidths far in excess of those expected for an isolated (homogeneously
broadened [36]) transition.

The E1–M 1 polarizability in Eq. (11.38) represents the Fourier transform of an
analogous time-domain response tensor, χ(t), which is subject to the principle of temporal
causality (i.e., the “cause” must precede the “effect”). Aside from requiring the poles of
χ(ω) to reside in the lower half of the complex frequency plane [22, 52], this causes
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the real and imaginary parts of χαβ(ω) to be linked by extensions of the canonical
Kramers–Kronig (KK) relationships [1]:

Re[χαβ(ω)] = 1

π
℘

+∞∫
−∞

Im[χαβ(ω′)]
ω′ − ω

dω′

χ∗(ω)=χ(−ω)−−−−−−−→ 2

π
℘

+∞∫
0

ω′Im[χαβ(ω′)]
ω′ 2 − ω2

dω′, (11.53)

Im[χαβ(ω)] = − 1

π
℘

+∞∫
−∞

Re[χαβ(ω′)]
ω′ − ω

dω′

χ∗(ω)=χ(−ω)−−−−−−−→ − 2

π
℘

+∞∫
0

ωRe[χαβ(ω′)]
ω′ 2 − ω2

dω′, (11.54)

where the symbol ℘ signifies the Cauchy principal value of an integral. The caveat that
real electromagnetic fields must induce real molecular moments also demands χ∗(ω) =
χ(−ω), [1, 22], thereby constraining Re[χαβ(ω)] and Im[χαβ(ω)] to be even and odd
functions of ω, respectively. As shown by the final equalities in Eqs. (11.53) and (11.54),
the KK relationships thus can be manipulated such that their limits of integration span
only positive values of frequency.

While the Kramers–Kronig relationships afford a mathematically rigorous approach
for interconverting the dispersive (ORD) and absorptive (ECD) components of a com-
plex molecular property tensor, their practical application often has been limited by
the need to have high-quality information spanning a wide range of frequencies (liter-
ally 0 ≤ ω ≤ ∞). Such procedures historically have been employed to compensate for
inadequacies and/or restrictions of instrumentation that either encumbered or prohibited
one type of experimental measurement relative to another (i.e., dispersive ORD versus
absorptive ECD) [53, 54]. Modern developments in analytical spectroscopy have elimi-
nated most of these issues; however, the advent of reliable quantum-chemical methods for
predicting chiroptical response has brought renewed interest to this topic, with disparities
between recorded ORD profiles and their KK-transformed ECD counterparts proposed as
a means to enumerate and characterize higher-lying (experimentally inaccessible) elec-
tronic manifolds that contribute to the observed frequency dependence of CB. Systematic
analyses of these capabilities have been reported by Polavarapu and coworkers [55], while
Autschbach et al. [56] have demonstrated the utility of exploiting multiply subtractive
KK algorithms that incorporate fixed “anchor points” of known value.

The sum-over-states expressions given above for the elements of α(ω), G′(ω), and
χ(ω) suffer from slow convergence and seldom are used in conjunction with modern
quantum-chemical methods since an unphysically large number of electronic manifolds
would need to be considered before asymptotically stable results are obtained [57].
Instead, most calculations make use of linear response theory [58, 59], which affords
a comprehensive framework for computing chiroptical properties that requires neither
knowledge of nor summation over eigenstates of the unperturbed molecular Hamilto-
nian. This approach enables elements of the dynamic molecular property tensors in Eqs.
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(11.25) and (11.26) to be reformulated as [8, 9]:

ααβ(ω) = −〈〈μ̂α; μ̂β〉〉ω, G ′
αβ(ω) = −Im[〈〈μ̂α; m̂β〉〉ω], (11.55)

where 〈〈Â; V̂ω〉〉ω denotes a linear response function for operator Â defined in terms of
specific Fourier components for the time-dependent perturbation (i.e., V̂

E1
ω = −μ̂ · Eω or

V̂
M 1
ω = −m̂ · Bω). General strategies for computing these quantities efficiently are based

upon economical parameterization of the electronic wavefunction, with the first-order per-
turbative response to external electric and magnetic fields usually being obtained from
the relatively straightforward solution to a coupled system of algebraic equations [59].
Most quantum-chemical implementations of the linear-response formalism have assumed
molecular states to be infinitely long-lived, thus making them ill-suited for predictions
of the frequency dependence displayed by near-resonant chiroptical properties. Several
extensions to incorporate dephasing and/or depopulation effects have been reported [60,
61]; however, such efforts typically rely on a single phenomenological decay rate (�eg )

that uniformly describes all electronic manifolds and, therefore, excludes pertinent dif-
ferences among their relaxation processes.

11.3. EXPERIMENTAL METHODS

Instruments designed to probe the dispersive components of natural optical activity (CB)
commonly are referred to as polarimeters or spectropolarimeters, with the distinction
between the two nominally depending on whether fixed-frequency or continuously tun-
able electromagnetic radiation is utilized. While the diversity of such devices reflects their
long history of development and broad range of applications [6, 53, 62], they all usually
can be reduced to three basic ingredients that must appear in succession: (i) a wavelength-
resolved (or near-monochromatic) source of incident plane-polarized light; (ii) a chiral
sample of interest; and (iii) an analyzer capable of discriminating changes in the polar-
ization state for transmitted light. The accuracy of CB studies performed under isotropic
liquid-phase or vapor-phase conditions typically scales in direct proportion to the path-
length (
), concentration (C ), and enantiomeric purity (%ee) of the targeted molecules
[cf. Eq. (11.16)]; however, a myriad of other factors will contribute to the sensitivity and
resolution attained by a particular apparatus, including the quality of polarization optics
(used to create and analyze optical polarization) and the precision with which they can
be adjusted (so as to gauge the rotation of optical polarization). For modern quantitative
work, the venerable manual polarimeter, where the ability to discern chiroptical effects is
subject to the limitations of human perception and judgment, has been supplanted by fully
automatic instruments based upon sophisticated digital signal-processing algorithms.

Commercial liquid-phase polarimeters usually employ filtered light from atomic res-
onance lamps (e.g., Na I and Hg I) as the excitation source, thereby permitting CB
measurements to be performed at discrete wavelengths spanning the visible and ultra-
violet regions, the most common of which (for historical reasons) corresponds to the
589.3 nm D-line emission of neutral sodium [6]. Based upon a nominal pathlength of

 = 1 dm, such instruments typically have specified angular resolutions and accuracies
of ≤1 mdeg and ≤±3 mdeg, respectively, with at least one manufacturer claiming an
accuracy of ±0.3 mdeg for samples of low rotation (|φ(ω)| < 1 deg) [63]. Standalone
spectropolarimeters, as required for the acquisition of continuous ORD profiles, were
once commonplace [53], but now have been relegated to an accessory on modern ECD
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spectrometers, where grating monochromators often are used to disperse and isolate
frequency components from a broadband light source.

The unique properties of laser radiation [64] have been exploited to develop a variety
of specialized polarimetric instruments, with the enhancement of chiroptical sensitivity
and concomitant reduction of requisite sample volumes making such devices particularly
well suited for integration into modern analytical separation technologies (e.g., liquid
chromatography) [65]. At least one commercial laser polarimeter presently is available
[66], where use of 670 nm diode-laser excitation in a unique flow-cell geometry leads to
a specified angular resolution of 25 μdeg and a linear dynamic range that approaches 106.
Based upon a scheme first introduced by Yeung et al. [67] with subsequent refinements
following from the work of Bobbitt [68] and others [69], this apparatus relies on a
magnetic Faraday rotator to modulate the incident direction of linear polarization at a
high frequency. Phase-sensitive detection of optical rotation induced by the chiral sample
thus serves to alleviate the deleterious effects arising from amplitude fluctuations inherent
to the laser source.

The intrinsic spatial/temporal coherence of laser radiation affords unique opportu-
nities for implementing interferometric probes of dispersive chiroptical properties. Such
efforts have culminated in the recent work of Chou et al. [70], where a stabilized Zee-
man helium–neon laser operating at 638.3 nm was used to generate correlated pairs
of orthogonally plane-polarized P and S (�εx and �εy ) photons that had slightly differ-
ent frequencies (	ν = νP − νS = 2.6 MHz). Common-path propagation of this unique
light source though a chiral medium introduced equal optical rotations into the coupled
P –/S –states, which subsequently were separated and detected in a balanced configura-
tion designed to mitigate intensity fluctuations and background noise. The desired angle
of polarization rotation [φ(ω)] was encoded in the differential amplitude of the emerging
antisymmetric heterodyne waveforms and could be extracted at shot-noise-limited levels
by means of conventional demodulation techniques. The resulting scheme of polarized
photon-pair heterodyne interferometry was shown to have an angular sensitivity of bet-
ter than 55 μdeg/cm for aqueous solutions of glucose [70], representing perhaps the
best detection limit demonstrated to date for a single-pass static geometry. Chou and
co-workers have documented a variety of applications for this powerful methodology,
including investigations of CB phenomena associated with crystalline quartz [71] and
the Faraday effect [72].

The circular birefringence that gives rise to most nonresonant manifestations of
natural optical activity, 	n(ω) = nL(ω) − nR(ω), is extremely small, amounting to no
more than a few parts per million of n(ω) even for a pure chiral liquid. This situation
is exacerbated further in the case of dilute solutions or vapors, where 	n(ω) can be
expected to scale in proportion to the concentration or pressure of the dominant enan-
tiomer. The demands placed on the angular resolution and sensitivity of optical-rotation
measurements performed under such rarefied conditions can be daunting; however, as
shown by Eq. (11.15), the magnitude of φ(ω) observed at a given excitation frequency
and for a specified target number density can be enhanced readily by expanding the
length of sample, 
, traversed by electromagnetic radiation. Building upon this basic
premise, historical efforts to probe dispersive chiroptical phenomena in the vapor phase
have relied on single-pass instruments that required substantial pressure–pathlength prod-
ucts to achieve meaningful results [5, 73–75]. Obviously, it is desirable to increase the
effective value of 
 without simultaneously augmenting the size or volume of the chi-
ral medium, a capability made possible by recent advances in cavity-/resonator-based
polarimetric techniques.
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The basic scheme for implementing ultrasensitive vapor-phase polarimetry in a
tabletop instrument relies upon a high-finesse optical cavity constructed from mirrors
of superior quality (R ≈ 1, where 0 ≤ R ≤ 1 is the intensity reflection coefficient),
thereby enabling electromagnetic radiation to traverse an entrained chiral sample
repeatedly. While the traveling-wave geometry of a ring resonator offers the potential
benefit of unidirectional operation [64], this advantage will be tempered by the intrinsic
anisotropies incurred from oblique mirror reflections [31]. Consequently, ongoing efforts
to develop cavity-enhanced polarimeters have focused primarily on variants of the Malus
Fabry–Perot interferometer [76], where polarized light is introduced into one end of a
linear resonator formed from two mirrors and the polarization state of light emerging from
the opposing end subsequently is analyzed. The normal-incidence reflections (or retrore-
flections) inherent to this simple experimental configuration greatly facilitate the ability to
discern and extract minute birefringence/dichroism signals; however, fruitful application
in the realm of chiroptical spectroscopy demands careful consideration of fundamental
symmetry principles. In particular, the physical observables associated with ORD and
ECD measurements in isotropic media, φ(ω) and η(ω) [cf. Eqs. (11.48) and (11.52)], are
time-even pseudoscalars [1], implying that they change sign under action of the parity
(space-inversion) operator, �̂, yet remain unaffected when subjected to transformation
by the time-reversal operator, T̂. These properties lead to the precise cancellation of any
polarization effects accrued during each round-trip pass of electromagnetic radiation
through a linear cavity that only contains a substance having natural (field-free) optical
activity. Such reciprocal behavior can be attributed to the characteristic inversion of
polarization helicity caused by the retroreflection of light from a mirror surface [31].

For natural optical activity to accrue in a linear-resonator configuration, the sign
of the chiroptical response experienced by electromagnetic radiation propagating in one
direction effectively must be reversed for the (retroreflected) beam that travels in the
opposite direction. This can be accomplished by preceding each mirror with an intracav-
ity quarter-wave (λ/4) retardation plate aligned to compensate for the polarization effects
that accompany normal-incidence reflection. Frequency-domain implementations of this
scheme have been reported for both liquid-phase [77] and vapor-phase [78] media, with
the chirospecific phase/frequency shifts imposed on the helicoidal eigenmodes of a pas-
sive interferometer, which had been servo-locked to a stabilized 633 nm (helium–neon)
laser source, affording a robust means for detecting chiroptical signatures. When com-
pared to a single-pass instrument of comparable dimensions, the polarimeter developed
by Poirson et al. [78] was found to give a signal enhancement factor of 4KF 2/π2 ≈ 1700,
where K and F respectively denote the transmission coefficient (∼0.3) and the finesse
(∼120) of the Fabry–Perot cavity, the latter being related, in part, to mirror reflec-
tivity through F = π

√
R/(1 − R). Although quantitative measurements of [α]T

λ were
not attempted, the estimated angular sensitivity of 1 μdeg attained over a pathlength of

 = 30 cm readily enabled the optical rotation of enantiomerically enriched limonene
vapor to be observed under ambient conditions. An intriguing variant of this approach
has been suggested by Vollmer and Fischer [79], where free-space coupling of a chiral
liquid (
 = 10 cm) into a fiber-loop (ring) resonator (λ ≈ 763 nm) allowed attendant CB
phenomena to be encoded as differential frequency shifts appearing on the circularly
polarized cavity modes.

Figure 11.2 schematically illustrates the experimental configuration for cavity
ring-down polarimetry (CRDP) [80–82], which extends the basic concepts of Malus
Fabry–Perot interferometry into the time domain. The depicted polarimetric scheme
builds upon the exquisite trace-species sensitivity afforded by long-pathlength cavity
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Figure 11.2. Schematic diagram of CRDP apparatus. Pulsed laser radiation traverses a circular

polarizer consisting of a tandem calcite prism and quarter-wave plate (λ/4) before being coupled

into a high-finesse linear cavity of length L. Matched intracavity λ/4 retardation plates are

aligned to produce a stable linearly polarized field over the intervening region of length


, thereby making this portion of the apparatus sensitive to the accruing effects of natural

optical activity. Emerging light is imaged onto two identical detectors that separately monitor

temporal profiles for the two linear components (parallel and perpendicular) generated by a

circular polarization analyzer. The inset depicts the arrangement of cavity optics, highlighting

the relative offset, ϕ0, purposely introduced between the fast axes of intracavity waveplates

so as to resolve the sign of measured specific rotation. (See insert for color representation of

the figure.)

ring-down spectroscopy (CRDS), [83] as augmented by inserting polarization-specific
components into the light-injection stage, stable linear-resonator assembly, and
signal-detection train of a conventional (pulsed) CRDS instrument. Variants of this
approach designed to probe dispersive and absorptive chiroptical phenomena have
been elaborated [81], with studies of vapor-phase circular birefringence achieving an
angular resolution of <2 μdeg/cm for (single-pass) sample lengths of 
≤1m [80, 84,
85]. The related technique of polarization-dependent CRDS has enabled Engeln et al.
[86] to measure the Faraday effect in achiral gases with an estimated noise floor of
∼0.6 μdeg/cm. In part, this detection limit reflects the time-odd/parity-even nature of
the underlying (magnetically induced) matter-field interaction [1], which dispenses with
the need to introduce lossy retardation plates into a high-finesse optical cavity.

The CRDP scheme benefits from two features inherent to all ring-down techniques
[83]: (i) long effective sample pathlengths arising from numerous passes of light through
the apparatus and (ii) relative immunity to fluctuations of the excitation source owing to
the measurement of signal accumulation rates rather than cumulative signal amplitudes .
For a stable cavity of length L constructed from identical mirrors of reflectivity R,
the active fraction of the resonator that will respond to the effects of natural optical
activity, fact = 
/L, is governed by the separation between intracavity waveplates, 
.
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Initial alignment of these retardation elements in an evacuated polarimeter establishes
a recurrent state of plane polarization over the intervening region, the characteristics of
which are analyzed by projecting the light that emerges from the cavity onto orthogonal
linear-polarization detection channels (designated as “‖” and “⊥”). The resulting signal
intensities can be expressed in terms of the number of round trips, Nrt , undergone by a
laser pulse injected into the apparatus at reference time t = 0 [81, 84]:

I‖(Nrt ) = 1

2
R2Nrt e−2(Nrt + 1

2 )κ(ω)L

{
cosh[(Nrt + 1

2 )	κ(ω)
] + cos[4(Nrt + 1
2 )(ϕ0 + ϕ(ω)
)]

}
, (11.56)

I⊥(Nrt ) = 1

2
R2Nrt e−2(Nrt + 1

2 )κ(ω)L

{
cosh[(Nrt + 1

2 )	κ(ω)
] − cos[4(Nrt + 1
2 )(ϕ0 + ϕ(ω)
)]

}
, (11.57)

where κ(ω) and 	κ(ω) denote the average and circular-differential linear-napierian
absorption coefficients for an entrained chiral vapor [cf. Eqs. (11.21) and (11.23)] with
the associated polarization rotation per unit length being specified by ϕ(ω) = φ(ω)/


[cf. Eq. (11.15)]. The quantity ϕ0, which represents a fixed angular offset mechanically
imposed between retardation axes of the intracavity waveplates (cf. inset of Figure 11.2),
leads to a progressive (pass-by-pass) rotation of linear polarization in the active region of
the evacuated polarimeter. The quadrature modulation of I‖(Nrt ) and I⊥(Nrt ) waveforms
produced by nonzero ϕ0 allows for the phase-sensitive (signed) detection of φ(ω) and
simultaneously ameliorates the effects of instrumental imperfections [81]. The CRDP sig-
nal expressions can be recast as functions of time, t = Nrt trt , by taking into consideration
the round-trip period for an optical pulse propagating through the resonator, trt = 2L/c.
Consequently, the factors of R2Nrt lead to exponentially decaying temporal profiles for
the empty apparatus, e−t/τ0 , where the characteristic lifetime of the cavity (sans chiral
sample) is defined by τ0 = L/(c| ln R|). In practice, the effective value of R employed
in these expressions embodies the intrinsic reflectivity of each mirror substrate as well
as the inevitable losses incurred from the adjacent intracavity waveplate.

The CRDP configuration of Figure 11.2 has been optimized for dispersive chiroptical
(CB) analyses [81, 84], with subtraction of Eqs. (11.56) and (11.57) leading to:

I _(t) = I‖(t) − I⊥(t) = Ae−t/τ cos[�t + �], (11.58)

where A=e−κ(ω)L, 1/τ =1/τ0+cκ(ω), �=2c(ϕ0+ϕ(ω)
)/L, and � = 2(ϕ0 + ϕ(ω)
).
This expression has the form of an idealized free-induction decay, as often encountered
in studies of Fourier-transform magnetic resonance spectroscopy [87]. In particular, the
extracted frequency of oscillation, �, encodes both the sign and the magnitude of vapor-
phase circular birefringence:

� = �0 + �N N = 2c

L
ϕ0 + 2c

(



L

)
ϕ(ω), (11.59)

where the subscript on �N emphasizes the fact that this quantity scales in direct
proportion to the number density (N ) or pressure (p = NkB T ) of the chiral medium, as
shown explicitly by the definition of φ(ω) = ϕ(ω)
 [cf. Eqs. (11.28) and (11.48)]. For
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the modulated mode of CRDP operation obtained by having ϕ0 �= 0 [81], the action of
natural optical activity will either increase or decrease � relative to that of the empty
polarimeter (�0 ≡ 2cϕ0/L), with the phase of the observed frequency shift, 	� =
� − �0 = �N N = 2c factϕ(ω), reflecting the enantiomeric form of the targeted species.
Consequently, the coveted vapor-phase specific optical rotation, [α]T

λ , can be extracted
readily from the (signed) slope of the linear curve that results from plotting 	� as a
function of p. This procedure has been applied successfully to a wide variety of volatile
organic compounds [84, 85, 88, 89] where effective sample pathlengths in excess of 1 km
(i.e., for an apparatus of L ≈ 1.2-m physical length) have permitted the first quantitative
measurements of dispersive chiroptical phenomena to be performed on ambient gases.

All of the aforementioned polarimetric instruments rely on the pathlength-dependent
phase shifts that a chiral medium introduces between left-circular and right-circular
polarization components, ultimately leading to a discernable optical rotation for
transmitted light. Such behavior stems from the difference in refractive index (or CB)
that exists for the helicity basis, 	n(ω) = nL(ω) − nR(ω) �= 0 [cf. Section 11.2.2];
however, as first noted by Fresnel [33, 90], the ensuing chiroptical properties also
should be manifest in refraction and reflection (which implicitly depend on 	n(ω)

through Snell’s Law [30]). Ghosh and Fischer [91] have exploited this concept to
implement new variants of liquid-phase polarimetry whereby the double refraction or
reflection of plane-polarized light at a chiral–achiral interface causes a characteristic
bifurcation of the emerging beam. The angular deviation between the resulting pairs
of refracted/reflected waves was shown to be in quantitative agreement with canonical
ORD profiles acquired simultaneously for pure chiral liquids and enantiomerically
enriched solutions. Analogous circular-differential techniques have been demonstrated
by these authors for diffractive scattering [92] and the magnetically induced Faraday
effect [93]. Since the underlying interfacial phenomena take place over distances
amounting to only a few wavelengths of light, the apparatus can be miniaturized
readily without suffering an appreciable loss in sensitivity. Consequently, the double
refraction/reflection methodology promises to open new vistas in the realm of chiroptical
spectroscopy, potentially enabling optical activity to be studied in novel substrates (e.g.,
thin films) and otherwise inaccessible environments (e.g., microfluidic devices).

11.4. INTRINSIC OPTICAL ACTIVITY

11.4.1. The Optical Rotation of Isolated Molecules

The investigation of electronic optical activity (ORD and ECD) in condensed media has
enjoyed a long and fruitful history [14, 53], serving to elucidate many of the key features
that distinguish chiral molecules and their interactions. Through careful consideration of
pertinent experimental parameters, such efforts, in principle, can reveal intrinsic chirop-
tical properties, which can be defined broadly as the response evoked from a nominally
isolated species that is perturbed negligibly by its surroundings. For polarimetric studies
of circular birefringence in the solution phase, this demands selection of innocuous or
non-interacting solvents (e.g., cyclohexane), with concentrations being kept sufficiently
low so as to minimize any solute–solute coupling that might lead to the formation of
aggregates and/or complexes (processes of interest in their own right) [94–97]. Even
for the most auspicious of circumstances, Polavarapu et al. [98] have emphasized the
importance of extrapolating optical-rotation measurements and resulting specific rotatory
powers to the hypothetical limit of infinite dilution.
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The top panel of Figure 11.3 presents ORD data acquired for (S )-methyloxirane
under both solvated and isolated (vapor-phase) conditions. Owing to its conformational
rigidity and computational tractability, this small epoxide has emerged as a model
system for ab initio predictions of optical activity. The dotted curves follow from inter-
polation of canonical solution-phase polarimetric measurements performed at discrete
excitation frequencies (ω) denoted by the individual symbols, with concentrations being
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Figure 11.3. Optical Rotation of (S)-Methyloxirane. The top panel contrasts optical rotatory

dispersion profiles acquired for (S)-methyloxirane under complementary solution-phase (opened

symbols and dotted curves) and vapor-phase (closed circular symbols) conditions, where the

latter isolated-molecule results stem from CRDP measurements. The bottom panel compares the

intrinsic chiroptical response to predictions obtained at density-functional (triangular symbols)

and coupled-cluster (hourglass symbols) levels of theory, with the dashed curve and associated

arrows depicting the correction of CCSD linear-response calculations for vibrational motion of

the nuclear framework [110, 111] (cf. Table 11.1).
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kept low enough to minimize solute–solute interactions. The selected solvents (cf.
legend) possess a broad spectrum of chemical and physical attributes, including distinct
permanent electric-dipole moments μ, static dielectric constants ε = ε(0), and refractive
indices n(ω) ≈ √

ε(ω). Even a cursory inspection of this figure reveals marked
differences among the solution-phase results, thereby demonstrating conclusively that
the observed behavior does not reflect an intrinsic property of the solute molecule
entrained in an otherwise passive medium. While the CB of methyloxirane appears to be
especially susceptible to environmental perturbations [99], numerous studies performed
on species having diverse structural motifs and functional moieties have documented
the pronounced influence that solvation can exert on dispersive/absorptive chiroptical
phenomena [14].

The application of cavity-enhanced techniques to gas-phase polarimetry has pro-
vided a new means for extracting intrinsic properties from rarefied environments [80,
84]. The isolated-molecule results in Figure 11.3 stem from CRDP analyses performed
independently at λ = 355 nm and λ = 633 nm, where CB signals could be resolved read-
ily for ambient (25◦C) samples of (S )-methyloxirane having pressures of p�1 Torr. The
unparalleled sensitivity of this polarimetric scheme comes at the expense of limited spec-
tral versatility, because the underlying long-pathlength advantage depends critically on
the quality of narrow-band dielectric coatings applied to mirror substrates (for reflec-
tivity) and intracavity waveplates (for antireflectivity). Since the requisite high finesse
of the resonator assembly only can be maintained over a limited range of incident
wavelengths, all optical components must be replaced whenever a substantive change
in excitation frequency is desired. Four historical attempts to explore circular birefrin-
gence in gaseous media have been reported prior to modern cavity-based measurements
[5, 73–75], including the seminal 1817 study of Biot that first demonstrated the existence
of such phenomena in an 
 = 30 m column of vapor from boiling turpentine, but failed
to obtain quantitative information prior to conflagration of the apparatus [5]. Efforts to
probe gas-phase ORD in single-pass instruments appear to have culminated in the 1931
work of Lowry and Gore [75], which examined camphor and camphorquinone at elevated
temperatures (180–200◦C) in the near-ultraviolet region proximate to their ketonic and
quinonoid absorption bands.

Direct comparison of the complementary solution-phase and vapor-phase results
depicted in Figure 11.3 highlights the pronounced and, oftentimes, counterintuitive effects
incurred by complex solvation phenomena. This assertion is demonstrated most succinctly
by the values of specific optical rotation deduced for (S )-methyloxirane at 355 nm exci-
tation, where removal of the surrounding solvent (except water) leads to a reversal of
sign for [α]25◦C

355 nm. Indeed, analogous polarimetric studies performed on a wide variety of
conformationally rigid chiral species have shown that solvents possessing high dielectric
constants (e.g., acetonitrile) consistently provide better mimics for intrinsic (vapor-phase)
chiroptical response than their less-polar counterparts (e.g., cyclohexane) [84, 88, 89],
a finding that would appear to contradict conventional wisdom regarding the nature of
solute-solvent interactions.

The dispersive aspects of chiroptical behavior (CB or ORD) impose unique chal-
lenges for quantitative theoretical calculations, even if the complications arising from
environmental perturbations (e.g., solvation) are ignored. Rather than depending on the
characteristics of a localized chromophore as is the case for absorptive CD phenomena
[14], CB is a composite molecular property that reflects the dynamical response of the
entire electronic distribution to oscillating electromagnetic fields, an assertion reinforced
by the explicit summation over all excited states appearing in definitions of the mixed
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E1–M 1 polarizability tensor [cf. Eqs. (11.32) and (11.38)]. Consequently, the reliability
of computational predictions for optical activity should scale directly with the ability of
the underlying ab initio method to successfully reproduce the excitation energies (�ωeg )

and transition moments (eg R) of the targeted chiral species. Aside from incorporating
extensive sets of diffuse basis functions designed to describe the periphery of the elec-
tronic wavefunction accurately [100, 101], such analyses must be capable of treating
pervasive electron-correlation effects at high levels of theory.

The vast majority of optical activity calculations reported to date have exploited den-
sity functional theory (DFT) [102], specifically the time-dependent variant of TDDFT
[103], which offers an effective balance between computational cost and accuracy.
Despite use of correlation-exchange models that typically have been optimized for the elu-
cidation of thermochemical (rather than linear-response) characteristics [104], numerous
studies have documented the ability of DFT to predict ORD and ECD profiles quantita-
tively. In particular, Stephens and coworkers have performed extensive TDDFT analyses
of CB [105, 106], with targeted sets of conformationally rigid chiral species found to
exhibit root-mean-square deviations of σ ≈ 29 deg dm−1 (g/mL)−1 between their com-
puted (solvent-free) and measured (solvated) specific rotatory powers at sodium D-line
excitation (589.3 nm). Such results have prompted these authors to propose a “zone of
indeterminacy” amounting to ±2σ within which DFT-calculated values of [α]T

589.3 nm can-
not be used to determine absolute stereochemical configuration reliably (i.e., with > 95%
confidence) [106]. The shortcomings inherent to DFT have prompted several research
groups to pursue alternative treatments of chiroptical response built upon the potent
coupled-cluster (CC) paradigm [107], a wavefunction-based approach capable of incor-
porating dynamic electron-correlation effects rigorously in a convergent framework that
systematically can be improved to reach the exact (Born–Oppenheimer) electronic wave-
function. Although demanding substantially more computational resources than their DFT
counterparts, CC methods have been shown to provide exceptionally accurate predictions
for diverse molecular properties [108, 109].

Since gas-phase polarimetry dispenses with the need to model complex solvation pro-
cesses, information gleaned from such studies can be used to critically assess burgeoning
ab initio predictions of chiroptical behavior. The bottom panel of Figure 11.3 contrasts
CRDP measurements of intrinsic optical rotation for (S )-methyloxirane with ORD pro-
files computed by applying density-functional (hybrid B3LYP correlation-exchange func-
tional) and coupled-cluster (CCSD with a polarization-augmented basis of split double-ζ
and triple-ζ character) [110, 111] techniques to equilibrium geometries optimized, respec-
tively, at the MP2/aug-cc-pVQZ and B3LYP/aug-cc-pVTZ levels of theory. A subset of
these linear-response calculations has been compiled in Table 11.1, where tabulated DFT
parameters demonstrate the effect of successively improving basis quality. While the
B3LYP/aug-cc-pVDZ scheme has been suggested to provide a reasonable compromise
between computational costs and predictive accuracy for dispersive chiroptical phenom-
ena [100, 105, 106], the resulting [α]T

λ values for methyloxirane differ markedly from
those obtained by analogous B3LYP/aug-cc-pVTZ and B3LYP/aug-cc-pVQZ treatments,
which are presumed to more closely approximate the complete basis-set limit [112].

All of the quantum-chemical results depicted in Figure 11.3 concur in predicting a
negative specific rotatory power for (S )-methyloxirane vapor at 633 nm, thereby corrob-
orating the absolute stereochemical configuration of the chiral species targeted by CRDP
experiments. While B3LYP/aug-cc-pVTZ and B3LYP/aug-cc-pVQZ linear-response cal-
culations reproduce the positive value of [α]25◦C

λ measured at λ = 355 nm, their double-ζ
counterparts, as well as CCSD analyses for the rigid equilibrium structure, suggest the
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TABLE 11.1. Intrinsic Optical Rotation of (S )-Methyloxiranea

Specific Optical Rotation (deg dm−1(g/mL)−1)

Quantity 633.0 nm 589.3 nm 355.0 nm

Experimental (CRDP) −8.39 ± 0.20 −7.27 ± 0.38 7.49 ± 0.30

DFT(B3LYP)
aug-cc-pVDZ −16.74 −18.53 −3.71
aug-cc-pVTZ −10.19 −10.98 15.47
aug-cc-pVQZ −9.56 −10.25 17.69

CCSD(split basis)
Equilibrium contribution: [α]eq

λ −18.99 −21.50 −36.29
Anharmonic contribution: [α]anh

λ +3.02 +3.56 +12.84
Harmonic contribution: [α]har

λ +5.19 +6.22 +27.46

Corrected response: [α]25◦C
λ −10.78 −11.72 4.01

a The specific optical rotation for isolated (S )-methyloxirane is compared with predictions obtained from density-
functional theory and coupled-cluster calculations. The experimental value at 589.3 nm is interpolated from
vapor-phase CRDP measurements performed at 633 nm and 355 nm by applying a quadratic Drude-like model
of the form [α]T

λ = a0 + a2/λ
2, where a0 = −15.68 ± 0.32 deg dm−1(g/mL)−1 and a2 = (2.920 ± 0.066) ×

106 deg dm−1(g/mL)−1 nm2. DFT results are presented for various basis sets used in conjunction with the
hybrid B3LYP correlation-exchange functional (geometry optimized at MP2/aug-cc-pVQZ), while the CCSD
treatment reported by Kongsted et al. [110, 111] utilized a split basis consisting of aug-cc-pVDZ on carbon,
aug-cc-pVTZ on oxygen, and daug-cc-pVDZ on hydrogen (geometry optimized at B3LYP/aug-cc-pVTZ). In
the latter case, the vibrationally corrected chiroptical response, [α]T

λ , has been partitioned into equilibrium
(electronic), anharmonic, and harmonic (thermally averaged at T = 298.15 K) contributions, denoted by [α]eq

λ ,
[α]anh

λ , and [α]har
λ , respectively.

opposite sign. At first glance, the ORD profiles computed by DFT techniques seem to
be in much better agreement with vapor-phase data than those emerging from analogous
CC treatments, a finding that would appear to contradict the superior accuracy expected
for coupled-cluster schemes [108]. However, as demonstrated by the detailed investiga-
tions of Tam et al. [113], this behavior stems from a fortuitous cancellation of errors
inherent to the density-functional approach, which can be related directly to the incor-
rect prediction of excited-state transition energies. In particular, underestimation of �ωeg

for the lowest-lying (Rydberg) electronic manifold shifts the corresponding first-order
pole in the mixed E1–M 1 polarizability, G ′(ω), to longer wavelengths and leads to a
concomitant displacement of the computed ORD curve towards more positive values.
Since the CCSD paradigm correctly predicts the location of absorptive resonances in
isolated methyloxirane molecules, the glaring discrepancies that exist between observed
and calculated chiroptical properties must reflect the action of ancillary effects, such as
those arising from vibrational motion of the nuclear framework.

11.4.2. Vibrational Effects

While the fundamental underpinnings of chiroptical spectroscopy performed in the visible
and ultraviolet regions of the spectrum usually attribute such phenomena to electronic
origins (cf. Section 11.2) [1, 2], the contributing roles of nuclear motion should not
be discounted. Even in the absence of conformational flexibility (vide infra) or other
large-amplitude degrees of freedom, localized vibrational displacement of the molecular
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framework can exert a pronounced influence on both dispersive (CB) and absorptive (CD)
processes. This assertion is demonstrated succinctly by the family of ostensibly achiral
compounds that become optically active upon isotopic substitution [16] (e.g., (S,S )-[2,3-
2H2] oxirane [114]), where the underlying isotopically engendered chirality (IEC) must
reflect vibrational perturbations acting on the otherwise achiral electronic wavefunction
(the latter being implied by strict application of the adiabatic Born–Oppenheimer approx-
imation). The precise mechanism for IEC has been a subject of considerable speculation
[115], leading to suggestions of vibrationally averaged structures that are made chiral by
the effects of mechanical anharmonicity (e.g., imbuing minute differences between the
lengths of C–H and C–D bonds) and of reoriented electric/magnetic transition moments
induced by vibronic coupling among electronic manifolds.

The putative influence of nuclear motion upon electronic optical activity (CB) is illus-
trated graphically in Figure 11.4 for the case of (S )-methyloxirane. The top panel depicts
the threefold-symmetric potential energy curve computed at the B3LYP/aug-cc-pVTZ
level of theory by performing restricted geometry optimizations as a function of methyl-
group torsional displacement, the latter being quantified by the dihedral angle, τHCCO, that
describes the orientation of a selected hydrogen atom in the –CH3 moiety. Three equiv-
alent minima (maxima) are evident over this cyclic coordinate, being located at τHCCO

values of 44.1◦ (−15.9◦ or 344.1◦), 164.1◦ (104.1◦), and 284.1◦ (224.1◦). The quantized
energy levels (Ev) and associated probability densities (|ψv(τHCCO)|2) superimposed on
this figure follow from an approximate treatment of the internal rotor Hamiltonian [116],
with different colors being used to distinguish alternating eigenstates of A (nondegenerate)
and E (doubly degenerate) character under the C3 rotational subgroup.

The bottom panel of Figure 11.4 depicts the specific rotatory power of (S )-methyl-
oxirane calculated as a function of –CH3 torsion by applying the B3LYP/aug-cc-pVTZ
linear-response formalism at three excitation wavelengths: 633 nm, 589.3 nm, and 355 nm.
Surprisingly large changes in the magnitude of [α]T

λ are predicted to occur as the orienta-
tion of the methyl group is varied, with the sign of this quantity also found to switch in a
periodic fashion. While higher-lying (torsional) eigenstates show unmistakable evidence
for tunneling among the potential minima, their less-energetic counterparts remain fairly
well localized, in keeping with the rigid structural assumption often invoked under ambi-
ent (thermal) conditions. Nevertheless, even the zero-point level exhibits significant prob-
ability density over wide swaths of the accessible τHCCO parameter space, thereby sug-
gesting that the computed optical activity must be averaged over the corresponding range
of nuclear coordinates. Torsional motion has been found to be an especially potent media-
tor of ORD profiles in methyloxirane and related rigid species [110, 117–119]; however,
other vibrational degrees of freedom certainly contribute to the observed chiroptical
response, as well as to its dependence on temperature and other environmental variables.

The influence of nuclear motion on molecular properties long has been a subject
of experimental and theoretical interest [120]. Recent advances in this area (including
those directed towards the elucidation of chiroptical behavior) have been motivated
by the development of evermore accurate and reliable electronic-structure calculations,
with quantitative comparison of such ab initio predictions to laboratory measurements
often demanding the explicit consideration of zero-point (vibrational) effects [117, 119,
121–123] and of temperature-dependent contributions arising from the population of
excited (vibrational/rotational) manifolds [124, 125]. In the canonical treatment, the
property under investigation, P ≡ P(Q), is expanded as a multidimensional Taylor
series of nuclear coordinates, Q ≡ {Q1, Q2, . . . , QNvib}, the latter often being described
by the Nvib normal modes of vibration [126]. The resulting expression formally contains
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Figure 11.4. Torsional displacements in (S)-methyloxirane. The top panel presents the threefold

symmetric torsional potential for (S)-methyloxirane computed at the B3LYP/aug-cc-pVTZ level of

theory. Probability densities for the lowest-lying eigenstates are superimposed, with different

colors being used to distinguish alternating levels of A and E character under the C3 rotational

subgroup (note that near degeneracy of first few A and E levels leads to a merged green

coloration). The bottom panel depicts the torsional dependence of specific optical rotation

predicted by B3LYP/aug-cc-pVTZ linear-response calculations performed at 633 nm (dashed curve),

589.3 nm (solid curve), and 355 nm (dotted curve).
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an infinite number of terms that entail successively higher-order derivatives of P with
respect to the Qi :

P =
∞∑

n=0

Pn = P0 +
Nvib∑
i=1

(
∂P

∂Qi

)
0

Qi + 1

2

Nvib∑
i=1

Nvib∑
j=1

(
∂2P

∂Qi ∂Qj

)
0

Qi Qj + · · · , (11.60)

where the point about which the expansion is taken (designated by subscript “0”)
usually coincides with the equilibrium (minimum-energy) configuration of the nuclear
framework (vide infra). For a given vibrational eigenstate |ψv〉 ≡ ψv(Q), as specified
by the collective set of quantum numbers v ≡ {v1, v2, . . . , vNvib}, the expectation (or
average) value of P follows from

〈P〉v =
∞∑

n=0

〈Pn〉v = P0 +
Nvib∑
i=1

(
∂P

∂Qi

)
0
〈Qi 〉v + 1

2

Nvib∑
i=1

Nvib∑
j=1

(
∂2P

∂Qi ∂Qj

)
0

〈Qi Qj 〉v + · · · ,

(11.61)

where 〈A〉v ≡ 〈ψv|A|ψv〉 and 〈ψv′ |ψv〉 = δv′,v ≡ ∏Nvib
i=1 δv′

i ,vi .

Quantitative descriptions of multidimensional nuclear dynamics in polyatomic
species often require explicit consideration of effects arising from intrinsic anharmonicity
of the potential energy surface, V (Q). Although potent variational methods exist for
predicting the rotation–vibration structure of small molecules with near-spectroscopic
accuracy [127], analyses performed on larger systems commonly rely on the techniques of
time-independent perturbation theory [122, 123, 128], which afford a reasonable compro-
mise between computational cost and reliability. For vibrational degrees of free-
dom, this approach usually exploits the separable harmonic-oscillator eigenbasis,
|ψ(0)

v 〉 ≡ ψ
(0)
v (Q) = ∏Nvib

i=1 ψ
(0)
vi (Qi ), with the unperturbed (zero-order) eigenvalues being

specified by E (0)
v = ∑Nvib

i=1 �ωi (vi + 1/2), where the angular (linear) frequency,
ωi (νi ), for each eigenmode can be related to the attendant wavenumber, ν̃i , through
ωi = 2πνi = 2πcν̃i . Second-order perturbative expansions generally are preferred so
as to generate closed-form expressions for energy-related parameters [122, 123, 128];
however, for the present discussion of vibrational averaging, it proves convenient to
consider only first-order wavefunction corrections:

|ψv〉 ≈ |ψ(0)
v 〉 + |ψ(1)

v 〉 = |ψ(0)
v 〉 +

∑
v′

a(1)
v′,v|ψ(0)

v′ 〉. (11.62)

The coefficients a(1)
v′,v are defined formally by matrix elements of the perturbation Hamil-

tonian, Ĥ
(1)

vib, that describes the effects of vibrational anharmonicity:

a(1)
v′,v = 〈ψ(0)

v′ |ψ(1)
v 〉 = 〈ψ(0)

v′ |Ĥ(1)

vib|ψ(0)
v 〉

E (0)
v − E (0)

v′
(v′ �= v), (11.63)

where proper normalization of |ψv〉 demands that 〈ψ(0)
v |ψ(1)

v 〉 + 〈ψ(1)
v |ψ(0)

v 〉 = 0 [50].
The molecular potential energy surface commonly is expanded as a multidimensional
Taylor series about the equilibrium nuclear configuration, with truncation at quadratic
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terms leading to the canonical normal modes of vibration. Consequently, Ĥ
(1)

vib reflects
the lowest-order (cubic) contributions neglected by this harmonic approximation:

Ĥ
(1) = 1

6

Nvib∑
j=1

Nvib∑
k=1

Nvib∑
l=1

(
∂3V (Q)

∂Qj ∂Qk∂Ql

)
0

Qi Qj Ql = 1

6

Nvib∑
j ,k ,l=1

�jkl Qj Qk Ql , (11.64)

where �ijl denotes the cubic force constant. Building upon this perturbative framework,
the coordinate expectation values in Eq. (11.61) can be evaluated readily to find [129]:

〈Qi 〉v = 〈ψv|Qi |ψv〉 ≈ 〈ψ(1)
v |Qi |ψ(0)

v 〉 + 〈ψ(0)
v |Qi |ψ(1)

v 〉

= − �

2 ω2
i

Nvib∑
j=1

�ijj

ωj

(
vj + 1

2

)
, (11.65)

〈Qi Qj 〉v ≡ 〈ψv|Qi Qj |ψv〉 ≈ 〈ψ(0)
v |Qi Qj |ψ(0)

v 〉

= δij 〈ψ(0)
v |Q2

i |ψ(0)
v 〉 = δij

�

ωi

(
vi + 1

2

)
, (11.66)

with 〈Qi 〉v vanishing in the strictly harmonic limit (i.e., where �ijj → 0). The vibrational
average of property P in eigenstate |ψv〉 now can be expressed as:

〈P〉v = P0 +
⎡
⎣−�

2

Nvib∑
i=1

1

ω2
i

(
∂P

∂Qi

)
0

Nvib∑
j=1

�ijj

ωj

(
vj + 1

2

)⎤
⎦ + �

2

Nvib∑
i=1

1

ωi

(
∂2P

∂Q2
i

)
0

(
vi + 1

2

)

= Peq + Panh + Phar , (11.67)

where the second equality highlights the partitioning of 〈P〉v into equilibrium (Peq ),
anharmonic (Panh) , and harmonic (Phar ) contributions, the latter two depending, respec-
tively, on the slope and the curvature of the property function, P (Q), proximate to the
reference nuclear configuration.1 The effects of zero-point displacement follow from this
expression by setting all vibrational quantum numbers to zero (viz., v → 0) to obtain
〈P〉0. Likewise, contributions arising from the manifold of vibrational states occupied in
a thermally equilibrated ensemble of molecules can be described by averaging 〈P〉v over
the corresponding Boltzmann distribution:

PT ≡
∑

v

〈P〉v fv(T ) =
∑

v

〈P〉v
e−Ev/kB T

qvib
, (11.68)

1 In keeping with the terminology used to describe vibrational transitions, the Panh terms in Eq. (11.67) embody
the effects of “mechanical” anharmonicity (arising from derivatives of the electronic potential energy surface
beyond second order) while their Phar counterparts reflect the action of “property” anharmonicity (arising
from derivatives of the molecular property surface beyond first order). The latter quantities often are equated
with “electrical” anharmonicity, since the molecular property surface of interest in vibrational spectroscopy is
typically the electric dipole moment.
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where fv(T ) = e−Ev/kB T /qvib represents the normalized population of quantum state |ψv〉
at absolute temperature T and qvib = ∑

v e−Ev/kB T denotes the vibrational partition func-
tion. The components of Phar and Panh entering into this thermal average can be evaluated
as follows:

∑
v

(
vi + 1

2

)
fv(T ) =

∑
v

(
vi + 1

2

)
e−Ev/kB T

qvib
≈ 1

2
coth

[
�ωi

2kB T

]
, (11.69)

where the final equality stems from the harmonic approximation of Ev ≈ E (0)
v .

The analyses outlined above are based upon expansion of the potential-energy and
property-function surfaces about the equilibrium configuration; however, other choices
for this reference point have been proposed. In particular, Ruud et al. [117, 121] have
advocated use of an effective geometry defined formally by minimizing the sum of elec-
tronic and vibrational zero-point energies. This variational approach closely approximates
the vibrationally averaged structure of the molecule, with the leading (anharmonic) terms
in the perturbative development of the vibrational wavefunction found to vanish such that
|ψv〉 ≈ |ψ(0)

v 〉. Consequently, the expectation value for a property now can be decomposed
into two quantities, 〈P〉v = Peff + P ′har , where P ′har embodies property-curvature values
(evaluated at the effective geometry) and the contributions of anharmonicity are incorpo-
rated implicitly by the shift between the effective and equilibrium nuclear frameworks,
Panh ≈ Peff − Peq .

The computational scheme embodied in Eqs. (11.67) and (11.68) has been applied
fruitfully to interpret diverse molecular phenomena, including dispersive chiroptical
effects where P(Q) becomes [α]λ(Q). Wiberg and coworkers [130] have reported
detailed measurements for the temperature dependence (0–100◦C) of the specific
rotatory power displayed by a series of conformationally rigid bicyclic compounds
entrained in dilute ethylcyclohexane solutions. The resulting plots of [α]T

λ versus T
were essentially linear in form; however, the attendant slopes varied greatly (in both
magnitude and sign) from one targeted species to the next. By combining the TDDFT
linear-response framework with property-averaging procedures that accounted for the
thermal population of excited (vibrational) states, Mort and Autschbach [124] have
shown that many of the trends noted in this polarimetric study can be attributed to
intrinsic vibrational displacements. These authors found that corrections arising from
property-curvature terms [∝ (∂2[α]λ/∂Q2

i )0] usually dominated over those attributed
to anharmonicity of the potential energy surface [∝ (∂[α]λ/∂Qi )0], with the proper
treatment of low-frequency modes (e.g ., the torsional motion of methyl rotors) requiring
special consideration [125]. While experimental complications (e.g ., solvation) and
theoretical deficiencies (e.g., for treating Rydberg states) [131] limited the extent
of agreement achieved between observed and predicted behavior, this work clearly
demonstrates the latent roles played by nuclear degrees of freedom.

One might expect the effects of nuclear motion to represent only a minor constituent
of measured ORD profiles; however, the magnitudes of such effects can be compara-
ble to or even larger than those of their purely electronic counterparts, especially for
species possessing small rotatory powers [132]. This statement is bolstered by the (S )-
methyloxirane results compiled in Table 11.1, which follow from the CC linear-response
calculations of Kongsted et al. [110, 111]. Aside from specific rotations computed
for the rigid minimum-energy (equilibrium) structure at three excitation wavelengths,
[α]eq

λ , the corresponding anharmonic, [α]anh
λ , and harmonic, [α]har

λ , vibrational correc-
tions are tabulated, where the latter property-curvature quantity has been averaged over a
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T = 298.15 K thermal ensemble [cf. Eqs. (11.68) and (11.69)]. While [α]eq
λ is predicted

to be uniformly negative at the CCSD level of theory (cf. Figure 11.3), the [α]anh
λ and

[α]har
λ parameters are positive with [α]har

λ >[α]anh
λ . Consequently, vibrational correction

of the specific rotation, [α]T
λ = [α]eq

λ + [α]anh
λ + [α]har

λ , shifts the innate ORD curve (as
described by [α]eq

λ alone) toward positive values and produces near-quantitative agree-
ment with gas-phase polarimetric measurements performed on isolated (S )-methyloxirane
molecules (cf. dashed line in Figure 11.3). In contrast, analogous considerations applied
to DFT analyses exacerbate the discrepancies between theory and experiment [110, 118],
overestimating the rotatory power at 355 nm by nearly an order of magnitude and giving
the incorrect sign of optical rotation at 589.3 nm and 633 nm.

While CC methods generally are considered to be more accurate and reliable than
their DFT counterparts, the latter are considerably less demanding from a computational
perspective. Such considerations are of prime importance for treatments of vibrational
phenomena, where the enumerated degrees of freedom escalate rapidly as molecular
size increases. Even given the simplifications obtained by a strictly harmonic description
of normal modes (e.g., 〈Qi 〉v = 0), the sheer number of property-curvature calculations
needed to account for the effects of nuclear motion in a moderately large chiral species
can prove to be prohibitive for arduous CC schemes. To remedy this situation, recent
efforts have explored the possibility of cobbling efficient density-functional analyses of
vibrational properties with dependable coupled-cluster estimates of electronic chiroptical
response [133]. This hybrid approach has been shown to provide a reasonable compromise
between accuracy and cost, with B3LYP zero-point corrections of CCSD specific-rotation
values usually found to better approximate the intrinsic (isolated-molecule) behavior
revealed by gas-phase polarimetric measurements.

11.4.3. Conformational Flexibility

Conformational flexibility, whereby internal motion of functional/structural moieties
gives rise to distinct minima within an encompassing electronic potential energy
hypersurface, can impact both the dispersive (CB) and absorptive (CD) components
of natural optical activity. Interconversion of the resulting stereoisomers through
large-amplitude vibrational displacements commonly is hindered by the presence of
substantial potential barriers, thereby leading to essentially independent entities that
often exhibit opposing chiroptical properties. The separate “species” obtained under such
circumstances can produce contrasting sets of vibronic features in ECD spectra [14],
with the unique signature of each conformer reflecting the different local environment
of its absorbing chromophore. Similar considerations apply for ORD profiles, where
even a rudimentary description of observed behavior demands knowledge of population
distributions for the contributing structural isomers. Consequently, any attempt to
quantitatively model or interpret the response evoked from a nonrigid chiral species
must be preceded by a comprehensive hunt for all accessible configurations of the
nuclear framework. This formidable task can be guided by chemical intuition; however,
semiautomated procedures, based upon low-level search algorithms followed by
optimization of identified geometries at higher levels of theory, have been implemented
to explore the potential-energy landscape of larger systems. Detailed analyses of specific
rotation have been reported for a variety of flexible substrates probed, primarily, under
solvated conditions, including prototypical organic compounds [85, 89, 134–147],
molecular aggregates [95, 96, 148], and complex natural products [149, 150].

The putative roles that molecular conformations can play in dispersive chiroptical
phenomena are illustrated graphically by Figure 11.5 for the case of (S )-epichlorohydrin,
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Figure 11.5. Conformational flexibility in (S)-epichlorohydrin. The top panel presents the tor-

sional potential for (S)-epichlorohydrin computed at the MP2/aug-cc-pVTZ level of theory. The

insets depict idealized Newman projections for the three stable conformers of the nuclear frame-

work, which are designated as gauche I, gauche II, and cis. Approximate wavefunctions obtained

for the lowest-lying torsional eigenstates are superimposed, with the effective ‘‘zero-point level’’

for each potential minimum highlighted. The bottom panel shows the conformational depen-

dence of specific optical rotation as predicted by B3LYP/aug-cc-pVTZ linear-response calculations

performed at 633 nm (dashed curve), 589.3 nm (solid curve), and 355 nm (dotted curve).

a flexible chiral species that has been the subject of several investigations [85, 134,
139]. The top panel presents a relaxed potential-energy scan obtained at the MP2/aug-
cc-pVTZ level of theory by performing partial geometry optimizations as a function
of the Cl–C–C–O dihedral angle, τClCCO, which describes relative orientation of the
chloromethyl group with respect to the epoxide ring. As shown by the idealized New-
man projections in the insets, the ground electronic surface is predicted to support
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three stable low-lying conformers designated as gauche I (τClCCO = 80.8◦), gauche II
(τClCCO = 198.5◦), and cis (τClCCO = 310.0◦). While the gauche-II form represents the
global minimum-energy configuration of the isolated nuclear framework, the gauche-
I and cis structures reside only 2.11 kJ/mol (176.0 cm−1) and 4.80 kJ/mol (400.9 cm−1)

higher in energy, implying that all three will exist in an ambient ensemble of equilibrated
(S )-epichlorohydrin molecules.

The bottom panel of Figure 11.5 depicts the circular birefringence of (S )-
epichlorohydrin predicted as a function of the τClCCO coordinate for three excitation
wavelengths: 633 nm, 589.3 nm, and 355 nm. These results follow from B3LYP/aug-
cc-pVTZ linear-response calculations performed on partially optimized geometries
emerging from the aforementioned potential-energy scan. The orientation of the
chloromethyl group, which mediates interchange among the stable ground-state minima,
clearly exerts a pronounced influence upon dispersive chiroptical response, promoting
marked shifts in both magnitude and sign of the computed specific rotation, [α]λ. In
particular, the localized segments of the abscissa nominally attributed to each conformer
display contrasting behaviors, with the gauche-I and gauche-II forms respectively
having positive and negative [α]λ values of comparable size while the cis species
displays roughly half the rotatory power of its gauche-II counterpart. Experimental
measurements of optical activity in (S )-epichlorohydrin should reflect such antagonistic
properties by depending strongly on temperature and other environmental variables that
affect the distribution of population among the potential wells.

Since the stable conformations of (S )-epichlorohydrin constitute distinct minima
within a single electronic manifold, their properties can be described uniformly by solv-
ing the associated nuclear Schrödinger equation to obtain multidimensional vibrational
eigenfunctions, ψv(Q), and eigenvalues, Ev. In particular, for sufficiently low barriers
to interconversion, the resulting ψv(Q) will display delocalized probability amplitudes
that span all three of the potential wells. Such information, in conjunction with knowl-
edge of the coordinate-dependence for wavelength-resolved specific rotation, [α]λ(Q),
should enable the observed optical activity, [α]T

λ , to be predicted from Eq. (11.68).
Even if the complications incurred from environmental perturbations (e.g., solvation)
are neglected, this represents a computationally formidable task that proves to be pro-
hibitively expensive for all but the simplest of species. Consequently, most theoretical
treatments of chiroptical behavior in conformationally flexible molecules have relied on
a simple Boltzmann-weighted average, in which each thermally accessible conformer is
regarded as an independent entity with its rotatory power often approximated by that of
the corresponding equilibrium configuration, [α]eq

λ . By using the index η to enumerate
structural isomers, this approach predicts the specific rotation at temperature T to have
the form:

[α]T
λ =

∑
η

[α]eq
λ,η fη(T ) =

∑
η

[α]eq
λ,η

e−	Eη/kB T

q
, (11.70)

where 	Eη denotes the relative energy for species η and q = ∑
η e−	Eη/kB T ensures

overall normalization of the fractional populations defined by fη(T ). Since laboratory
studies of conformer-mediated properties typically are conducted under conditions of
thermal equilibrium that reflect both enthalpic and entropic constraints, relative values of
the Gibbs free energy, 	Gη, often supersede their 	Eη counterparts [85]. Crawford and
Allen [140] have performed detailed analyses of the successive approximations required
to transform the theoretically rigorous vibrational-averaging procedure of Eq. (11.68) into
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the computationally expedient approach of Eq. (11.70). By focusing on the pragmatic
case of (R)-3-chloro-1-butene [137] and exploiting model potentials of adjustable barrier
height, these authors documented the robust nature of the simplistic Boltzmann-weighted
ansatz, proposing that its overall success stems from a favorable cancellation of otherwise
sizable errors.

As suggested by the form of the potential energy curve in Figure 11.5 and rein-
forced by the shapes of the superimposed vibrational wavefunctions, the conformers of
(S )-epichlorohydrin are predicted to be essentially independent entities at ambient tem-
peratures, with delocalized behavior only being obtained once the substantial barriers to
interconversion have been surmounted. Consequently, the Boltzmann-weighted average
of Eq. (11.70) should afford a reasonable description for the attendant optical activity.
Figure 11.6 contrasts ORD profiles computed at the B3LYP/aug-cc-pVDZ level of linear-
response theory with analogous vapor-phase and solution-phase measurements of specific
rotation, where the latter will be discussed in the ensuing section. These results follow
from the polarimetric analyses of Wilson and coworkers [85] which exploited com-
posite Gaussian-3 (G3) [151] calculations to determine requisite 	Gη parameters for the

Figure 11.6. Solvation and optical activity of conformationally flexible molecules. Measured and

computed ORD curves are shown for (S)-epichlorohydrin, a nonrigid chiral molecule where the

antagonistic properties of three lowing-lying conformers mediate overall chiroptical response.

Optical activity predictions are based on B3LYP/aug-cc-pVDZ linear-response calculations that

were thermally averaged by using Gaussian-3 (G3) and self-consistent isodensity polarizable

continuum model (SCI-PCM) estimates for the relative Gibbs free energies (i.e., Boltzmann-

weighted populations) of the isolated and solvated stereoisomers, respectively. Aside from

vapor-phase polarimetric measurements, solution-phase results are shown for acetonitrile (36.6),

di-n-butylether (3.06), and cyclohexane (2.02) media, where parentheses denote static dielectric

constants.
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solvent-free species. The accompanying bar graph depicts the relative population for each
conformer, as dictated by the ordering of their energies, with dominance of the gauche-
II form under isolated-molecule conditions (where 	Ggauche−II < 	Ggauche−I � 	Gcis)

leading to the overall negative sign for [α]T
λ (as expected from the bottom panel of

Figure 11.5). Reasonable accord is found between experiment and theory in the case of
(S )-epichlorohydrin; however, Wilson et al. [85] have reported less satisfactory agreement
for (S )-epifluorohydrin and (S )-1,2-epoxybutane, which respectively exhibit comparable
and more extensive degrees of conformational flexibility. These authors also examined
sources of error contributing to Boltzmann-weighted predictions, asserting that 	Gη must
be computed with <10% accuracy for emerging [α]T

λ values to display a propagated
uncertainty (sans that attributed to [α]eq

λ ) on the order of ±1 deg dm−1 (g/mL)−1.

11.4.4. Solvation Dynamics

The presence of a solvent long has been known to markedly influence chiroptical response
[14], potentially changing both the magnitude and the sign of measured spectral signa-
tures. In the case of flexible solutes like epichlorohydrin (cf. Figures 11.5 and 11.6), these
observations commonly have been attributed to geometrical relaxation of the nuclear
framework that leads to the differential stabilization of conformers, each of which pos-
sesses unique and, oftentimes, antagonistic properties. Nevertheless, as demonstrated
by the methyloxirane data in Figure 11.3, even nominally rigid species can exhibit
pronounced solvation phenomena that ultimately must be ascribed to static/dynamic
adaptations taking place in attendant distributions of electron density. Building upon
the theoretical description for natural optical activity given in Section 11.2, nonspecific
solute–solvent interactions can be expected to alter excitation energies (�ωeg ), transition
moments (eg R), and dephasing rates (�eg ) for excited states in a distinct manner that
reflects their underlying provenance. Aside from shifting the locations, linewidths, and
(signed) intensities of resonant ECD features, such effects will modify the role that a
given electronic manifold plays in constituting the composite property of ORD, which
is exquisitely sensitive to “molecular shape” and strongly affected by perturbations at
the periphery of the electronic wavefunction [101]. Cooperative solvation mechanisms,
including the formation of asymmetric (chiral) solvent shells [152] and the action of
solvent-mediated vibronic coupling [153], also have been invoked to interpret the com-
plex behavior encountered in condensed media.

While the coupling between solute and solvent degrees of freedom clearly exerts a
profound influence on measured chiroptical response, analyses of such phenomena his-
torically have been relegated to the venerable (albeit now largely discredited) [105, 106,
154] Lorentz local-field correction [18, 46, 47]. Modern theoretical approaches for sol-
vation can be classified broadly as being either explicit or implicit in nature, depending
on whether they approximate the solvent as distinct entities (e.g., molecular frameworks
with appended point charges) that give rise to a cooperative supramolecular “complex”
or as an infinite and structureless “fluid” characterized by a set of macroscopic param-
eters (e.g., density and dielectric constant). Explicit models are capable of faithfully
portraying specific interactions mediated by the innermost solvent shell; however, they
generally afford less satisfactory descriptions of properties attributed to long-range (bulk)
forces and polarization of the medium. Monte Carlo and molecular dynamics simula-
tions commonly are integrated into these schemes, with extraction of desired information
predicated upon delicate statistical averages deduced from ensembles of uncorrelated
solute–solvent “snapshots.” In the case of optical activity, the inherent difficulty of this
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task is compounded by the need to perform arduous quantum-mechanical calculations of
chiroptical behavior for each identified arrangement of solute and solvent. Implicit sol-
vation methods, as exemplified by variants of the Polarizable Continuum Model (PCM)
[155], alleviate this computational burden by implicitly incorporating configurational
averaging into definition of the solvent. Most implementations of this scheme embed
the solute in a cavity of predetermined size/shape (i.e., selected either for mathematical
convenience or to mimic molecular features) and encode solute–solvent coupling in the
form of an apparent charge distribution spread over the surface of the cavity. Although
first solvation-shell effects that distinguish the cybotactic region typically are neglected
[155], the continuum formalism does provide an accurate description of bulk electrostatic
and polarization properties.

Mennucci and coworkers [154] have combined DFT linear-response calculations
of dispersive optical activity with a continuum-dielectric (PCM) model of solvation
designed primarily to account for electrostatic interactions. While specific rotatory powers
evaluated at the sodium D-line (589.3 nm) for a series of rigid compounds were in reason-
able accord with polarimetric measurements performed in dilute cyclohexane, acetone,
methanol, and acetonitrile, serious discrepancies were noted for other solvent systems
(CCl4, C6H6, CHCl3) and were attributed to the action of strong nonelectrostatic effects
(e.g., dispersion/repulsion forces). This study and implicit treatments of related electronic
phenomena [142, 156] have documented the need to incorporate dynamical aspects of
solvent response through inertial polarization components that are not equilibrated with
instantaneous changes in the solute charge distribution. Analogous DFT-PCM analyses
of absorptive chiroptical properties by Pecul et al. [157] also emphasized the nonequilib-
rium nature of solvation accompanying resonant (electronic) excitation and highlighted
the important roles played by deformations of electron distribution in dielectric environ-
ments. The quality of resulting ECD predictions was found to depend markedly on the
provenance of each feature, with the relatively poor description of transitions terminating
on diffuse Rydberg manifolds reflecting possible tunneling of electron density into the
surrounding medium and inherent inadequacies of correlation-exchange functionals [131].

The influence of solvation upon the optical activity of conformationally flexible
solutes is demonstrated vividly by Figure 11.6, which presents ORD profiles recorded for
(S )-epichlorohydrin in dilute acetonitrile (36.6), di-n-butylether (3.06), and cyclohexane
(2.02) media [85], where numbers in parentheses denote the corresponding static (ω → 0)

dielectric constants, ε ≡ ε(0). Studies performed on rigid chiral species consistently have
found solvents of high polarity such as acetonitrile to best mimic isolated-molecule
behavior (cf. Figure 11.3) [84, 88, 89]; however, the epichlorohydrin results seem to
show diametrically opposite trends, with acetonitrile producing specific rotation values
of inverted sign relative to those measured in the vapor phase while solvation by cyclo-
hexane appears to most closely reproduce the intrinsic chiroptical response. Although
in keeping with the expectations of chemical intuition, such observations reflect a much
more complex scenario that involves the combined effects of differential stabilization
and antagonistic properties for individual conformers [85].

The analyses of solution-phase chiroptical behavior in Figure 11.6 have exploited
a B3LYP/6-311+G* implementation of the polarizable continuum model that constructs
the solute cavity self-consistently on the basis of its electron isodensity surface (SCI-
PCM). Since this implicit treatment of solvation emphasizes electrostatic interactions,
pronounced effects are anticipated whenever changes in molecular structure lead to sub-
stantial modifications of charge distribution. In particular, owing to inherent polarity
of the C–Cl bond, the optimized (solvent-free) gauche-I, gauche-II, and cis forms of
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ground-state (S )-epichlorohydrin are predicted to have permanent electric dipole moment
magnitudes, μ, of 3.66 D, 0.61D, and 3.02D, respectively, at the MP2/aug-cc-pVTZ level
of theory. As illustrated by the accompanying bar graphs, the Gibbs free energies, 	Gη,
and fractional populations, fη(T ) = e−	Gη/kB T /q , emerging from SCI-PCM calculations
reflect the repercussions of these first-order multipoles. While solvents of low dielectric
constant (e.g., cyclohexane) yield results comparable to those of the vapor phase, strongly
polar media (e.g., acetonitrile) are found to markedly lower the energies of stereoisomers
that possess larger values of μ. Such differential stabilization is sufficient to alter the rel-
ative energy ordering from 	Ggauche−II < 	Ggauche−I � 	Gcis for the isolated molecule
to 	Ggauche−I < 	Ggauche−II < 	Gcis in the case of an acetonitrile environment, with
commensurate changes taking place in conformer populations.

Given the distinct CB expected for each of the stable conformations in ground-state
(S )-epichlorohydrin (cf. Figure 11.5), the solvent-dependent fη(T ) parameters emerging
from SCI-PCM analyses should produce dramatic changes in the composite optical
activity. As highlighted by Figure 11.6, ORD profiles computed from Eq. (11.70) for
acetonitrile, di-n-butylether, and cyclohexane media show near-quantitative accord with
measured values of specific rotation. In particular, the change in sign of [α]25◦C

λ observed
upon dissolution in acetonitrile is reproduced by this treatment, reflecting preferential
stabilization of the gauche-I form that makes [α]eq

λ,η contributions of opposite polarity to
those of its gauche-II and cis counterparts. The quality of agreement between experiment
(opened symbols) and theory (closed symbols) is perhaps fortuitous in view of the approx-
imations inherent to the present model, which has cobbled together estimates of solvent-
mediated energies/populations for localized stereoisomers with vapor-phase predictions
for chiroptical response. Analogous efforts to interpret epichlorohydrin behavior in
CH2Cl2, CHCl3, and CCl4 environments have not proven to be as successful [139], owing,
in part, to known deficiencies of PCM descriptions for such chlorinated solvents [154].

Solvation phenomena for nominally rigid chiral species can be especially challeng-
ing to interpret, as illustrated by the (S )-methyloxirane data in Figure 11.3 where the
sign of specific rotation measured over the 250–650 nm range flips from being all neg-
ative in a benzene environment to being completely positive in an aqueous medium.
Kongsted et al. [111] have reported extensive coupled-cluster analyses of circular bire-
fringence for this deceptively simple epoxide under both isolated and solvated conditions,
the latter being modeled implicitly by forming a spherical cavity in a continuum dielec-
tric fluid and considering successive orders of truncation for the multipole expansion of
the embedded solute molecule. Despite affording an accurate description for important
electron-correlation effects, this treatment failed to reproduce the trends exhibited by
experimental ORD profiles. At the CCSD level of theory, solvents of high (low) polar-
ity were found to slightly decrease (increase) the magnitudes of negative [α]eq

λ values
predicted for (S )-methyloxirane in the vapor phase, thereby suggesting (in contrast to
observations) that optical activity should be dominated by the intrinsic solute response.

To probe the possible roles of specific solute-solvent coupling in (S )-methyloxirane,
Mukhopadhyay and coworkers [158, 159] have combined an explicit (atomistic) treat-
ment of innermost solvation shells with an implicit (continuum) model designed to mimic
bulk behavior. Classical molecular dynamics simulations were exploited to obtain fea-
sible structures for the solvent-decorated solute, with the optical activity calculated by
DFT linear-response techniques (in the presence of a continuum dielectric) being aver-
aged over an ensemble of such instantaneous “snapshots.” For aqueous media [158], this
hybrid approach found contributions arising from interactions between water and methy-
loxirane to overwhelm the intrinsic (solvent-free) chiroptical response, causing predicted
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ORD profiles to shift towards positive values in accord with the results of polarimetric
measurements. Subsequent inspection of [α]25◦C

589.3nm parameters as a function of the angu-
lar position for water molecules in the first hydration shell revealed a clear bias for anti
configurations (water and methyl group on opposite faces of the epoxide ring) over their
syn counterparts (water and methyl group on the same face of the epoxide ring). Fourier-
transform microwave spectroscopy performed on binary methyloxirane–water complexes
synthesized in a rovibrationally cold molecular beam have suggested the opposite pref-
erence (viz., syn being more prevalent than anti ); [160] however, this diastereofacial
discrimination switches upon introduction of a second water ligand to create the tertiary
methyloxirane–(water)2 species [161]. Losada et al. [162] have reported extensive com-
putational and experimental investigations of aqueous methyloxirane, confirming that the
anti conformer of the binary adduct dominates under ambient conditions. These authors
also documented a pronounced nonmonotonic dependence of specific rotatory power on
solute concentration, which was interpreted as being indicative of attendant changes in
the cooperative hydrogen-bonding network formed by surrounding water molecules (vide
infra).

In contrast to the negligible contributions made by the independent solute and sol-
vent in aqueous (S )-methyloxirane, the analogous ORD profile recorded in benzene is
believed to arise mostly from the environment. Building upon their hybrid treatment of
explicit/implicit solvation, Mukhopadhyay et al. [159] showed that dissymmetric imprint-
ing of the chiral epoxide substrate on the surrounding configuration of achiral benzene
molecules dominates the predicted chiroptical response. Precedence for this behavior can
be found in suggestions that an appreciable fraction of the total ECD signal evoked
from an optically active chromophore stems from chiral ordering of the adjacent sol-
vent [152]. Losada and coworkers [162] have reported experimental evidence for related
chirality-transfer phenomena in aqueous methyloxirane, where reorganization of the sol-
vent network proximate to the entrained solute imparts optical activity to features residing
in the water bending-mode region of the vibrational absorption spectrum. Similar solute-
mediated VCD signatures have been demonstrated in a variety of systems capable of
cooperatively accepting and/or donating hydrogen bonds [96, 97, 163], thereby afford-
ing a new tool for characterizing subtle solute–solvent interactions and elucidating their
potential roles in chirospecific discrimination/recognition events.

While computational investigations of chiral solvation processes can provide invalu-
able information regarding the microscopic origins of environmental perturbations, con-
siderable insight also can be gleaned from the more qualitative aspects of such phe-
nomena. For example, Fischer et al. [164] have reported the specific rotation for (S )-α-
methylbenzylamine dissolved in 39 different solvents, with measurements performed at
various concentrations being extrapolated to the limit of infinite dilution [98]. Since this
amphoteric species has the ability to both donate and accept hydrogen bonds, a compre-
hensive description of experimental results only could be achieved by invoking models
based upon the threefold Kamlet–Taft parameterization of solvent acidity, basicity, and
polarity/polarizability [165]. Figure 11.7 presents another attempt to correlate solvent-
mediated chiroptical response with physical properties of the surrounding medium. The
depicted analyses build upon the progenitor of implicit solvation methods, Onsager reac-
tion field theory [166], where the multipole moments of a potentially polarizable solute
molecule, imbedded in an isotropic and homogeneous continuum-dielectric fluid (char-
acterized by static dielectric constant ε), induce reflection moments (in the surrounding
medium) that, in turn, act to electrostatically stabilize the solute. In simplest form, this
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Figure 11.7. Dielectric Scaling of Circular Birefringence. The specific rotatory power of (S)-2-

chloroproprionitrile, [α]25◦C
λ , is plotted against the Onsager dielectric function, f (ε). Solid symbols

reflect vapor-phase CRDP measurements performed at 633 nm (top) and 355 nm (bottom), while

opened symbols distinguish results interpolated from dilute solution-phase polarimetric studies

conducted in acetonitrile (36.6), di-n-butylether (3.06), and cyclohexane (2.02) media (parentheses

denote respective values of the static dielectric constant). Superimposed lines illustrated the

predicted extrapolation of solvated response (ε > 1) to the isolated-molecule limit (ε = 1).

venerable approach encloses the solute in a spherical cavity of radius a and only con-
siders its permanent electric dipole moment μ, thereby giving rise to an analytically
calculable reaction electric field (as generated by the polarized continuum solvent) of the
form [167]:

E = 2f (ε)

a3
μ, (11.71)

where the Onsager dielectric function, f (ε) = (ε − 1)/(2ε + 1), spans the range
0 ≤ f (ε) ≤ 0.5 as the medium changes from completely nonpolar (ε = 1) to infinite
polarity (ε � 1). The corresponding solute–solvent interaction energy is given by
Esolv = −μ · E = −(2f (ε)/a3)μ2, thus affording a tractable means for exploring
nonspecific solvation phenomena dominated by dipolar electrostatic coupling.

Figure 11.7 highlights the specific rotatory power deduced for (S )-2-chloropro-
pionitrile at 633 nm (top trace) and 355 nm (bottom trace) as a function of f (ε), con-
trasting the response measured under isolated (gas-phase) conditions with that obtained
in solvents selected to span an appreciable fraction of the accessible ordinate scale [88].
The chiral species targeted by this study is nominally rigid and possesses a substantial
permanent electric dipole moment (μ = 3.7 D), thereby satisfying criteria imposed for
fruitful application of the dipolar reaction-field model. Similar analyses have been used
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to examine equilibrium solvation effects for diverse chemical processes (e.g., conforma-
tional shifts [168], internal-rotation barriers [169], and activation energies [170]), with
analogous plots allowing for the linear extrapolation of solution-phase (ε > 1) results to
their vapor-phase (ε = 1) counterparts. Obviously such expectations are not realized in
the case of dispersive chiroptical properties since measurements of [α]25◦C

633nm and [α]25◦C
355nm

for isolated (S )-2-chloropropionitrile molecules are found to be two to three times smaller
in magnitude than the values predicted from ordinate intercepts.

While the static value of ε employed by the dipolar reaction-field model affords
a first-order approximation for nonspecific equilibrium solvation processes, straightfor-
ward extensions of this approach to describe nonequilibrium phenomena have been
reported [171, 172]. Nevertheless, the behavior exhibited by (S )-2-chloropropionitrile
in Figure 11.7 is representative of that found for a wide variety of rigid chiral species,
reinforcing previous assertions (cf. Figure 11.3) that solvents of high dielectric constant
(e.g., acetonitrile) consistently provide better mimics for the dispersive optical activity
of isolated molecules than their less polar counterparts (e.g., cyclohexane). Such anoma-
lous dielectric scaling suggests that a serious incongruity exists between specific rotation
parameters acquired under solvated and isolated conditions, thereby casting doubts on
the relevance and validity of comparisons often made between canonical (solution-phase)
polarimetric measurements and ab initio predictions of intrinsic (vapor-phase) chiroptical
properties. The origins of this discrepancy are an active subject of research; however, it
would appear that the differential effects of solvation on individual excited state, perhaps
reflecting the Rydberg or valence nature of their electronic parentage, might ultimately
be responsible.

11.5. SUMMARY AND OUTLOOK

This chapter has outlined the conceptual foundations and practical considerations associ-
ated with quantitative measurements of the dispersive electronic components in natural
optical activity, where the innate circular birefringence of an isotropic chiral medium
manifests itself through nonresonant optical (polarization) rotation. Particular emphasis
was placed on recent developments in polarimetric instrumentation (e.g., cavity-enhanced
schemes) that have enabled these phenomena to be interrogated under isolated (rarefied
vapor-phase) conditions, thereby revealing the intrinsic chiroptical response of targeted
species. Nuclear degrees of freedom (i.e., vibrational displacements and/or conformational
flexibility) were shown to influence such properties markedly, with the surrounding envi-
ronment (e.g., solvation) also found to be capable of affecting both the magnitude and
the sign of the observed rotatory power.

As the tools exploited for investigations of molecular properties have continued to
evolve, the need for complementary theoretical advancements designed to understand and
interpret their findings has become an evermore pressing concern. This especially is evi-
dent in the realm of electronic chiroptical spectroscopy, where the current resurgence of
interest in these venerable techniques largely stems from the development of dependable
quantum-chemical paradigms for predicting enantiomer-specific ORD and ECD profiles.
The emerging synergism between laboratory measurements and computational analyses
of natural optical activity has been demonstrated by numerous endeavors, which also
have served to highlight the enormous potential of transforming relatively facile polari-
metric methods into quantitative instruments for assigning the absolute stereochemical
configuration of a targeted species. In the case of optical rotation, several issues need
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to be addressed before these burgeoning capabilities can be realized fully, including the
inevitable complications incurred by extrinsic environmental perturbations and intrinsic
nuclear couplings. Nevertheless, as documented by the diverse contributions found in
the present monograph, the future application of such chiroptical probes to problems of
molecular structure and dynamics seems very promising indeed!
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117. K. Ruud, P. R. Taylor, P.-O. Åstrand, Chem. Phys. Lett . 2001, 337 , 217–223.

118. K. Ruud, R. Zanasi, Angew. Chem. Int. Ed . 2005, 44 , 3594–3596.

119. B. C. Mort, J. Autschbach, J. Phys. Chem. A 2005, 109 , 8617–8623.

120. C. W. Kern, R. L. Matcha, J. Chem. Phys . 1968, 49 , 2081–2091; W. C. Ermler, C. W.
Kern, J. Chem. Phys . 1971, 33 , 4851–4860; A. D. Buckingham, W. Urland, Chem. Rev .
1975, 75 , 113–117; G. Riley, W. T. Raynes, P. W. Fowler, Mol. Phys . 1979, 38 , 877–892;
D. M. Bishop, Rev. Mod. Phys . 1990, 62 , 343–374; A. J. Russell, M. A. Spackman, Mol.
Phys . 1995, 84 , 1239–1255; D. M. Bishop, Adv. Chem. Phys . 1998, 104 , 1–40.
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K. Ruud, D. Sundholm, Theor. Chem. Acc. 2000, 103 , 365–373; P.-O. Åstrand, K. Ruud,
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CHIROPTICAL IMAGING OF CRYSTALS
John Freudenthal, Werner Kaminsky, and Bart Kahr

12.1. INTRODUCTION

Chiroptical imaging , in the main, is the use of circular birefringence (CB, optical rotation)
or circular dichroism (CD) as contrast mechanisms for substances that are inhomogeneous
in the object plane [1]. The term is a misnomer because nonenantiomorphous systems can
surely give rise to CB and CD [2]. Nevertheless, we yield to common usage. Chiroptical
imaging may also refer to less common effects such as circular intensity differential
scattering (CIDS), observed when the size of scatterers such as biopolymers approach
the wavelength of light [3]. This discussion emphasizes the real and imaginary parts
of the linear susceptibility [nonlinear chiroptics is considered elsewhere in this volume
(Chapters 13 and 14)] of circularly polarized light most commonly investigated (CB and
CD). Other chiroptical effects are also considered such as Faraday rotation, a magneto-
optical phenomenon, because of its close phenomenological relationship to CB. On the
other hand, we will not cover magnetic circular dichroism imaging in the X-ray region
of the electromagnetic spectrum [4–6]. X-rays skirt the troublesome linear anisotropies
in crystalline media that make chiroptical imaging in less energetic parts of the spectrum
so vexing and interesting.

Chiroptical images are trivial to make in some special cases. Three examples follow.
For instance, in basal {0001} sections of quartz, the left- and right-handed so-called Brazil
twins are differentiated by rotating an analyzer by a small amount (3◦ in the case shown in
Figure 12.1) [7]. The optical rotation of only one enantiomorph is nulled. This experiment
is easy to execute for visible light passed along the optic axis of quartz because there

Comprehensive Chiroptical Spectroscopy, Volume 1: Instrumentation, Methodologies, and Theoretical
Simulations, First Edition. Edited by N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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1 mm

Figure 12.1. Enantiomorphous Brazil

twinning in (0001) quartz plate. Analyzer

rotated by 3◦. Scale bar = 0.2 mm.

(Reproduced from reference 7 with

permission of the American Mineralogical

Society.)

is no absorption and CB is the only mechanism allowed by symmetry for shifting the
phase of the light passing through the medium. The perturbation of the light polarization
can be described by a simple rotation matrix.

In isotropic media, chiroptical contrast is likewise trivial. Enantiomorphous domains
of helical filamentous liquid crystals with large optical rotations have been photographed
[8], as was quartz in Figure 12.1. CD images of disordered d -camphorsulfonic acid films
with a spatial resolution of <1 μm were obtained by Yamada et al. [9] by applying
a polarizing undulator to near-UV synchrotron radiation, although this experiment can
hardly be described as trivial. A film of cubic yttrium iron garnet appears optically active,
however, in this case, the spontaneous magnetization causes Faraday rotation of linearly
polarized light (Figure 12.2).

What makes chiroptical imaging a fitting subject for a chapter in Comprehensive
Chiroptical Spectroscopy are the challenges that are introduced when CB or CD is
the desired contrast mechanism for a system that also exhibits much larger linear
anisotropies, namely LB and LD, well known to be 103 –104 times larger than their

Figure 12.2. Film of yttrium iron garnet (8-cm diameter) between slightly uncrossed polarizers.

(Reproduced from reference 10 with permission of IOP Publishing.)
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circular counterparts [10]. Measuring CB and CD in crystals of arbitrary symmetry has
for two centuries been likened to the search for a needle in a haystack. For this reason,
we know virtually nothing from experiment about the orientational dependence of
chiroptics of molecules, an enormous hole in the science of molecular chirality [2, 10].

12.2. DIFFERENTIAL POLARIZATION IMAGING

Often additional information about complex samples can be extracted from a comparison
of images made with different incident polarization states, or different analyzing states.
This general strategy is called differential polarization imaging (DPI). A simple, albeit
alarming, example of DPI was given by researchers of the US Army Research Laborato-
ries [11]. A lyrical field with some trees was captured in an ordinary aerial photograph,
but when the same scene was displayed as the difference of intensity captured with
orthogonal analyzers, two trucks in shadow that polarize radiation by reflection were
exposed.

In the 1980s, Tinoco, Maestre, and Bustamante, working together in Berkeley, Cali-
fornia, developed DPI to a high art for application to problems in biophysics [12]. Much
of their work was motivated by the desire for a chiroptical microscope for complex, orga-
nized structures. Maestre et al. first adapted a Carey spectropolarimeter to a microscope
[13–16] for single-point measurements of the CD spectra of chromatin. In this early
work, they faced instrumental artifacts [17, 18] arising from imperfect polarization states
[19]. Residual ellipticities, when coupled with LB and LD of ordered media, generate
artifactual CD signals, a recurrent theme in the study of the chiroptical properties of
organized systems [20–23].

In 1985, the Berkeley group introduced an imaging device [24]. The transmission
through a microscope was analyzed by a linear 256-diode array detector that was trans-
lated to produce an image. The difference between the left- and right-circular polarization
states could then be plotted, in principle, as CD. Alternatively, a sample micro-positioning
stage was used to make images in conjunction with a photomultiplier tube detector for
the analysis of spermatocyte nuclei [25]. The DPI microscope was fitted with a pinhole
for confocal measurements [26] for CD microscopy of heterochiral domains of associated
chromophores in spinach chloroplasts [27].

The propagation of light through complex samples interposed between trains of
optical elements can be treated by the Jones calculus or the Stokes–Mueller calculus. The
Berkeley group relied mainly on the Stokes–Mueller formalism because it is most suited
to depolarizing effects introduced by biological samples. In what follows, we adhere to
the Stokes–Mueller formalism for coherence, even though many of the original papers
cited, especially those dealing with slightly depolarizing single crystals, employed the
Jones calculus. Moreover, no sample is wholly free of depolarization.

12.3. COMPLETE VERSUS INCOMPLETE POLARIMETERS

The Stokes–Mueller calculus is based upon the description of partially polarized light
by a so-called Stokes vector (S ), a 4 × 1 matrix, and the transformation of the Stokes
vector by an operator, the 4 × 4 Mueller matrix, embodying the behavior of an optical
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system [28]. Sout = MSin where

S =

⎡
⎢⎢⎣

I
Q
U
V

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

|Ex |2 + |Ey |2
|Ex |2 − |Ey |2
2Ex Ey cos ϕ

2Ex Ey sin ϕ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Io = Ix + Iy

Ix − Iy

I45◦ − I−45◦
IR − IL

⎤
⎥⎥⎦ ,

M =

⎡
⎢⎢⎣

M00 M01 M02 M03

M10 M11 M12 M13

M20 M21 M22 M23

M30 M31 M32 M33

⎤
⎥⎥⎦ . (12.1)

Ex and Ey in Eq. (12.1) are the electric field amplitudes for light propagating in the
z direction, and ϕ is the phase shift that the medium introduces between these modes. S
is defined by the following four parameters: I for the total intensity, Q for the difference
in intensities of linear polarized light at 0◦ and 90◦, U for the difference in intensities
of linearly polarized light at ±45◦, and V for the difference between left- and right-
circularly polarized light (CPL) intensities. The broad applicability of the Stokes–Mueller
formalism provides a framework for presenting a variety of polarimeters. The elements
of the sample’s Mueller matrix that can be extracted depend on the nature of the optical
elements before and after the sample.

An imaging polarimeter that functions by analogy with a CD spectropolarime-
ter is shown in Figure 12.3a. We call it a circular extinction (CE) microscope since
extinction is a more general term than dichroism, because it embodies mechanisms of
differential circular transmission other than absorption (A). The CE microscope out-
lined below measures the M03 Mueller matrix element. A linear polarizer produces
Ex polarized light characterized by the Stokes vector Sin = [1, 1, 0, 0]. A polarizer ori-
ented at ±45◦ with Mueller matrix Mpol (±π/4), transmits its output through a variable

(a) (b) (c) (d) (e)

Figure 12.3. (a) CE microscope. (b) High-accuracy universal polarimeter (HAUP) instrument.

(c, d) Standard ellipsometer configurations. (e) Mueller matrix microscope. All instruments are

bounded by a camera on top and by a light source on the bottom, and they have samples on

slides in the middle. Ruled disks are linear polarizers. Disks with double-headed arrows or variable

double-headed arrows (as in a) are waveplates and compensators, respectively. Curved arrows

indicate rotating components. Microscope objectives or other kind of lenses (not pictured) are

likely to be present in the instruments.
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Babinet–Soleil compensator with a retardance of a quarter wave, Mret (π/2). Each optical
element is characterized by its own Mueller matrix. The Mueller matrices for a linear
polarizer Mpol (θ) and waveplate Mret (δ, θ) with a variable retardance δ are shown in
Eqs. (12.2).

Mpol (θ) = 1

2

⎡
⎢⎢⎣

1 cos 2θ sin 2θ 0
cos 2θ cos2 2θ sin 2θ cos 2θ 0
sin 2θ sin 2θ cos 2θ sin2 2θ 0

0 0 0 0

⎤
⎥⎥⎦ ,

Mret (δ, θ) =

⎡
⎢⎢⎣

1 0 0 0
0 cos2 2θ + cos δ sin2 2θ (1 − cos δ) sin 2θ cos 2θ − sin δ sin 2θ

0 (1 − cos δ) sin 2θ cos 2θ sin2 2θ + cos δ cos2 2θ sin δ cos 2θ

0 sin δ sin 2θ − sin δ cos 2θ cos δ

⎤
⎥⎥⎦ .

(12.2)

The combination Mret (
π
2 )Mpol (±π

4 )Sin produces right and left CPL: SR = [1, 0, 0, 1] and
SL = [1, 0, 0, −1]. The relationship Sout = MsampleSR/L yields M03 = (IR − IL)/Io .

A polarimeter with a rotating linear polarizer and a rotating linear analyzer
(Figure 12.3b) is capable of measuring 9 of the 16 Mueller matrix elements. By adding
a rotating birefringent element before or after the sample (Figure 12.3c,d), 12 of the
16 Mueller matrix elements can be measured. Two rotating waveplates affect the
measurement of all 16 Mueller matrix elements (Figure 12.3e). An expression for such
a device is shown in Eq. (12.3):

Sout = Mpol (θpol )Mret (δA, θAn)MsampleMret (δG , θGn)Mpol (0)Sin . (12.3)

Sin is the Stokes vector of the monochromatic source illumination, θGn is the alignment
of the retarder in the polarization state generator (PSG) for measurement n , δG is the
PSG’s retardance, θAn is the alignment of the retarder in the polarization state analyzer
(PSA) for measurement n , δA is the PSA’s retardance, θpol is the angle of the PSA’s
polarizer, and Sout is the output Stokes vector.

The greater the number of polarization states generated, and the greater the number
of analyzed states, the greater the information content in the Mueller matrix. However,
a crystal containing all manner of optical phenomena scatters the effects of fundamental
phenomena of interest (LD, LB, CD, CB ) among Mueller matrix elements [29].

To separate linear and circular anisotropies, one can implement the lamellar
approximation for light propagating through a homogeneous medium first pioneered
by Jones [30] and later developed for Mueller matrices by Azzam [31]. We express
the infinitesimal change in the Stokes vector’s input by the differential equation in
Eq. (12.4):

dS /dz = mS , where m = lim
�z→0

Mz ,�z − I

�z
=

⎡
⎢⎢⎣

A −LD −LD ′ CD
−LD A CB LB ′
−LD ′ −CB A −LB
CD −LB ′ LB A

⎤
⎥⎥⎦ .

(12.4)
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Matrix m is a Mueller matrix that describes the passage through a complex medium
through which light travels an infinitessimal distance �z with the following parameters,
Eqs. (12.5):

A = ln 10
Ax + Ay

2
, LD = ln 10

Ax − Ay

2
, LB = 2π(nx − ny )L

λ
,

LD ′ = ln 10
A45 − A135

2
, LB ′ = 2π(n45 − n135)L

λ
, CD = ln 10

AL − AR

2
,

CB = 2π(nL − nR)L

λ
. (12.5)

A is absorbance, and n is refractive index, and L is the sample thickness. LB’ and LD’
refer the linear birefringence and linear dichroism along a secondary set of axes bisecting
the primary set. These latter parameters permit the measurement of arbitrarily aligned
samples.

Analytical methods for the extraction of the relevant optical parameters from an
experimental Mueller matrix have been deduced only recently [32–34]. According to the
rather compact method of Arteaga and Canillas [34], a Jones matrix is expressed in polar
coordinates whose amplitudes (rij ) and phase factors (qi ) are in turn expressed in terms
of the elements of a nondepolarizing Mueller matrix [Eqs. (12.6)]:

r00 =
√

M00 + M01 + M10 + M11

2
, r01 =

√
M00 − M01 + M10 − M11

2
,

r10 =
√

M00 + M01 − M10 − M11

2
, r11 =

√
M00 − M01 − M10 + M11

2
,

q1 = e
i tan−1

(−M03 − M13

M02 + M12

)
, q2 = e

i tan−1

(M30 + M31

M20 + M21

)
,

q3 = e
i tan−1

(M32 − M23

M22 + M33

)
. (12.6)

These parameters are then combined as K , to yield T , from which � is computed [see
Eqs. (12.7)]:

K = (r00r11q3 − r01r10q1q2)
−1/2, T = cos−1

(
K (r00 + r11q3)

2

)
, � = TK

sin(T )
.

(12.7)

Finally, we solve for the fundamental optical quantities as components of generalized
retardances [29] L, L′, and C , defined in Eqs. (12.8):

L = i�(r00 − r11q3) = LB − iLD ,

L′ = i�(r01q1 + r10q2) = LB ′ − iLD ′, (12.8)

C = �(r01q1 − r10q2) = CB − iCD .
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12.4. OPTICAL ROTATION

To measure CB along a general direction of a transparent crystal, the influence of LB must
be deconvolved from the CB. Although the intensity of light passing through a polar-
izer, a chiral anisotropic sample, and an analyzer contains the necessary information for
extracting CB, implementation of this idea prior to the invention of electrophotometry
and stable, high-intensity light sources was impossible. For generations, most researchers
conceded that measuring CB in the presence of large LB was not a realistic goal. In
1983, Uesu and Kobayashi pushed through this perceived impasse by using lasers, pho-
ton counting, and computerized modulation of polarizer and analyzer orientations to
determine CB in crystals for directions off the optic axes [35]. This experiment was
named HAUP (high-accuracy universal polarimetry) whose basic geometry is given in
Figure 12.3b.

To apply the HAUP technique to heterogeneous crystals, the polarimeter was fitted
with a translation stage in order to produce topographs of the optical parameters. In this
way, maps were made comprising 100 × 100 pixels at a resolution of about 30 μm
per pixel. This experiment, S-HAUP for scanning high accuracy universal polarimetry,
provided the first image of CB measured along a birefringent direction in a crystal,
in this case the ferroelastic mineral langbeinite, K2Cd2(SO4)3 [36]. This measurement
also involved LB variation by tilting [37] the crystal about an axis perpendicular to the
wavevector. Tilting introduces an analytical modulation to the measured intensities that
can be fit with CB as a variable parameter. In this way, ferroelastic domains in langbeinite
with optical activity were revealed. However, given the time-consuming measurement
process requiring successive scanning and tilting, the resolution of the image was low.

Domains in triglycine sulfate, a model ferroelectric, cannot be detected by ordinary
polarization microscopy because the optical plane has the same orientation no matter the
direction of the polar axis. But, when the paraelectric phase (C2h) becomes ferroelectric
(C2), the material becomes chiral. Enantiomorphs were then revealed by the S-HAUP
method [38].

Topographs (Figure 12.4) of the spontaneous Faraday effect in FeBO3 were recorded
below the Curie temperature [39]. Unlike the yttrium iron garnet (Figure 12.2) discussed
in the introduction, identifying these domains required careful polarimetry by the S-
HAUP method because of the large LB.

These early examples of chiroptical imaging were of admittedly complex, ferroic
materials: ferroelastic, ferroelectric, and ferromagnetic, respectively. In the case of
triglycine sulfate, the optical rotation is most likely a convolution of natural optical
activity and electrogyration [9] in the ferroelectric phase.

The quintessential, simple chiral crystals are NaClO3 and NaBrO3. These substances
have long puzzled crystallographers ever since Marbach observed that levorotatory crys-
tals of NaClO3 nucleated dextrorotatory crystals of its isomorph NaBrO3 and vice versa
[40, 41]. Bijvoet [42] ultimately established, on the basis of the anomalous dispersion
of X-rays, that homochiral crystals of NaClO3 and NaBrO3 do indeed have opposite
signs of optical rotation. Why? An experiment that might lend some insight into this
problem would exploit the miscibility of the two halates to determine whether the con-
tributions from the components to the rotatory power were independent of one another.
This question has not been addressed because the mixed crystals display anomalous LB
[43–45] that preclude measurements of CB. The as-grown crystal S-HAUP topographs
showed a chaotic ensemble of dextro- and levorotatory domains (Figure 12.5d) indicat-
ing the segregation of BrO3

− and ClO3
− on the microscale, a judgment supported by
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(a)
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(b)
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0°

Figure 12.4. FeBO3. (a) Topography of

spontanous Faraday rotation. Grayscale in

degrees/mm. (b) Representation surface of

spontaneous Faraday effect in degrees/mm. The

distance from the origin represent the size of

the effect. Black is positive rotation, white is

negative. The experimental tilt axis is t, n is the

crystal plate normal, and k is the wavevector.

independent researchers [46]. Annealing near the melting temperature can remove the
anomalous birefringence and restore P213 symmetry. While annealing, these domains
merged into homogeneous regions as the anions diffused at higher temperatures [47].
S-HAUP topographs in Figures 12.5e–h display the separation of the transmission, LB,
extinction, and CB of a mixed halate crystal grown after partial annealing at 200◦C.

Quantitative imaging of chiral crystals can be achieved using the configuration in
Figure 12.3d (albeit the waveplate is fixed), coupled with additional components for
conoscopic illumination including a microscope substage condenser and a lens to carry
the back focal plane of the objective to the eyepiece or camera. In this way, the so-
called Airy’s spiral, a twisting of the isogyres in the conoscope, becomes vivid. Geday
and Glazer used this technique to determine the sign and rotation of quartz crystals as
shown in Figure 12.6 [48]. Airy’s spirals associated with cholesteric liquid crystals were
likewise measured [49].
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Figure 12.5. S-HAUP generated topographs of optical properties of a mixed halate

(NaCl0.5Br0.5O3, 0.435-mm-thick) crystal. Scan direction x is along [110]. Crystals grown at room

temperature: (a) transmission (arbitrary units, a.u.), (b) phase difference δ, (c) extinction θ (deg);

(d) optical rotation ϕ(deg) = 1
2 (CB). After annealing at 200◦C: (e) transmission (arbitrary units, a.u.),

(f) phase difference δ, (g) extinction θ (deg); (h) optical rotation ϕ (deg). (Parts a–d reproduced

from reference 47 with permission of the Royal Society of Chemistry.)
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(a)

(b)

(c)

1.0
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0.0

ϕ

|sinδ|

Figure 12.6. Conoscopic images of a

1-mm-thick (0001) quartz slice. (a) Live camera

image in polarized light, (b) Resolved | sin δ|
image, (c) Resolved orientation ϕ (deg) image.

Angle indicates direction of the slow axis plotted

counterclockwise from the horizontal.

(Reproduced from reference 48 with permission

of Blackwell.)
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12.5. CIRCULAR DICHROISM/EXTINCTION

Tetragonal crystals of 1,8-dihydroxyanthraquinone (DHA) were examined by the S-
HAUP method. They appeared to have both dextro- and levorotatory domains. However,
the images were of poor quality because of the nonuniform extinction across the crystal
plate. The HAUP technique uses linearly polarized input requiring samples of uniform
extinction. In other words, the optical indicatrices should have a common orientation in
each part of the sample. Clearly, another tool would be required to further explore this
contrast.

CE imaging is well suited for studying the crystals of DHA [47]. CE is equivalent to
CD in the absence of artifacts. Indeed, CE micrographs of CD in Figure 12.7, recorded
at 515 nm, show mirror image domains that can be attributed to CD-positive and CD-
negative heterochiral pinwheels. These images are independent of the orientation of the
microscope stage, which is the surest way to rule out linear biases in the optical train. At
first blush, it appears that DHA is like Brazil quartz showing enantimorphous twinning
along the optic axis. However, the DHA crystals are challenging because they display
anomalous LB along the ostensible fourfold axis [50, 51].

There is a dearth of measurements of CD along low symmetry crystal directions.
Exceptions are the work of Kuroda and co-workers [52, 53] on the tetragonal crystals
of nickel sulfate hexahydrate and also Moxon and Renshaw [54, 55] on nickel sulfate
hexahydrate and benzil.

CD can be imparted to transparent crystals through dyeing during growth from
solution. NaClO3 crystals stained with a textile dye, a propeller-shaped triarylmethane
cation, possessed a confluence of properties—CD as well as anomalous CE (ACE).
ACE was previously framed in terms of Jones matrices. However, we can see that this
effect is akin to the mixing of linear and circular anisotropies incompletely separated
by an incomplete Mueller matrix measurement. Schellman and Jensen explained that the
following combinations gives rise to artifacts: L′ + C = L artifact, C + L = L′ artifact,
L + L′ = C artifact.

These relationships arise because of formal similarities to the Pauli spin matrices [29].
The relative magnitudes of CD and ACE depended upon the direction from which

the oriented dyes in the crystal were analyzed [56, 57]. The CD response was bisignate
with respect to energy (Figure 12.8) by virtue of two nearly equienergetic transitions with
opposite signed Cotton effects and bisignate with respect to wave vector (Figure 12.9). To

(a) (b)

Figure 12.7. CD micrographs of the tetragonal form of 1,8-dihydroxyanthraquinone. Parts (a)

and (b) show different crystals. Images made with device represented in Figure 12.3a. (Reproduced

from reference 47 with permission of the American Chemical Society.)
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read this figure, imagine that you are looking from the top at a crystal slice represented
in gray. The sign of the response is given by the intersection of the section by the tensor
representation surfaces associated with three growth sectors related by the threefold axis
of the cube body diagonal.

c

b
a

Figure 12.9. The orientation of the circular

dichroism (CD) tensor of a triarylmethane dye

grown into a host crystal of NaClO3.

(Reproduced from reference 56 with

permission of the American Chemical Society.)
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12.6. NANOSCALE

Recently, chiroptical imaging has found applications at the nanoscale, and a brief dis-
cussion of this emerging enterprise is warranted. While this is not an application specific
to crystals, single-molecule spectroscopy was born in crystals [58, 59], and transparent
single crystals are excellent hosts for single molecules [60–64]. Moreover, fascinat-
ing chiroptical images have been obtained from J -aggregates of dyes in solution, the
beginnings of crystals so to speak [65].

Single-molecule microscopy is now routine. Consequently, chiroptical measurement
of a single molecules was a natural step. Hassey et al. reported the first such claim and
stimulated a field inquiry in so doing [66–68]. They showed that helicenes luminescence
unequally when excited with left and right CPL. These results were bolstered by control
experiments with highly anisotropic dyes to ensure that their input polarization states
were pure. Nevertheless, the dissymmetry factors (IR − IL)/Io reported were larger than
those anticipated from ab initio calculations. Tang et al. reexamined the same helicenes,
but chose to compensate for ellipticities introduced by optical components in polarized
light input. In this way, they obtained smaller dissymmetry factors [69]. A consensus
has not yet been established, but most likely this will be an active area of research
in the future. This debate has directed researchers to consider not only single-molecule
chiroptics, but also chiroptics at the nanoscale (generally speaking). Savoini et al. showed
that CPL can be delivered to a sample in the near field through the tip of an optical probe.
They offered submicron maps of the dissymmetry factors of luminescent polymers [70].
Researchers have further considered CPL sources narrower than the diffraction limit for
applications in magneto-optical recording [71]. Reflected CPL was collected by Mastai
and co-workers through a near-field scanning optical microprobe [72]. Line profiles were
reported for d- and l-histidine crystallites even though differential circularly polarized
reflection is a tiny effect. The line profiles could easily be converted to images.

Chiroptical images have also been derived from insects that produce nanostruc-
tures that control the propagation of light. Goldstein showed Stokes vector images of
Scarabaeidae beetles [73]. Confocal micrographs of the circularly polarized luminescence
of Chrysina gloriosa was studied by Srinivasarao and co-workers [74]. Chiroptical effects
among all scarab beetles were surveyed by Pye [75].

12.7. MUELLER MATRIX MICROSCOPY

In order to measure a complete Mueller matrix, a PSG and a PSA must be placed before
and after the sample. There are many ways to construct a PSG or PSA [76]. If the
modulation is mechanical, a fixed linear polarizer and rotating retarder is a common con-
figuration. Alternatively, the concomitant sensitivity that accompanies fast polarization
switching may be achieved with photoelastic modulators [77].

The PSG must be capable of generating a broad range of Stokes vectors. This can
be evaluated by plotting the range of Stokes vectors generated on the Poincaré sphere
(Figure 12.10). Calibrating a Mueller matrix microscope requires fitting intensities for
different settings of the PSG and PSA [78].

The equations for a complete Mueller matrix polarimeter were given in Eq. (12.3).
The alignment of the two retarders is changed 16 times to solve for the 16 elements of
the Mueller matrix. The algorithm is given in Chipman’s classic chapter on polarimetry
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[76]. First the Mueller matrix is flattened to a Mueller vector, Eq. (12.9).

�Msample = [M00 M01 M02 M03 M10 M11 · · · M33]. (12.9)

A polarimetric measurement vector, Wn for the nth setting of the polarimeter is given as
a product of the first column of the PSG Mueller matrix (Gni ) and the first row of the
analyzer Mueller matrix (Ani), Eq. (12.10).

Wn = [An0Gn0 An0Gn1 An0Gn2 An0Gn3 An1Gn0 An1Gn1 · · · An3Gn3].
(12.10)

Then, the measured intensities can be expressed as follows, Eq. (12.11):

I =

⎡
⎢⎢⎢⎢⎢⎣

I1

I2

I3
...

IN

⎤
⎥⎥⎥⎥⎥⎦ = W �Msample =

⎡
⎢⎢⎢⎢⎢⎣

W1

W2

W3
...

WN

⎤
⎥⎥⎥⎥⎥⎦

�Msample . (12.11)

Inversion of W , �Msample = W −1I , yields the sample Mueller matrix elements.
Generally, more than 16 measurements are taken in order to reduce noise. In addition,

the W defined as the N x 16 matrix where the nth row is Wn , matrix must be well-
conditioned for inversion and multiplication [79]. This is possible only if the Poincaré
space is well-covered. Naturally, the PSG and PSA must be well-calibrated.

The choice of modulation determines the manner in which images are made. We
have used slow mechanical light modulation with a CCD camera as a detector. Greater
sensitivity in chiroptical measurements may be achieved by rapid sampling concomitant
with photoelastic modulation at rates of ∼50 kHz. However, photoelastic modulators
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(PEMs) are too fast for CCD cameras, and photomultiplier tubes are typically used as
detectors. To yield images, they must be operated with sample scanning.

Arteaga and Canillas built an instrument based on two PEMs pioneered by Jellison
and Modine [80, 81], to which they added quartz rotators that obviate the need for
reorienting the modulators [82]. With this polarimeter, they analyzed recrystallized melts
of benzil [83], a well-studied chiral crystal in the enantiomorphous space groups P3121
and P3221. Thin polycrystalline films can be grown from the melt that arguably contains
both enantiomorphs. Figures 12.11a, 12.11b, and 12.11c show CD, CB, and the fraction
of polarized light [β, Eq. (12.12)], respectively, associated with an absorption band

CD

CB

β
0.5

1.0

–0.01

0.01

rad

–0.01

0.01

rad

Figure 12.11. Circular dichroism (CD), circular birefringence

(CB), and depolarization (β) images of polycrystalline benzil

films. The distinct regions are enantiomorphous (P3121 and

P3221) crystals of benzil grown from the same melt. Images

made with dual PEM Stokes–Mueller imaging polarimeter.

(Image courtesy of O. Arteaga.)
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at 400 nm. The oppositely signed regions, viewed along low-symmetry directions, are
self-evident.

β =
√

(
∑

ij m2
ij ) − m2

00√
3m00

. (12.12)

Arteaga et al. have further used the generalized two-photoelastic-modulator trans-
mission ellipsometer, with scanning of the sample, to produce topographs of the CB
remnant in sections of meteorites [84]. Their detection of CB, while preliminary, sup-
ports the notion that optically active material, produced extraterrestrially, was brought to
earth.

12.8. ARTIFACTS

Transparent polycrystalline ensembles of achiral crystals have made striking patterns
of CE in some instances. For instance, Figure 12.12 shows rhythmic precipitates of
phthalic acid in the form radial aggregates [85]. Each such spherulite is bisected along one
diameter. One half gives a positive CE signal and the other half gives a negative signal.
These effects are not chiroptical effects per se. Even though they are made with CPL,
their origin does not involve magnetic dipoles or electric quadrupoles. When orthogonal
circular polarization states enter an anisotropic medium, the exiting light is in orthogonal
elliptical states. If the exiting surface is not normal to the wavevector, Fresnel reflection
at the interface may discriminate between orthogonal elliptical states. This differential
scattering was shown to be a consequence of mesoscale chiral texture wholly consistent
with the C2h symmetry of the initial phthalic acid nucleus [86].

As previously stated, CD measurements of anisotropic media may contain artifacts
that result from mixed linear anisotropies. Such artifacts are generally considered a nui-
sance. However, artifacts, carefully measured, may contain valuable information. Pairs of
intergrown, dyed polycrystalline sorbitol spherulites [87] developed strong apparent CB
and CD signals at their boundaries. The signs and magnitudes of these signals were sen-
sitive to the angle of overlapping sorbitol fibrils (Figure 12.13) and their relative heights
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Figure 12.12. Phthalic acid spherulites grown

from ethanol. Micrograph made with a

Stokes–Mueller imaging polarimeter as in

Figure 12.3e. Scale at right is (IR − IL)/Io. Scale

bar is 0.3 mm. Inset shows schematically the

‘‘right-handed’’ and ‘‘left-handed’’ halves of

the spherulites. (Reproduced from reference 84

with permission of Wiley.)
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along the optical path [88]. Systematic chiroptical artifacts should not be dismissed
reflexively; they are comprehensible effects that serve to define mesoscale structure.

The S-HAUP technique can be expanded for imaging CB in simple centrosymmetric
crystals that had adsorbed, oriented, and overgrown chiral dye molecules. Chiroptical
effects such as CB and CD were expected when equilibrium racemic mixtures of dyes
selectively recognized chiral facets of achiral crystalline hosts. Crystals of K2SO4 grown
in the presence of trypan blue, a linear azo dye, were colored in the {110} and {111}
growth sectors. The {111} faces are unusual in the D2h -symmetric crystals because they
are chiral. As such, the biaryl dye must be adsorbed enantioselectively to these faces
[89]. S-HAUP topographs of a K2SO4/trypan (010) section are shown in Figure 12.14,
where the dyed regions exhibit opposite signals consistent with crystal mirror symmetry.
The first row in Figure 12.14 represents the phase δ, which changes sign when the fast
and slow axes are exchanged. In the second row, contrary to expectation, the sign of the
apparent CB changes with sample reorientation, that is, the sign of the effect changes
whenever the sample is turned by 90◦ about the wave vector (“rotation”) or rotated 180◦

around the vertical or horizontal axes perpendicular to the wave vector (“flip”). Intrinsic
CB (and CD) would be invariant to these transformations. This is a consequence of the
fact that L+L′ gives rise to a C artifact [29]. We called the effect anomalous azimuthal
rotation (AAR) [90].

The ACE effect is analogous to AAR. LiKSO4 forms hexagonal crystals (P63) that
have oriented and overgrown the dye Chicago sky blue [91]. Because the crystals are
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enantiomorphously twinned [92], mirror-image-related faces that potentially incorporate
conformationally chiral guest molecules selectively during growth. An instrument sensi-
tive enough and sufficiently free of artifacts could be used with such crystals, and those
of K2SO4 above could be used to measure anisotropies of a dye’s induced chiroptical
properties. Although mirror-image-related domains in the twinned LiKSO4 crystals dis-
played marked CE, the signal changed sign with inversion of the sample with respect to
the light path, a transformation inconsistent with natural CD. The anisotropy of the host
generates elliptical states that will differentially interact with the absorbing sublattice of
rod like dipoles so long as the electric dipole transition moments are twisted in the same
sense from the eigenmodes of the crystal [93]. A bias therefore becomes manifest in the
interaction of dyes and the two elliptical light forms.

Unlike intrinsic CB or CD, AAR and ACE do not convey absolute configuration but
may be used instead to determine the absolute orientation of adsorbed dye molecules
and thereby resolve an ambiguity present in polarized absorption measurements.

12.9. OUTLOOK

Chiroptical imaging is still in its infancy, but adolescence is not far off. Here, the credit is
due largely to the manufacturers of increasing stable PEMs, CCD with increasing resolu-
tion, and, it goes without saying, faster computers. The greatest challenges to chiroptical
imaging are sensitivity and speed of acquisition. Opportunities abound in combining the
inherent accuracy of rapid photoelastic modulation and the imaging capacity of CCD
cameras. Research groups are actively trying to force PEMs and CCD to work in concert
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with clever schemes that overcome their incompatible timescales of operation [94–96].
Continual improvements in liquid crystal modulators will also allow for higher-speed
Mueller matrix imaging without the complications of microsecond pixel timing [97].
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NONLINEAR OPTICAL SPECTROSCOPY
OF CHIRAL MOLECULES
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13.1. INTRODUCTION

The enantiomers of a chiral molecule are exactly alike in all chemical and physical
properties except those that involve a left–right difference. This makes the observation
and detection of chirality challenging. Only under a chiral influence, such as circu-
larly polarized light, can interactions distinguish between the mirror-image forms of a
chiral molecule. Optical methods are often the only practical physical means to probe
molecular chirality, and a liquid’s ability to rotate the plane of polarization of a linearly
polarized light beam traversing it (in the absence of a static magnetic field) is the classical
distinguishing characteristic of a chiral liquid—that is, one that is “optically active.” Con-
ventional optical activity phenomena, such as optical rotation and circular dichroism, are
based on the interference of induced oscillating electric and magnetic moments, and they
arise from a differential response to left- and right-circularly polarized light. In these lin-
ear chiroptical phenomena, neither the angle of rotation of a polarized light beam nor its
ellipticity (circular dichroism) is expected to change with the intensity of the light. How-
ever, at typical peak powers of pulsed lasers the optical field strength can become compa-
rable to the field that binds the valence electrons to the nucleus of an atom or a molecule,
and under these conditions the optical properties will have contributions that depend non-
linearly on the applied electromagnetic fields. This is the realm of nonlinear optics [1–3].
The usual linear refractive indices observed at low light intensities are then augmented
by additional contributions that depend on the intensity of the light. Hence, nonlin-
ear (intensity-dependent) contributions to optical activity (optical rotation and circular
dichroism) may be observed in chiral media under appropriate experimental conditions.

Comprehensive Chiroptical Spectroscopy, Volume 1: Instrumentation, Methodologies, and Theoretical
Simulations, First Edition. Edited by N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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Nonlinear optical phenomena can also be used to generate light at new frequencies.
For instance, nonlinear second-harmonic generation in an appropriate crystal allows an
infrared laser beam to be converted (frequency doubled) into green radiation, a process
that is used in green laser pointers. If two different frequencies “mix” in a suitable
nonlinear medium, then colors corresponding to the sum and difference frequencies can be
generated. Surprisingly, such a frequency-mixing process can also be a probe of chirality
in solution. In contrast to conventional linear optical activity, the nonlinear chiral mixing
process can arise entirely in the electric dipole approximation (i.e., without magnetic or
quadrupolar transitions) and is not circular differential. Hence, no polarization modulation
is needed and the generated photons themselves are a measure of the solution’s chirality.
Since an achiral solvent does not contribute to the signal, the technique is a sensitive,
background-free probe of molecular chirality.

Nonlinear optical phenomena are generally discussed in terms of an induced polar-
ization �P(t), written here in the electric dipole approximation as a power series in the
applied electric field �E [2]:

�P(t) = ε0(
↔
χ

(1) �E + ↔
χ

(2) �E �E + ↔
χ

(3) �E �E �E + ↔
χ

(4) �E �E �E �E + · · ·). (13.1)

Most linear optical phenomena such as refraction, absorption, and Rayleigh scattering
are described by the first term in Eq. (13.1), where

↔
χ

(1) is the linear susceptibility tensor.
The higher-order terms and susceptibilities are responsible for nonlinear optical effects.
The second-order susceptibility tensor

↔
χ

(2) depends quadratically on the incident electric
field and can give rise to sum-frequency generation (SFG) in solution. It may also give
rise to second-harmonic generation (SHG) and be used to observe chiral molecules at
a surface or an interface. Linearly polarized as well as circularly polarized light can
probe the nonlinear optical response from a chiral molecular monolayer. Remarkably,
the nonlinear intensity differentials in SHG can be much larger than for linear optical
activity.

The third-order term,
↔
χ

(3), underlies many nonlinear optical effects, including the
intensity-dependent refractive index, the optical Kerr effect, pump-probe spectroscopy,
and coherent Raman processes. To describe nonlinear optical activity phenomena at this
order of nonlinearity, it becomes necessary to consider susceptibilities other than the
electric dipole susceptibilities in Eq. (13.1). Similar to linear chiroptical phenomena,
higher-order multipolar contributions to the susceptibility must be considered in order
to understand nonlinear optical activity; that is, the dependence on the magnetic field
components of the electromagnetic wave is required to describe these processes. Chi-
ral processes at third order include nonlinear circular dichroism and nonlinear optical
rotation, as well as pump-probe and two-photon absorption spectroscopy. These effects
depend on the combined interaction of several light fields and therefore allow for time-
resolved experiments.

The fourth-order
↔
χ

(4) susceptibility is in the electric dipole approximation intrin-
sically chirally sensitive and has been predicted to give rise to a new form of Raman
spectroscopy (BioCARS) that is coherent unlike conventional Raman optical activity
(ROA).

Under which conditions nonlinear susceptibilities permit the observation of chiral
molecules either in solution or at a surface is the topic of this chapter, which is in part
based on two recent reviews [4, 5] and is organized as follows:

In Section 13.3 we discuss the nonlinear optical properties of isotropic liquids and
solutions composed of chiral molecules. We consider nonlinear optical activity phenom-
ena as well as nonlinear chiroptical effects that have no counterpart in linear optics, such
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as sum-frequency generation and BioCARS. Nonlinear chiroptics at surfaces is discussed
in Section 13.4. We briefly introduce some computational approaches that can be used
to estimate the nonlinear chiral response tensors and susceptibilities (Section 13.5). Con-
clusions are drawn in Section 13.6, and in the Appendix (Section 13.7) we collect some
useful formulae and derivations.

In order to properly introduce the nomenclature and in order to discuss nonlinear
optical activity, we first briefly review the theoretical basis of linear chiroptics (Section
13.2). The reader who is primarily interested in nonlinear chiral processes that have no
counterpart in linear optics (e.g., SHG, SFG, BioCARS) may begin with Section 13.3.

13.2. LINEAR CHIROPTICS IN LIQUIDS: χ (1)

Optical fields that are incident upon a molecule induce time-varying molecular moments
which themselves radiate. Most linear optical phenomena such as refraction (and absorp-
tion) of light, and hence the refractive index (and the absorptivity), as well as Rayleigh
scattering can be interpreted through a molecule’s oscillating electric dipole moment �μind

linear in the electric field, �E ,1

�μind = ↔
α �E + · · · , (13.2)

where
↔
α is the polarizability of the molecule. In general,

↔
α relates the three components

of the electric field vector to those of the dipole moment and is therefore a tensor
with nine components. Molecular symmetry may reduce the number of independent
components. The induced dipole moments in an ensemble of molecules give rise to an
average macroscopic polarization �P in the medium:

�P = N 〈 �μind〉, (13.3)

where the angular brackets denote an orientational average over a region of space con-
taining N molecules per unit volume. This leads to the first term in Eq. (13.1):

�P = ε0
↔
χ

(1) �E , (13.4)

where ε0 is the permittivity of the vacuum. The linear susceptibility
↔
χ

(1) is the macro-
scopic analog of the molecular polarizability. It relates the electric field vector to the
macroscopic polarization vector. In a liquid the linear susceptibility is a scalar (see
Section 13.7.1) and is related to the molecular polarizability via

χ(1) = N

ε0

1

3
(αxx + αyy + αzz ) ≡ N

ε0
α. (13.5)

The linear refractive index n0 of an isotropic medium is a function of the susceptibility:

n0 = (1 + χ(1))1/2 ≡ √
ε. (13.6)

1 In condensed media, such as liquids, the field at the molecule will be different from the externally applied
electric field, �E . To account for the effect of dipole–dipole interactions of the surrounding molecules, the
electric field �E in macroscopic expressions, such as Eq. (13.4), should be replaced with a “local field,” which
is in the Lorentz model approximately given by �E (ε + 2)/3.
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To describe the refractive index of an optically active liquid, it becomes necessary to go
beyond the electric dipole approximation in Eq. (13.2) and to include the induced mag-
netic dipole moment �mind (and for oriented samples also the induced electric quadrupole
moment

↔
�ind) [6]. The macroscopic magnetization, and the macroscopic quadrupole den-

sity are respectively �M = N 〈 �mind〉 and
↔
Q = N 〈 ↔

�ind〉. For an optically active liquid we
need to consider [7–9]

�μind = ↔
α �E + ω−1

↔
G

′ �̇B + · · · ,

�mind = −ω−1
↔
G

′ �̇E + · · · ,
(13.7)

where the dot denotes a derivative with respect to time and where
↔
G

′
is the optical rotation

tensor, which is a function of the rotational strength. The inclusion of the higher-order
multipolar moments leads to an effective susceptibility (for a derivation see Section 7.2)

�Peff = ε0χeff �E (13.8)

and results in a contribution to the refractive index that depends on the circularity of the
light:

n(±) ≈ n0 ± g0, where g0 = N G
′

ε0c
, (13.9)

where G
′

is the isotropic part of the optical rotation tensor and G
′ ≡ (G ′

xx + G ′
yy +

G ′
zz )/3. Time-dependent perturbation theory may be used to obtain a sum-over-states

expression for G
′

away from resonance [8, 9]:

G
′ = − 2

3�

∑
j 
=g

ω

ω2
jg − ω2

Im[〈g | �μ|j 〉 • 〈j | �m|g〉], (13.10)

where ωjg is the Bohr angular frequency in the basis set for which g is the ground
state, and all the other symbols have their usual meaning. The optical rotation θ in
radians developed over a pathlength l is a function of the wavelength λ and the circular
birefringence and is given by [9]

θ = π l

λ
(n(−) − n(+)) ≈ −2π l

λ

N

ε0c
G

′
. (13.11)

G
′

is a scalar that changes sign under mirror-image symmetry and hence is opposite
for the two enantiomeric forms of a chiral solution. G

′
underlies linear chiroptics (see

Chapter 11).
We now consider the symmetry of optical response tensors and in particular discuss

nonlinear chirality-specific pseudoscalars that, similar to G
′
, permit the observation of

chiral effects in nonlinear optics.

13.3. NONLINEAR CHIROPTICS IN LIQUIDS

An optical effect in a liquid, an isotropic medium, cannot depend on direction. A light ray
“sees” the same liquid irrespective of whether it traverses the solution from left to right or
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vice versa. Consequently, observables in liquids, such as the refractive index, are scalars.
However, in the case of chiral liquids there is an additional symmetry requirement. Under
mirror symmetry, or more generally under parity or space inversion, a chiral solution
changes its handedness and it follows that those properties that are chirality-specific must
also change sign. Under space inversion all coordinates (x, y, z ) are replaced everywhere
by (−x , −y , −z ). A chirality-specific response in a liquid thus requires that the isotropic
component of the corresponding response tensor or susceptibility changes sign (is odd)
under space inversion [10]. A scalar that changes sign under mirror-image symmetry
(space-inversion) is called a pseudoscalar . Pseudoscalars—independent of the choice of
coordinate axes and of opposite sign for enantiomers—underlie chiral observables in
liquids. For nonlinear chiroptics in liquids we therefore seek nonlinear pseudoscalars.
Generally, we also require that the pseudoscalars are even with respect to time-reversal
symmetry for a true chiral observable [9, 10], but it may be shown that this requirement
can be satisfied for all the optical processes that are of interest in this review, and
henceforth we will assume that the optical response also obeys the correct time-reversal
symmetry. Susceptibilities at all orders can satisfy these requirements, but only those
at even-order (

↔
χ

(2),
↔
χ

(4)
. . .) can do so within the electric dipole approximation. The

appropriate scalars (isotropic components) are obtained from an orientational average,
and these are listed in Section 13.7.1. In order to examine which scalars are parity-odd,
we consider the symmetry of the fields and molecular properties.

13.3.1. Symmetry

Parity inverts all coordinates and hence the electric field and the electric dipole are odd
under parity, whereas the magnetic field is even. Time reversal inverts the direction of
momenta and spins but leaves charges invariant. It follows that an electric field and an
electric dipole moment is symmetric under time reversal, whereas a magnetic field and a
magnetic dipole are time-antisymmetric. Table 13.1 shows the effect of P̂ and T̂ on the
electromagnetic field and dipole operators.

We now discuss the pseudoscalars at the different orders.

13.3.2. Pseudoscalars

The isotropic components of the hyperpolarizability and susceptibility tensors are required
to describe the optical response—linear and nonlinear—in a solution. The spatial sym-
metry of a response tensor may be deduced by considering the symmetry of the fields
it connects. For example, the optical rotation tensor

↔
G

′
in Eq. (13.7) connects a (time

derivative of a) magnetic field with an electric moment and must therefore be parity-odd

TABLE 13.1. Symmetry of Fields and Electric and Magnetic
Dipole Operators Under Parity P̂ and Time Reversal T̂

Field or Property (Vectors) P̂ T̂

E Electric field − +
μ Electric dipole moment − +
P Electric polarization − +
B Magnetic field + −
m Magnetic dipole moment + −
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for the equality to hold. Alternately, one may deduce the spatial symmetry by considering
the operators that enter the response tensor’s quantum mechanical expression. For the
optical rotation tensor, it is seen that the product of one electric dipole and one mag-
netic dipole transition moment operator in Eq. (13.10) renders the optical rotation tensor
parity-odd.

It will be shown that at second-order no magnetic dipole contributions are required
to obtain a chirality-specific response, because a product of three electric dipole transition
moment vectors is already parity-odd. However, a third-order process requires magnetic
dipole contributions in order to be parity-odd. Some pseudoscalars that arise at order n
are tabulated in Table 13.2.

The pseudoscalar m̂m̂μ̂ underlies the magnetochiral effect in linear optics (see
Chapter 16, this volume).

13.3.3. Sum-Frequency Generation: χ (2)

In sum-frequency generation (SFG) spectroscopy, pulses with distinct frequencies are
overlapped in a medium and the light generated at the sum of the two incident frequencies
is detected, which is a coherent and highly directional beam. Its molecular basis is an
induced dipole quadratic in the electric field:

�μind = ↔
β �E �E . (13.12)

With �E ∝ �E0 cos(ωt), the induced moment has a static term and a term that oscillates at
twice the applied frequency, since cos2(ωt) ∝ 1 + cos(2ωt). The induced dipole oscil-
lating at 2ω radiates and is the source of second-harmonic generation. In the case of
an optical field with two distinct frequencies ω1 and ω2, radiation at the sum frequency
(ω1 + ω2) and the difference frequency (ω1 − ω2) may be generated. Sum (and differ-
ence) frequencies can only be generated in a liquid if the liquid is chiral.

TABLE 13.2. Some Chirality-Specific Susceptibilities in Liquids and the Operators that Enter
the Numerator of the Corresponding Quantum Mechanical Expressions

χ(n) Operators Pseudoscalar Associated Optical Phenomena

n = 1 i m̂μ̂ g0, G
′

Optical activity (optical rotation,
circular dichroism)

n = 2 μ̂μ̂μ̂ χ(2), β Three-wave mixing:
m̂m̂μ̂ Sum and difference frequency

generation
i�̂m̂μ̂ magnetochiral effect, inverse

magnetochiral birefringence, etc.

n = 3 im̂μ̂μ̂μ̂ g2 Four-wave mixing:
�̂μ̂μ̂μ̂ Nonlinear optical activity (nonlinear

optical rotation, nonlinear circular
dichroism), coherent Raman optical
activity, two-photon absorption CD

n = 4 μ̂μ̂μ̂μ̂μ̂ χ(4) Five-wave mixing (e.g., BioCARS)
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The corresponding macroscopic polarization for a sum-frequency generation process
is described by2

�P(ω1 + ω2) = ε0
↔
χ

(2)
(ω1 + ω2) �E (ω1) �E (ω2), (13.13)

where the second-order susceptibility tensor
↔
χ

(2) is here written with its frequency argu-
ment. The intensity of the sum frequency is proportional to | �P(ω1 + ω2)|2. In a liquid,
one needs to consider an isotropic average (see Section 13.7.1) in Eq. (13.13), with the
result that the polarization is given by the vector cross product of the incident fields

�P(ω1 + ω2) = ε0χ
(2)(ω1 + ω2)( �E (ω1) × �E (ω2)), (13.14)

and the susceptibility is a scalar of the form

χ(2) = N

ε0

1

6
(βxyz − βxzy + βyzx − βyxz + βzxy − βzyx ) ≡ N

ε0
β. (13.15)

The term in parentheses vanishes for any molecule that possesses reflection planes, a
center of inversion, or rotation-reflection axes, and β is thus only nonzero for a chiral
molecule. It is of opposite sign for the enantiomers of a chiral molecule, and is therefore
a pseudoscalar and a chiral observable.

In Rayleigh–Schrödinger perturbation theory the isotropic component of the first
electric dipolar hyperpolarizability at ω3 = ω1 + ω2 may be written as

β = (ω2 − ω1)

6�2

∑
j , k

�μgk • ( �μkj × �μjg )

{
1

(ω̃jk − ω3)(ω̃jg − ω2)(ω̃jg − ω1)
+ 1

(ω̃∗
kj + ω3)(ω̃

∗
kg + ω2)(ω̃

∗
kg + ω1)

+ 1

(ω̃kg − ω3)(ω̃jg − ω2)(ω̃jg − ω1)
+ 1

(ω̃∗
jg + ω3)(ω̃

∗
kg + ω2)(ω̃

∗
kg + ω1)

}
,

(13.16)

where the summation is over all excited states j,k . By allowing the transition frequency
to be the complex quantity defined by ω̃jk = ωjk − (i/2)�k , where ωjk is the real tran-
sition frequency and �k is the population decay rate of the upper level k , the theory is
appropriate for near-resonant frequencies. The asterisk denotes complex conjugation. The
electric dipole transition moments are defined as �μgj = 〈g | �μ|j 〉. It is seen in Eq. (13.16)
that all diagonal contributions (j = k ) to β vanish. Furthermore, β has no static limit and
its dispersion is consequently much more dramatic than that of a regular nonzero tensor
component of the first hyperpolarizability. In practice, the pseudoscalar β needs to be
near resonance for there to be an appreciable sum-frequency response. The wave-mixing
energy level diagram describing the nonlinear SFG process is depicted in Figure 13.1.

2 The polarization oscillating at the sum frequency is the source of a new wave, so one has to consider the
interaction of several (incident and generated) coupled waves in the medium. Efficient frequency conversion
occurs when the vector sum of the incoming photon momenta matches the momentum of the generated wave
(phase-matching).
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g

ω1

ω2

ωSFG

Figure 13.1. Wave-mixing energy level diagram [92] that

illustrates the SFG process, which is characterized by three

transition matrix elements formed between the ground state g

and the intermediate virtual states k,j (dashed lines). The

incident fields at ω1 and ω2, as well as the generated field at

the sum-frequency, interact with the molecule via electric

dipole transition matrix elements. The diagram represents one

of a total of six that describe the quantum mechanical

expression [cf. Eq. (13.16)]. In the density matrix description of

SFG, there are a total of eight diagrams.

13.3.3.1. SFG Experiments. The intrinsic symmetry-breaking in chiral molecules
causes a nonracemic liquid to be noncentrosymmetric and, as predicted by Giordmaine,
allows for electric dipolar SFG [11]. Sum-frequency generation from chiral liquids has
been reexamined [12] and has been observed experimentally [13–18]. We now discuss
some of its salient features.

It follows from the vector cross product in Eq. (13.14) that the electric fields at ω1, ω2,
and (ω1 + ω2) need to span the X, Y , and Z directions of a Cartesian frame. Hence, a
noncollinear beam geometry is required where two beams are polarized parallel, and one
beam is polarized perpendicular to the plane defined by the input beams. This would
suggest that the two incident beams make a right angle, where all three beams lie in the
same plane. However, momentum conservation favors collinear beams. The optimum
angle to observe SFG in an optically active solution is thus a balance of these two
requirements. Figure 13.2 shows a schematic of the experimental arrangement. Whereas
linear optical activity probes chirality with left- and right-circularly polarized light, the
chiral probe in SFG corresponds to the three linearly polarized field directions that
form either a left-handed or a right-handed coordinate frame. Chiral SFG spectroscopy
therefore needs no circularly polarized light and no polarization modulation. Rather, it is
the detection of photons at the sum frequency which constitutes the chiral measurement.

One can immediately see that there can be no chiral probe if two of the three
waves have the same frequency, as is the case for SHG. The electric field vectors of the
frequency-degenerate fields add and the three waves no longer make a coordinate frame.

800 nm

F

λ/2

λ/2

400 nm

0.8mJ
150 fs
1Khz

BS

delay
line

BBO

266 nm

chiral liquid

SFG
PMT

amplified Ti:Sapphire laser
oscillator-stretcher-amplifier-compressor

Figure 13.2. Experimental arrangement for

the observation of SFG from a chiral liquid. The

optical elements shown include a beam splitter

(BS), a filter (F), a photomultiplier tube (PMT),

and a nonlinear crystal (BBO) [5].
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This is also borne out by the quantum mechanical expression for β [Eq. (13.16)], which
is proportional to ω1 − ω2 and therefore goes to zero for SHG, where ω1 = ω2 [19].

For a liquid that contains only two optically active molecular species, namely the R
and S enantiomers of a chiral molecule, we can write the isotropic part of the electric
dipolar second-order susceptibility as

χ(2) = 1000NA

ε0
([R] − [S ])βR , (13.17)

where the square brackets denote a concentration in mol/L, and where NA is Avogadro’s
number. βR is the β of the R enantiomer and is given by

βR = 1

6
(βR,xyz − βR,xzy + βR,yzx − βR,yxz + βR,zxy − βR,zyx), (13.18)

as is required for a pseudoscalar: βR = −βS, so that χ(2) is zero for a racemic solution
(where [R] = [S ]). The intensity at the sum frequency is proportional to |χ(2)|2 and the
sum-frequency signal thus depends quadratically on the difference in concentration of
the two enantiomers. A sum-frequency experiment therefore measures the chirality of a
solution and not its handedness, and SFG does not distinguish between optical isomers
[20]. This is shown in Figure 13.3 where a quadratic dependence of a SFG signal on the
(fractional) concentration difference of the R-(+) and S -(−) enantiomers of 1,1′-bi-2-
naphthol (BN) is observed [15]. Within the noise of the experiment, no signal is recorded
for the racemic mixture. SFG is thus effectively background free. As seen in Table 13.3,
this is in contrast to linear optical activity phenomena which always contain an achiral
and a chiral response. Several other differences between optical activity and chiral SFG
are also listed in Table 13.3. For instance, linear optical activity phenomena require both
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Figure 13.3. Structures of 1,1′-bi-2-naphthol (BN) and continuous titration of two 0.5 M solutions

of R-(+)-BN and S-(−)-BN in tetrahydrofuran [4]. The sum-frequency intensity is observed at 266 nm

with the incident beams at 800 nm and 400 nm.
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TABLE 13.3. Comparison Between Linear Optical Activity and Nonlinear Optical
Sum-Frequency Generation from a Chiral Liquid

Optical Activity Sum-Frequency Generation

Pseudoscalar G
′ ∝ ω Im[ �μgj · �mjg ] electric and
magnetic dipolar

β ∝ (ω1 − ω2) �μgk · [ �μkj × �μjg ]
electric dipolar

Signal ∼ G
′

Circular differential ∼ |β|2 Intensity at sum frequency
Chiral probe Circularly polarized light x,y,z components of linearly polarized

light beams
Signal contains Chiral and achiral response Only chiral response, no background

electric dipolar and magnetic dipolar transitions, whereas SFG from an optically active
liquid is entirely electric dipolar. This is significant, as magnetic dipole (and electric
quadrupole) transitions are typically much (∼1000 times) weaker than electric dipole
transitions. This is used to great effect in the study of chiral molecules at surfaces
(see Section 13.4). Even though the absolute strength of the nonlinear SFG (and SHG)
signals is low, the nonlinear signals can be detected effectively as the there is little or
no background. However, in practice at least one of the three frequencies needs to be
near or on (electronic or vibrational) resonance for there to be a measurable SFG signal.
The conversion efficiency is low because the SFG process cannot be phase-matched in
liquids.

Sum-frequency generation can also be used to probe vibrational transitions. If one of
the lasers is tunable in the infrared, SFG may be used to record the vibrational spectrum
of a chiral molecule. SFG vibrational spectra from neat limonene in the region of the CH
stretch have been reported [13, 21]. The strength of the chiral CH stretch in the limonene
solutions |χ(2)| was reported to be about three orders of magnitude smaller than a typical
achiral stretch [13]. The liquids from the two enantiomers can be distinguished if beam
polarizations are used that permit the observation of mixed chiral/achiral SFG [13].

Time-resolved vibrational SFG optical activity measurements with circularly polar-
ized infrared light have been proposed [22].

13.3.3.2. Electric-Field-Induced Sum-Frequency Generation. Because the
sum-frequency signal is proportional to the square of the enantiomeric concentration
difference, SFG can in general not distinguish between the enantiomers of a chiral
solute. However, it has been shown that the application of a static electric field to
SFG makes it possible to determine the sign of the pseudoscalar χ(2) and thus the
absolute configuration of the chiral solute [23]. The static field does not change
the phase matching conditions of the sum-frequency process, but it gives rise to
an electric-field-induced contribution to the signal. The combined sum-frequency
polarization along x is given by

Px (ω3) = ε0

⎡
⎣χ(2)Ey (ω1)Ez (ω2)︸ ︷︷ ︸

chiral

+χ(3)Ey (ω1)Ey (ω2)Ex (0)︸ ︷︷ ︸
achiral

⎤
⎦ , (13.19)

where we assume that the ω1 beam travels along the z direction and has its electric
field vector oscillating along y , and we also assume the ω2 beam to be plane-polarized
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Figure 13.4. (a) Intensity of SFG linear in

the static field measured as a function of the
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S(−)-BN and R-(+)-BN. (b) SFG intensity as a

function of the applied electric field for the

two enantiomers S-BN and R-BN. (c) Beam

geometry for SFG(E) [18].

in the yz plane (see Figure 13.4). The beat between chirality-sensitive SFG (a parity-
odd second-order process) and achiral electric-field-induced sum-frequency generation (a
parity-even third-order process) yields a contribution to the intensity (ISFG ∝ |�P(ω3)|2)
that changes sign with the enantiomer. The cross-term linear in the static electric field is
[18]

ISFG(E ) ∝ Re[χ(2)(χ(3))∗]E (0)I (ω1)I (ω2). (13.20)

The effect can therefore be used to determine the absolute sign of the isotropic part of
the sum-frequency hyperpolarizability. The effect has been observed in solutions of 1,1′-
bi-2-naphthol [18]. Figure 13.4 shows that the ISFG(E ) signals depend linearly on the
strength of the static electric field, and linearly on the enantiomeric excess, and that the
ISFG(E ) signals changes sign with the enantiomer. Ab initio computations can be used to
relate the sign of the pseudoscalar to the absolute configuration of the enantiomers [18].
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13.3.4. Third-Order Nonlinear Chiroptics: χ (3)

Thus far we have discussed nonlinear optical effects which are quadratic in the optical
fields and which give rise to the generation of light at a new frequency—different from
that of the incident laser. We now turn to those nonlinear optical effects that modify the
optical properties of an optically active liquid at the frequency of (one of) the incident
fields.

In two-beam coupling, one laser beam changes the optical properties of the medium
for the second laser beam. Interaction of the two different frequency components in a
medium via a third-order susceptibility of the form

↔
χ(ω1 − ω2 + ω2), for instance, causes

a change of the refractive index at ω1 due to the presence of ω2. The same nonlinearity
also describes pump-probe experiments where the fields at ω1 and ω2 are short pulses
that are incident with variable time delays in order to observe dynamical effects resulting
from the induced polarization as a function of the time between the pulses [24–28].

It is also possible for a single laser beam at third-order to change the optical properties
of a medium. The optical response then depends on the cube of the incident optical
field and has a component that oscillates at the frequency of the laser. The so-called
“degenerate four-wave mixing” process or “optical Kerr effect” occurs in any medium
and gives rise to a nonlinear contribution to the refractive index. We can write the
corresponding macroscopic polarization as

�P(ω) = ε0
↔
χ(ω − ω + ω)| �E (ω)|2 �E (ω), (13.21)

where the third-order susceptibility is electric dipolar with a frequency argument of
ω − ω + ω (which is = ω). Apart from the intensity-dependent refractive index (see
Section 13.3.4.1), many important nonlinear optical phenomena, including self-focusing,
self-phase modulation, and two-photon absorption, are directly related to the susceptibility
in Eq. (13.21) [2].

We now discuss how frequency-degenerate third-order processes may become spe-
cific to chiral molecules. These lead to nonlinear extensions of well-known linear chi-
roptical effects.

13.3.4.1. Nonlinear Optical Activity. In order to describe nonlinear optical
activity, we need to consider the induced moments expanded in powers of the elec-
tromagnetic field. The induced electric dipole moment of Eq. (13.2) oscillating at ω

becomes

�μind = ↔
α �E + ↔

γ �E �E �E + · · · . (13.22)

For an electric field �E ∝ �E0 cos(ωt) the term cubic in the electric field has a time depen-
dence cos3(ωt), and since cos3(ωt) ∝ 3 cos(ωt) + cos(3ωt) there is a term that oscillates
as cos(ωt) and therefore contributes to the refractive index at ω. The term quadratic in
the electric field

↔
β �E �E has been omitted from Eq. (13.22) because it has no term that

oscillates at the input angular frequency ω.
↔
γ is known as the second hyperpolarizability.

The refractive index that includes the nonlinear (intensity-dependent) electric dipolar
contribution follows from Eqs. (13.8) and (13.22). We define χ(3) ≡ N γ /ε0 and write

�P = ε0(χ
(1) + χ(3)| �E0|2) �E , (13.23)
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such that n ≈ n0 + χ(3)| �E0|2/(2n0).3 We can write the refractive index in terms of the
intensity, I ∝ |�E0|2, and use a more compact notation by introducing the nonlinear index
of refraction, n2 [3]:

n ≈ n0 + n2I . (13.24)

By considering cubic field terms in Eq. (13.7), the intensity-dependent refractive index
of an optically active liquid can be derived, and inspection of Eqs. (13.9) and (13.24)
suggests its general form:

n(±) ≈ (n0 + n2I ) ± (g0 + g2I ), (13.25)

where we have introduced a “nonlinear optical activity index,” g2. Hence, the circular
birefringence of an optically active liquid is modified in the presence of intense light. In
analogy to the Rosenfeld equation, we can write a generalized equation that describes
linear and nonlinear optical rotation:

θ ≈ −2π l

λ
(g0 + g2I ). (13.26)

The corresponding absorptivities describe linear and nonlinear circular dichroism.
Nonlinear optical rotation has been observed experimentally in a gas [29] and in

solutions [30], and has been computed ab initio [31]. Nonlinear circular dichroism has
been observed in solutions of the ruthenium(II) tris(bipyridyl) salt [28, 32, 33]. One
particular form of nonlinear chiral absorption is two-photon circular dichroism, which
has recently been measured in binapthol solutions [34].

13.3.4.2. Coherent Raman Optical Activity. Nonlinear extensions of natural
optical activity phenomena are not restricted to optical rotation and circular dichroism.
Nonlinear optical analogues of Raman optical activity (ROA) have also been considered
and their theory has been discussed [35, 36]. ROA measures a small difference in the
vibrational Raman spectrum for left- and right-circularly polarized incident light [37, 38].
Although Raman optical activity is now routinely used to study chiral (bio)molecules in
aqueous solutions (see Chapter 23 of Volume 2), it is an incoherent spectroscopy and
the signals are thus weak. Spontaneous Raman scattering can easily be masked by light
emitted from competing processes such as fluorescence. Nonlinear Raman spectroscopies
could be of value in the study of vibrational optical activity, because they make it possible
to probe Raman resonances through coherent rather than incoherent scattering [36]. The
signal strength in nonlinear Raman spectroscopies, such as coherent anti-Stokes Raman
scattering (CARS) and stimulated raman scattering (SRS), is therefore several orders of
magnitude larger than in spontaneous Raman scattering [39]. Nonlinear Raman spec-
troscopy would make it possible to eliminate interference from fluorescence and would
allow previously unavailable temporal information about a molecule’s vibrations to be
obtained. Nonlinear Raman optical activity is described by a nonlocal third-order suscep-
tibility of the form χμμμm(ω1 − ω2 + ω1) with three electric dipole and one magnetic

3 Other definitions of the fields and polarizations can be found in the nonlinear optics literature. The numerical
factors that enter the expression for the refractive index and that accompany the susceptibilities (here and
elsewhere in this volume) may therefore differ from those used in other conventions.
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dipole transition in its numerator (μ̂μ̂μ̂m̂) [35, 36]. In CARS the laser at ω2 is tuned and
whenever the difference in angular frequencies ω1 − ω2 is proportional to a vibrational
energy �ωvib, then a resonantly enhanced Raman signal is observed at ω1 + ωvib. To our
knowledge, there is only one preliminary report of a nonlinear Raman optical activity
measurement from a chiral liquid to date [40]. Nonlinear ROA effects are larger near
electronic resonance. The wave-mixing energy level diagrams of CARS and SRS are
depicted in Figure 13.5.

13.3.5. BioCARS: χ (4)

The nonlinear polarization in a liquid is at fourth order given by a vector cross product
[41, 42]:

�P(3 ω1 − ω2) = ε0χ
(4)(3 ω1 − ω2)( �E (ω1) × �E (ω2))( �E (ω1) · �E (ω1)), (13.27)

here illustrated for a mixing process of the form 3ω1 − ω2. Such a fourth-order process
in an optically active liquid has been predicted to exist on theoretical grounds [41].
It would allow for the observation of a background-free, electric dipolar chiral signal.
Although χ(4) is, in general, much weaker than χ(2), a fourth-order process has the
distinct advantage that it can be realized in a phase-matched geometry.

A new coherent chiral Raman spectroscopy, which arises when 3ω1 − ω2 in Eq.
(13.27) is equal to the angular frequency of a vibration, has been proposed and dubbed
“BioCARS” to indicate that this spectroscopy would constitute an extension of CARS to
chirality and hence biology [43]. BioCARS would exclusively probe chiral Raman vibra-
tions that are simultaneously Raman and hyper-Raman active [43, 44] (see Figure 13.6).
The spectroscopy does not require the use of circularly polarized light to detect chirality
and would allow for a complete rejection of fluorescence, but it could not distinguish
between optical isomers. Apart from the inherent weakness of a nonlinear optical suscep-
tibility responsible for BioCARS, fourth-order processes are weak because they require
a noncollinear beam geometry—due to the vector cross product in Eq. (13.27)—which
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further reduces the interaction length. The use of a waveguide may constitute a promising
alternative because it would allow for a collinear beam geometry and therefore a more
efficient implementation of this five-wave mixing process [45].

BioCARS has not yet been observed, but a number of five-wave mixing processes
have been discussed [42, 46], including some recent experiments of five-wave mixing at
surfaces and interfaces [47, 48].

13.3.6. Incoherent Processes and SHG from Chiral Crystals

The strength of nonlinear spectroscopy is often its coherence—for example, coherent
Raman spectroscopy. Nevertheless, incoherent nonlinear processes do occur and they
can be useful molecular probes when the corresponding coherent wave-mixing effect
is symmetry-forbidden, as is for instance the case with second-harmonic generation in
liquids. Similar to incoherent linear Rayleigh and Raman scattering, nonlinear, or hyper-
Rayleigh scattering arises from (density) fluctuations in the liquid. The frequency-doubled
light is not phase-matched and is emitted in all spatial directions. Its molecular description
arises from an orientational average of the product of two first hyperpolarizabilities
(a scalar of rank 6), and it may also contain chirally sensitive hyperpolarizability elements
[49, 50].

An interesting development in analytical science is the detection of protein crystals in
crystallizing solutions via SHG microscopy [51]. SHG can be generated in noncentrosym-
metric (i.e., chiral) crystals, including suspensions that contain protein crystals. Unlike
ordinary light microscopy, SHG has the advantage that it does not “see” agglomerated
or precipitated proteins.

13.4. NONLINEAR CHIROPTICS AT SURFACES

Surface-specific spectroscopies probe molecular order at surfaces and interfaces—for
example, the liquid–air interface [52, 53]. In second-harmonic generation (SHG) a light
wave from a laser is incident on a surface or an interface at a fixed angle with respect
to the surface normal (Figure 13.7). The incident field at the frequency ω induces dipole
moments that oscillate at 2ω. Coherent addition of these moments from the surface leads
to a macroscopic polarization

�P(2 ω) = ε0
↔
χ

(2)
(ω + ω) �E (ω) �E (ω), (13.28)

which radiates a lightwave at the second harmonic (2ω) in the specular direction. The
intrinsic surface specificity of SHG originates from the symmetry-breaking that occurs at
an interface. Whereas

↔
χ

(2)
(ω + ω) vanishes in the bulk of isotropic media, it is nonzero at

surfaces and interfaces where the molecules may adopt a preferred orientation. Compared
to linear optical spectroscopies, SHG can probe a single layer of molecules on a surface
with little background from the bulk. Furthermore, because SHG is a nonlinear optical
process, it relies on several parameters, such as the directions or the polarizations of the
incoming light beams, and is therefore experimentally more versatile than a linear optical
technique.

In 1993 Hicks and co-workers discovered that circular intensity differences in SHG
are a probe of surface chirality [54]. Since the first applications of SHG to the study
of chiral molecules at interfaces [54–56], including imaging applications of SHG [57],
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numerous studies on chiral surface SHG have appeared and we refer the interested reader
to Chapter 14 in this volume for further details.

In the case of SHG from a surface layer of chiral molecules, symmetry breaking is
twofold: First, the interface breaks centrosymmetry such that surface SHG may occur; and
second, the symmetry breaking in chiral molecules gives rise to additional contributions
to the SHG signal. Both contribute to surface SHG from chiral molecules. It is important
to note that SHG can be observed from an achiral surface as well as from a chiral surface.
Even for a chiral surface the dominant signals can be electric dipolar (or “local”). In this
case, surface SHG probes chirality, similar to sum-frequency generation from the bulk
of a liquid, via susceptibility tensor elements that depend on the three orthogonal spatial
directions “XYZ .”

Second-harmonic generation is symmetry-forbidden in a liquid, even if the solution
is optically active. In SHG, ω1 = ω2 and the hyperpolarizability components in Eq.
(13.16) become symmetric in the corresponding indices (e.g. βxyz = βxzy etc.) such that
their antisymmetric sum vanishes. However, both sum-frequency generation (SFG) and
second-harmonic generation (SHG) are allowed at a surface, provided that the molecules
at the interface adopt a preferred orientation. This is, for instance, the case for a thin
layer of dipolar molecules that lie between two isotropic media with different properties,
such as the liquid–air interface.

Generally, one assumes that such a surface is symmetric about its normal, giving
C∞ symmetry for chiral molecules and C∞v for achiral molecules. The interface is then
characterized by one axis, the surface normal, around which it is rotationally invariant
and which is parallel to the direction of the average dipole moment. In addition, the
arrangement of the molecules at the interface can often be characterized by an average
tilt angle θ of the molecular axis (below taken to be along “z”) with respect to the surface
normal (along “Z ”). The nonvanishing components of the second-order surface suscep-
tibility tensor, evaluated in the frame of the laboratory which contains the optical fields,
are then related to the first hyperpolarizability tensor, which is expressed in molecular
coordinates, by the following matrix equations [58].⎛

⎜⎜⎜⎜⎝
χ

(2)
ZZZ

χ
(2)
ZXX

χ
(2)
XZX

χ
(2)
XXZ

⎞
⎟⎟⎟⎟⎠ = Nσ

ε0

⎡
⎢⎢⎣

a 2b 2b 2b
2b c −b −b
2b −b c −b
2b −b −b c

⎤
⎥⎥⎦

⎛
⎜⎜⎝

βzzz

βzxx + βzyy

βxzx + βyzy

βxxz + βyyz

⎞
⎟⎟⎠ , (13.29)

where Nσ is the number of molecules per unit area and where a = cos3 θ , b = 1
4 (cos θ −

cos3 θ), c = 1
4 (cos θ + cos3 θ). In addition, the following identities hold:

χ
(2)
ZXX = χ

(2)
ZYY , χ(2)

XZX = χ
(2)
YZY , χ(2)

XXZ = χ
(2)
YYZ .
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For chiral molecules there are additional components

⎛
⎜⎝ χ

(2)
XYZ

χ
(2)
YZX

χ
(2)
ZXY

⎞
⎟⎠ = Nσ

ε0

⎡
⎣ d e e

e d e
e e d

⎤
⎦

⎛
⎝ βxyz − βyxz

βyzx − βxzy

βzxy − βzyx

⎞
⎠ , (13.30)

where d = 1
2 cos2 θ , e = 1

4 (1 − cos2 θ) and where

χ
(2)
XYZ = −χ

(2)
YXZ , χ(2)

YZX = −χ
(2)
XZY , χ(2)

ZXY = −χ
(2)
ZYX .

The above matrix equations hold for SFG and SHG. In addition, the following identities
apply in the case of SHG:

χ
(2)
XZX = χ

(2)
XXZ = χ

(2)
YZY = χ

(2)
YYZ , χ(2)

XYZ = −χ
(2)
YXZ = −χ

(2)
YZX = χ

(2)
XZY . (13.31)

Only chiral molecules—that is, molecules with the point group symmetry Cn , Dn , O , T ,
or I —can give rise to the surface susceptibility elements in Eq. (13.30). Hence an
experimental geometry that probes one of the “XYZ ” surface susceptibility elements is a
probe of molecular chirality. For example, Y -polarized SHG that is observed in reflection
from a C∞ surface, when the input beam is polarized parallel to the plane of incidence
(ZX ), requires the surface to be chiral. The components of the polarization from the
surface are in this case given by

PY (2 ω) = 2ε0χ
(2)
YXZ cos ϕ sin ϕ| �E0(ω)|2, (13.32)

where ϕ is the angle of incidence. In addition there will be achiral contributions

PZ (2 ω) = ε0(χ
(2)
ZZZ sin2 ϕ + χ

(2)
ZXX cos2 ϕ)| �E0(ω)|2,

PX (2 ω) = 2ε0χ
(2)
XZX cos ϕ sin ϕ| �E0(ω)|2, (13.33)

where we have used the identities in Eq. (13.31). The second-harmonic’s plane of polar-
ization is thus seen to “rotate” as a function of χ

(2)
YXZ and as a function of the enantiomeric

excess at the interface. This effect has been termed “SHG-ORD” [59]. Similarly, the cir-
cular SHG intensity differential has been termed “SHG-CD,” and “SHG-LD” describes
linear SHG intensity differentials [54]. These descriptions are widely used, however,
we would like to stress that these SHG processes do not arise from differences in the
refractive and absorption indices that respectively underlie optical rotatory dispersion
and circular dichroism in linear optical activity. Further details regarding the use of
polarization in surface nonlinear spectroscopy may be found in references 56, 60–62.

Surface second-order optical measurements are not restricted to SHG. Sum-frequency
generation (SFG) is equally versatile [63, 64]. SFG has the advantage that the incident
frequencies can be tuned independently and that vibrational resonances can be probed
[17]; and promising applications of SFG to the study of biomolecules, especially proteins
at interfaces, have been reported [65–67].
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13.5. COMPUTATION

Apart from analytical calculations based on phenomenological models [12, 68–71], the
(chiral) nonlinear optical susceptibilities and hyperpolarizabilities may also be calculated
quantum chemically. Quantum chemical calculations can be based on a perturbation
approach that directly evaluates sum-over-states (SOS) expressions as in Eq. (13.16), or
on differentiation of the energy or induced moments for which (electric field) perturbed
wavefunctions and/or electron densities are explicitly calculated. These techniques may
be implemented at different levels of approximation ranging from semiempirical to den-
sity functional methods that account for electron correlation through approximations
to the exact exchange-correlation functionals to high-level ab initio calculations that
systematically include electron correlation effects.

Additional approximations are typically made. The application of external electric
fields not only perturbs the electron densities, but also can modify the nuclear configura-
tion. However, a global calculation that evaluates hyperpolarizabilities with a sum over
rovibronic states [72] is often computationally too demanding for polyatomic molecules.
Instead, one can use a two-step procedure that sequentially, rather than simultaneously,
treats the effects of the applied electric fields upon the motion of the electrons and nuclei.
Often the clamped-nucleus approximation [73] is applied to determine the effects of the
electric field on the electron distribution. Computation of the vibrational contribution to
the susceptibilities and hyperpolarizabilities is computationally more demanding. Nev-
ertheless, these corrections have been considered for compounds of practical interest to
nonlinear optics [74, 75].

13.5.1. Configuration Interaction Singles Sum-Over-States (CIS-SOS)

Working within the clamped-nucleus approximation, one approach is to directly
implement the sum-over-states (SOS) expression for the molecular response tensors
obtained from the perturbation expression. The transition moments and frequencies
that are required for the SOS can be directly related to spectroscopic quantities. The
use of phenomenological damping terms ensures that the SOS expressions can also be
used near resonance. Accurate SOS calculations of the first hyperpolarizabilities, in
turn, require accurate ground and excited state wavefunctions and derived properties,
including excitation energies, dipole transition moments, and dipole moments. The
excited-state wavefunctions and energies are typically calculated at the configuration
interaction singles (CIS) level of approximation, and a large number of such studies
on conjugated compounds employing semiempirical Hamiltonians have been published
[76]. Ab initio SOS/CIS studies are less frequent [77]. They can be applied to any kind
of system, but suffer from two drawbacks: the truncation of the sum (also present in
semiempirical calculations) and an overestimation of the excitation energies. Limited
computational resources often make it necessary that the SOS is truncated after inclusion
of only a few excited states. In order to reduce the overestimation of the excitation
energies, it is customary to reduce the excited-state energies such that the calculation
agrees with the experimental absorption spectrum. The correction is particularly
important for calculations that concern the SFG hyperpolarizability/pseudoscalar near
resonance [16]. Extensions of this scheme have been proposed and are based on the
second-order perturbative correction of the excitation energies in the CIS(D) method
[78]. The limitations of the SOS approach—due to both the approximate nature of the
wavefunctions and energies and the truncation of the sum-over-states—can be assessed
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by comparing the traditional Orr–Ward–Bishop expression [79, 80] with dipole-free
SOS expressions [81].

13.5.2. Time-Dependent Hartree–Fock (TDHF)

Apart from SOS approaches, hyperpolarizabilities can be evaluated by differentiating the
energy or the dipole moment with respect to the applied electric field(s):

β =
(

∂2μ(E)

∂E2

)
E=0

= −
(

∂3W(E)

∂E3

)
E=0

. (13.34)

In principle, the differentiation is done either numerically (finite-field method) or in
an analytical scheme, or a combination of both. Numerical finite-field calculations are
limited to derivatives with respect to static fields. Since SFG is an optical process that
involves dynamic oscillating fields, it becomes necessary to use an analytical approach,
such as the time-dependent Hartree–Fock (TDHF) method.

TDHF [82, 83] is one of the most widely employed ab initio techniques to evaluate
nonlinear-optical response tensors. The TDHF approach is size consistent but cannot
account for the finite lifetime of the excited states. The matrices of the TDHF equation
are expanded in a Taylor series of the perturbation due to the static and/or dynamic electric
fields and are solved for each order [82, 83]. The so-obtained successive field derivatives
of the density matrix are then inserted into the expressions for the hyperpolarizability.

Apart from calculations at the ab initio level, the TDHF scheme has also been used
with semiempirical Hamiltonians. This makes it possible to calculate larger molecules
while partially accounting for electron correlation effects. Indeed, when estimating
the dynamic first hyperpolarizability of reference push–pull-conjugated compounds,
the semiempirical TDHF scheme performs generally better than the ab initio TDHF
approach in comparison with high-level ab initio methods [84].

TDHF schemes that account explicitly for electron correlation effects have been pro-
posed, in particular within the frame work of propagators or response function approaches
[85–87]. These have been employed at the multiconfigurational self-consistent-field
(MCSCF) or coupled cluster (CC) level, not only for systems with few atoms and large
electron correlation effects, but also for model push–pull π -conjugated molecules like
p-nitroaniline [88].

13.5.3. Density Functional Theory (DFT)

In addition to the traditional wavefunction CIS-SOS and TDHF methods, density func-
tional theory (DFT) can be used to calculate frequency-dependent hyperpolarizabilities.
For small to medium-sized molecules, DFT methods calculate hyperpolarizabilities that
are in good agreement with post-Hartree–Fock methods. However, the conventional
exchange-correlation functionals are local functions of the density (and its derivatives)
and cannot properly describe the nonlocal effects associated with the hyperpolarizabilities
of large (conjugated) molecules [89].

13.6. CONCLUSIONS

The principles of nonlinear optical probes of chiral molecules in solution and on surfaces
have been reviewed and several selected applications of the various spectroscopies have
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been presented. Nonlinear spectroscopies require pulsed lasers and often some form of
resonance enhancement and thereby can reveal aspects of molecular chirality not accessi-
ble to linear optics. Surprisingly, nonlinear chiroptics can sometimes give correspondingly
larger signals or be more sensitive than conventional optical activity probes. For instance,
a monolayer of chiral molecules may be studied by second-harmonic and sum-frequency
generation at surfaces with little contribution from the bulk of the liquid, whereas such
a monolayer cannot be detected in linear optical ORD or CD experiments.

Interestingly, nonlinear spectroscopies based on pseudoscalars at even order
(χ(2), χ(4)) arise within the electric dipole approximation and have no analog in linear
optics. They give rise to frequency conversion processes only if the liquid is optically
active. Examples are χ(2) sum- and difference-frequency generation in solutions and
processes that involve five field actions (four incident, one generated), as in χ(4)

BioCARS. Care has to be taken that the expression is not frequency-degenerate (far
from resonance) in those indices that require antisymmetry. The latter follows from the
nature of the isotropic components that involve the Levi-Civita operator that vanishes if
repeated indices are symmetric. It is the generation of a photon itself which becomes
the measure of a liquid’s chirality.

The largest number of nonlinear optical effects arises at third order via χ(3). This
susceptibility couples three incident field actions with a generated (induced) polarization.
It is in itself not chiral. In order for the product of four transition moments in the numer-
ator of the corresponding quantum mechanical expression for χ(3) to be parity-odd (and
hence chiral), one of operators has to be magnetic-dipolar. If the applied field is frequency
degenerate, then intensity-dependent contributions to optical rotation and circular dichro-
ism may be observed in nonlinear optical activity. Processes involving distinct frequencies
in the incident radiation such as coherent Raman and certain pump-probe spectroscopies
may similarly become chirality-specific if magnetic-dipolar susceptibilities with transi-
tions of the form μ̂μ̂μ̂m̂ are considered. In contrast to linear chiroptics, nonlinear χ(3)

effects make it possible to study the conformation of molecules at ultrafast timescales.
Much remains to be discovered in nonlinear chiroptics. We expect that nonlinear

optical spectroscopies will become important tools in the investigation of molecular and
biomolecular chirality.

13.7. APPENDIX

13.7.1. Isotropic Tensors

A Cartesian polarizability or susceptibility tensor
↔
X xy . . . describing the optical response

due to incident fields along the Cartesian directions xy . . . may in an isotropic medium
be replaced by an appropriate scalar. The Greek subscripts indicate Cartesian compo-
nents; that is, �uα is the vector with components (ux , uy , uz ). Repeated subscripts denote
summation (Einstein summation convention).

The isotropic components are obtained from an orientational average 〈. . .〉 over all
orientations and are given by [9]

〈↔
X

(1)

αβ 〉 = X (1)δαβ , (13.35)

〈↔
X

(2)

αβγ 〉 = X (2)εαβγ , (13.36)

〈↔
X

(3)

αβγ δ〉 = X (3)
1 δαβδγ δ + X (3)

2 δαγ δβδ + X (3)
3 δαδδβγ , (13.37)
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where

X (1) = 1

3

↔
X

(1)

αβ δαβ = 1

3

↔
X

(1)

αα = 1

3
(

↔
X

(1)

xx + ↔
X

(1)

yy + ↔
X

(1)

zz ), (13.38)

X (2) = 1

6

↔
X

(2)

αβγ εαβγ = 1

6
(

↔
X

(2)

xyz − ↔
X

(2)

xzy + ↔
X

(2)

yzx − ↔
X

(2)

yxz + ↔
X

(2)

zxy − ↔
X

(2)

zyx ), (13.39)

X (3)
1 = 1

30
(4

↔
X

(3)

ααββ − ↔
X

(3)

αβαβ − ↔
X

(3)

αββα),

X (3)
2 = 1

30
(−↔

X
(3)

ααββ + 4
↔
X

(3)

αβαβ − ↔
X

(3)

αββα), (13.40)

X (3)
3 = 1

30
(−↔

X
(3)

ααββ − ↔
X

(3)

αβαβ + 4
↔
X

(3)

αββα)

and δαβ is the Kronecker delta and εαβγ is the antisymmetric Levi-Civita tensor.

13.7.2. Linear Optical Activity

We consider a monochromatic circularly polarized plane wave traveling along the z
direction. In the optically active medium the electric field �E± with amplitude E0, and
the magnetic field �B± can (at a point z = 0) be written as

�E± = E0(
⇀x cos(ωt) ∓ ⇀y sin(ωt)),

�B± = E0
n0

c
(±⇀x sin(ωt) + ⇀y cos(ωt)). (13.41)

The upper sign corresponds to right-circularly polarized and the lower sign to left-
circularly polarized light. ⇀x and ⇀y are unit vectors, and c is the speed of light in
vacuum.

Substitution of the fields into �μind in Eq. (13.7) and use of Eq. (13.4) yields

↔
P

± = ε0

(
N α

ε0
± N G

′
n0

ε0c

)
�E± (13.42)

for a liquid, where the isotropic component G
′ ≡ (G ′

xx + G ′
yy + G ′

zz )/3 (see Section
13.7.1). The induced magnetic dipole term is best included by considering an effective
polarization that contains the contributions due to the magnetization and the quadrupole
density [90, 91]

�Peff = �P + i

ω
�∇ × �M − �∇ · ↔

Q , (13.43)

such that

↔
P

±
eff = ε0

(
N α

ε0
± 2N G

′
n0

ε0c

)
�E±. (13.44)

The effective polarization is of the form

�Peff = ε0χeff �E , (13.45)
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and since the refractive index of a dielectric is, in general, given by n = (1 + χeff)
1/2,

we obtain the refractive index of an optically active liquid for right (+)- and left (−)-
circularly polarized light:

n(±) ≈ n0 ± g0, where g0 = N G
′

ε0c
. (13.46)

The optical rotation in radians developed over a pathlength l is a function of the wave-
length λ and the circular birefringence and is given by [9]

θ = π l

λ
(n(−) − n(+)). (13.47)
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Lett . 2006, 425 , 267–272.

88. J. R. Hammond, K. Kowalski, J. Chem. Phys . 2009, 130 , 194108.



NONLINEAR OPTICAL SPECTROSCOPY OF CHIRAL MOLECULES 371

89. B. Champagne, E. A. Perpete, D. Jacquemin, S. J. A. van Gisbergen, E. J. Baerends, C.
Soubra-Ghaoui, K. A. Robins, B. Kirtman, J. Phys. Chem. A 2000, 104 , 4755–4763.

90. L. Rosenfeld, Theory of Electrons , Dover, New York, 1965.

91. P. S. Pershan, Phys. Rev . 1963, 130 , 919–929.

92. D. Lee, A. C. Albrecht, in Advances in Infrared and Raman Spectroscopy , R. J. H. Clark and
R. E. Hester, eds.,, John Wiley & Sons, New York, 1985, p. 179.



14
IN SITU MEASUREMENT OF CHIRALITY

OF MOLECULES AND MOLECULAR
ASSEMBLIES WITH SURFACE
NONLINEAR SPECTROSCOPY

Hong-fei Wang

The previous chapter (Chapter 13 by Peer Fischer) [1] covers the general principles on
nonlinear optical spectroscopy of chiral molecules. This chapter shall discuss the devel-
opments in in situ measurement and quantitative analysis of chirality of molecules and
molecular assemblies with the surface nonlinear spectroscopy. The message to take home
is that surface second-order nonlinear spectroscopies are not only sensitive techniques
to detect and characterize molecular chirality, but also unique techniques to detect and
characterize structural chirality. These emerging chiroptical techniques shall potentially
find broad applications in general chemistry of chiral molecules, material sciences, and
biological sciences.

14.1. INTRODUCTION

By definition, a molecule or molecular structure is chiral when it lacks an internal plane
of mirror and inversion symmetry—that is, when its mirror image is nonsuperimposable
with itself. Because chiral amino acids, carbohydrate, lipids, and nucleic acids are the
building blocks of life, and many of them form three-dimensional chiral structures or
assemblies in the biological membranes, in situ measurement and analysis to identify
their presence and to determine their structure, structural changes, and interactions at
various interfaces and membranes are the keys to understand the mechanisms of life.
It has been convincingly argued that it is important to simultaneously use more than
one chiroptical spectroscopic method for determining the structure of chiral molecules
and structures [2]. However, in the main stream discussions on chiroptical methods, the

Comprehensive Chiroptical Spectroscopy, Volume 1: Instrumentation, Methodologies, and Theoretical
Simulations, First Edition. Edited by N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody.
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nonlinear spectroscopy, especially surface nonlinear spectroscopy, is yet to be recognized
as one of the newest additions in the arsenal of chiroptical spectroscopic techniques. It
is safe to say that in terms of the molecular chirality studies, nonlinear spectroscopy is
still in its infancy.

The second-order nonlinear chiroptical techniques are intrinsically surface-sensitive
and chiral-selective spectroscopic probes that are ideal for fundamental understanding of
surface chirality and for in situ measurement and detection of the surface chirality and
interactions [3–9]. The second-order nonlinear optical process is the process when two
incoming photons with certain frequencies interact simultaneously with the same set of
atoms or molecules to generate a new emitting photon at the sum or the different fre-
quency of the two incoming photons. When the frequencies of the two incoming photons
are identical and the frequency of emitting photon is twice that of incident photons, the
process is called second-harmonic generation (SHG), or called optical rectification when
the resulted field is with zero frequency; when the frequencies of the two photons are
different, the process is called sum-frequency generation (SFG) or difference-frequency
generation (DFG) [10, 11]. Varying the frequencies and polarizations of the incoming
photons can probe both the vibrational spectroscopy (VS) and electronic spectroscopy
(ES) of the surface molecules. The spectral detail and the polarization dependence can
provide structural and interaction details of all the surface molecular moieties [12–26].
Since the pioneering works using SHG to study chiral interfaces by the groups of Hicks
and Persoons in the early 1990s [4, 27–32], there have been many developments on the
understanding of the nonlinear chiroptical phenomenon [4–6, 33–47] and on the appli-
cations of the SHG and SFG techniques for characterization and imaging of the chiral
surfaces [48–62].

The motivations behind the attempt to connect the second-order nonlinear chiroptical
techniques to the molecular chirality studies were clearly summarized by Janice M. Hicks
more than 15 years ago as follows [4]:

There are at least two motivations for accomplishing a connection between (surface)
nonlinear processes and chiral optical responses. Even-order nonlinear optical pro-
cesses are surface-sensitive; thus it is possible to develop a probe of chiral structures
at interfaces at submonolayer densities (<1014 molecules cm−2). Secondly, because
of the symmetry properties of higher-order optical tensors, more spectroscopic details
about the chiral medium can be obtained.

Currently, SHG and SFG-VS are capable of measuring good-quality spectra in the
sample area of less than 100 μm in diameter at submonolayer density. This corresponds
to less than 1010 molecules, or 1.6 × 10−14 mole. In contrast to SHG and SFG, the
common linear optical techniques, such as the circular dichroism (CD) spectroscopy,
optical rotatory dispersion (ORD), vibrational circular dichroism (VCD), and vibrational
Raman optical activity (ROA), have neither the surface selectivity nor the monolayer
sensitivity [63–69].

The surface selectivity of SHG and SFG comes from the inherent symmetry require-
ment of the second-order nonlinear optical process, which dictates that for centrosymmet-
ric systems, such as bulk liquids and amorphous solids, the leading dipolar contribution
term has to vanish [13, 14, 70]. While the SHG process is a completely dipole-forbidden
process in the centrosymmetric liquid (chiral or achiral), SFG or DFG processes are only
dipole-forbidden processes for the liquid of achiral molecules and are dipole-allowed pro-
cesses for the chiral terms of the liquid of chiral molecules, even though the achiral terms
are still dipole-forbidden [1, 3, 5, 7, 33]. Because the resulting SHG or SFG signal is at
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a completely different frequency in comparison to the two incoming frequencies or other
photoinduced emissions, they are basically background-free. The second-order SHG and
SFG processes are very weak processes. Nevertheless, submonolayer sensitivity can be
readily achieved with femtosecond or picosecond pulse lasers, which provides enough
peak intensity. Very sensitive detectors, such as single-photon counting photomultiplier
tubes (PMTs), in single-wavelength or scanning SHG/SFG [71, 72], and charge-coupled
device (CCD), in broadband or so-called “multiplex” SHG and SFG [72–76], are needed
for the measurements. Using heterodyne techniques, SHG or SFG from the interface can
also be further amplified to improve the sensitivity by at least one or two orders of
magnitude, in addition to the ability to measure the absolute phase of the SHG or SFG
optical field [77–82].

The chiral selectivity of the surface SHG and SFG comes from the fact that the
third-rank second-order nonlinear optical susceptibility tensors can uniquely describe the
intrinsic chiroptical interactions between the chiral molecule and the optical fields [3, 7].
Because we know that in the linear absorption (infrared or UV–visible) spectroscopy
and Raman spectroscopy, the molecular response to the optical field is described with
transition moments (vector) or Raman polarizability (second rank tensor). Neither the
vector nor the second-rank tensors can describe the chiroptical responses of the molecule,
because any chiroptical response has to reflect the three-dimensional chiral structure
that lacks the mirror and inversion symmetry. This is why in the absorption or Raman
spectroscopy, the higher-order coupling tensors between the dipole and magnetic dipole
terms need to be considered to describe the molecular chiroptical responses. In contrast,
in SHG or SFG, the dipolar responses already included the chiroptical terms described by
the third-rank second-order nonlinear susceptibility tensors. Therefore, no higher-order
coupling, which generally involves much weaker effects, needs to be invoked [3, 7]. These
facts not only enable explicit interpretation of the SHG and SFG experimental data, but
also can be used to simplify the theoretical treatment and first principle computation of
the molecular responses in the SHG and SFG processes.

The most important aspect of the chiral selectivity of the surface SHG and SFG
processes is their ability to selectivity probe the “structural chirality,” or “orientational
chirality” as called by Simpson et al., of the molecular assembly or macromolecules over
the “intrinsic chirality” of each chiral building block [6, 8, 83–85]. At the molecular level,
the values of the chiral terms are in general two orders of magnitude smaller than the
values of the achiral terms [5, 7, 9, 44, 86, 87]. Therefore, in any macroscopic SHG and
SFG-VS measurements, the “structural chirality” that comes from the achiral molecular
terms through the three-dimensional chiral arrangements of molecular units or segments
dominates over the “intrinsic chirality,” which is the result of the chiral molecular terms.
[6, 8, 83–85]. Thus, surface SHG and SFG are uniquely sensitive probes of the 3-
D structure of the protein and DNA molecules. In the linear VCD, ECD, and ROA
spectroscopy of proteins, the spectrum is usually dominated by the “intrinsic chirality” of
the chromophore or the amino acid units [88]. Still, the sensitivity of far-UV protein CD
spectra to protein secondary structure is widely used to determine the secondary structure
and composition of proteins [89–92]. Therefore, successful application of surface SHG
and SFG electronic and vibrational spectroscopy in such studies is expected to have great
impact.

There has been numerous reviews on the chiroptical nonlinear SHG and SFG tech-
niques [4–9, 93]. There is also a chapter in this book to cover the general principles
on nonlinear optical spectroscopy of chiral molecules [1]. Therefore, this chapter shall
focus on the SHG and SFG linear dichroism (LD) methods, because they are the simplest
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and more informative in terms of quantitative measurement and analysis of the surface
chirality. A thorough understanding of the SHG-LD and SFG-LD can lead to important
applications, and extension to the SHG/SFG circular dichroism (CD) or optical rotation
dichroism (ORD) techniques can be carried out accordingly, whenever such additional
measurements and analysis are desired.

14.2. THEORY AND FORMALISM OF SHG-LD AND SFG-LD

14.2.1. Some General Issues in Surface SHG and SFG

The principles and descriptions on the surface second-order nonlinear optics can be
found in books and reviews [13–19, 22, 94–97] More detailed technical description
and applications with quantitative analysis with SHG and SFG-VS can be found in the
reviews and research papers [14–17, 22, 94, 96, 97]. Descriptions and examples on the
SHG-CD and SHG-ORD for interface and SFG for bulk molecular chirality studies can
be found in the literature [5–7, 28, 48, 93, 98, 99].

The key issue for the application of the SHG and SFG vibrational spectroscopy
(SFG-VS) techniques for the achiral and chiral surface studies lies in how accurate and
quantitative the experimental measurement and data analysis can be achieved. The past
few years have witnessed the developments in quantitative measurement and analysis with
SHG and SFG-VS studies of the achiral surfaces [15–17, 94, 100]. These developments
were based on the careful studies using the polarization and experimental configuration
control in designing SHG and SFG-VS experiments and in SHG and SFG-VS data anal-
ysis [100–112] and employing the unified treatment and analysis of the macroscopic
susceptibility tensors in relationship to the microscopic molecular tensors, as well as the
molecular optical theory on the microscopic local field factors [15–17, 94, 96]. Tech-
niques on quantitative treatment in SHG and SFG-VS have been extensively reviewed
[15–17, 22, 94, 113].

In SFG-VS, a set of polarization selection rules were established for assignment and
detail analysis of the symmetry and interference of the vibrational spectra peaks and
features [15, 102, 103, 114, 115]. Based on these polarization selection rules, it was then
found that many of the spectral assignments in SFG-VS disagreed with the established IR
and Raman assignments even for the C–H stretching vibrations of the commonly stud-
ied simple molecules, such as ethylene glycol, ethanol, and so on [102, 103, 117, 116].
Another successful application of this new practice with polarization and symmetry
analysis was well demonstrated in the assignment and analysis of the O–H stretching
vibrational spectra of the air–water interface [104]. In SHG and SFG-VS or SFG-ES, the
chiral spectral features appear also in different polarization combinations from the achiral
spectra features; the assignment of these various spectral features, especially when they
are congested or overlapping with each other in the IR or Raman, is straightforward and
relatively easy using the polarization selection rules. This shall help clarify many ques-
tions or confusions in the IR and Raman spectral assignment and analysis of the chiral
molecules in the bulk samples. This also tells us that surface SHG and SFG should not
be only considered as the surface spectroscopic tools.

14.2.2. SHG-LD, SFG-LD and the Degree of Chiral Excess (DCE)

The unique aspect of the simplicity and effectiveness of the surface nonlinear chirop-
tical techniques (i.e., SHG or SFG), is their linear dichroism (LD) [35, 118]. In linear
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spectroscopy, such as IR and Raman, only circular dichroism (CD) and optical rotatory
dispersion (ORD) were possible for randomly oriented liquid-phase samples. There is no
analog of the linear dichroism in the linear optical activity of the bulk sample as in the
surface nonlinear spectroscopy.

In general, there are three kinds of experiments to study chiral surfaces using the
SHG and SFG techniques. Two of them use the linearly polarized light, including the
SHG (SFG) linear dichroism (SHG-LD) and SHG (SFG) optical rotators dispersion
(SHG-ORD), and the third uses the circularly polarized light, including the SHG (SFG)
circular dichroism (SHG-CD) [5, 6, 35, 93, 118]. There is also an approach using the
counterpropagating geometry for SHG to separately probe the chiral and achiral surface
susceptibility elements [48, 57]. Comparison of the LD, CD, and ORD in SHG techniques
were carefully reviewed in the literatures [5, 6, 35].

It has been understood that the SHG-LD is the simplest and direct measurement
among these three experiments [5, 35, 58, 93]. In addition, it has been shown that
the half-waveplate technique can be used to make more accurate determination of the
interface second-order nonlinear susceptibility tensor elements than the quarter-waveplate
technique used for SHG-CD experiments [16, 58, 119]. SFG-LD also follows the same
arguments as above. In short, in the SHG-LD experiment one varies the linear polarization
of the incident beam using a half-waveplate and detects SHG signal in certain linear
polarizations, such as the s and the p polarization. The difference of the SHG intensity
at the input linear polarizations of 45◦ and −45◦ (or 135◦) measures the chirality of
the monolayer or film. Thus, a quantitative description of the degree of chiral excess
(DCE) can be defined [118]. Here the s polarization is defined when the vector of the
optical field is perpendicular to the incident plane formed with the propagation direction
of incident light and the surface normal; while the p-polarization is when the optical
field vector is within the incident plane.

In the SHG-LD, as well as in the SFG-LD, the degree of chiral excess (DCE) of the
interface or film is used to quantify the chirality of the interface. It is [118]

�I /I = 2(I−45◦ − I+45◦)
(I−45◦ + I+45◦)

. (14.1)

Here in SHG/SFG, the intensities are measured with either the s- or p-polarization detec-
tion, and I−45◦ denotes the SHG/SFG intensity when the incident laser polarization is
−45◦, and so on. The chiral and achiral Langmuir or Gibbs monolayer at the air–liquid
or liquid–liquid interfaces are usually considered rotationally isotropic with respect to
the interface normal. For the achiral Langmuir or Gibbs interface, I−45◦ = I+45◦ and
consequently �I /I = 0; while for the chiral Langmuir or Gibbs interface, I−45◦ �= I+45◦
and consequently �I /I �= 0 [118]. It is clear that when I−45◦ > I+45◦ , �I /I > 0; while
when I−45◦ < I+45◦ , �I /I < 0. Thus, the sign of the �I /I indicates whether the chiral
interface is predominantly in one chiral enantiomer state or in the opposite chiral enan-
tiomer state, even though the absolute chirality of the interface is not known from the
SHG-LD measurement [118].

It was recently demonstrated that the accuracy of the DCE value of a chiral surface
can be experimentally determined as accurate as ∼2% or better using the s-detection
SHG-LD [101] or using the twin polarization angle (TWA) method in SFG-VS [120]
measurements. With the DCE value accurately quantified, the s-detection SHG-LD was
subsequently applied to systematically investigate, and clarify, the mechanism of chirality
formation and changes in the Langmuir monolayer of achiral molecules [101, 121]. The
examples will be presented in the section below.
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14.2.3. Theory of SHG-LD

Details for quantitative experimental measurements on the achiral surface using SHG have
been extensively discussed in recent reviews [16]. The basic theory of SHG as a general
surface analytical probe has been well described in literature [14, 96, 100, 122, 123].

14.2.3.1. SHG-LD for Chiral Surface. SHG-LD was first demonstrated by Per-
soons and co-workers in the early 1990s. Its advantages over the SHG-CD or SHG-ORD
were also demonstrated [35, 118]. However, SHG-LD so far has only found limited
applications, partly due to its formulations in literature that are not targeted for chemists.

Generally, the SHG Intensity I (2ω) reflected from an interface is [96]

I (2ω) = 32π3ω2 sec2 �

c3
0n1(ω)n1(ω)n1(2ω)

|χeff |2I 2(ω), (14.2)

χeff = [L(2ω) : ê(2ω)] · χijk : [L(ω) : ê(ω)] · [L(ω) : ê(ω)]. (14.3)

In Eq. (14.2), I (ω) is the incoming laser intensity, c0 is the speed of the light in the vac-
uum, and � is the incident angle from the surface normal. In Eq. (14.3), χijk is the macro-
scopic second-order susceptibility tensor, which has 3 × 3 × 3 = 27 elements; ê(2ω) and
ê(ω) are the unit vectors of the electric field at 2ω and ω; L(2ω) and L(ω) are the tenso-
rial Fresnel factors for 2ω and ω, respectively. Here in χijk , the index i corresponds to the
polarization vector direction of the second harmonic (2ω) field, and j and k correspond
to the two polarization vector directions of the incoming fundamental (ω) field.

χeff itself contains all molecular information of SHG measurement. There are three
independent achiral χeff terms, namely, s-in/p-out (χsp), 45◦-in/s-out (χ45◦s), and p-in/p-
out (χpp), with one additional χeff ,chiral chiral term for an rotationally isotropic chiral
interface (C∞). Here, in the experimental coordinate system (x,y,z ), z is the interface
normal, and we choose the xz plane as the incident plane. Subsequently, p polarization
is defined as polarization within the xz plane, and s is perpendicular to the xz plane.
These χeff terms are directly related to the interfacial macroscopic susceptibilities χijk

tensor elements as discussed below [96, 97].
The seven nonvanishing achiral χijk tensors of the rotationally isotropic chiral inter-

face (C∞) are χzyy = χzxx , χyzy = χyyz = χxzx = χxxz , and χzzz , and the four nonvanishing
chiral terms are χxyz = χxzy = −χyzx = −χyxz [30]. Since any nonzero chiral suscepti-
bility tensor has to have no mirror symmetry, the chiral susceptibility tensor cannot have
exchangeable indexes; that is, all the three subscripts have to be different. Because of the
rotational symmetry along the z axis (surface normal), the χzxy = χzyx = 0 terms have
to vanish. Because the last two indexes correspond to the indistinguishable incoming
fundamental photons, we have χxyz = χxzy and χyzx = χyxz . Finally, since there is no
mirror symmetry, we have χxyz = χxzy = −χyzx = −χyxz .

One has [16]

χeff ,sp = Lzz (2ω)L2
yy (ω) sin �χzyy ,

χeff ,45◦s = Lyy (2ω)Lzz (ω)Lyy (ω) sin �χyzy ,

χeff ,pp = Lzz (2ω)L2
xx (ω) sin � cos2 �χzxx (14.4)

− 2Lxx (2ω)Lzz (ω)Lxx (ω) sin � cos2 �χxzx

+ Lzz (2ω)L2
zz (ω) sin3 �χzzz
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with
χeff ,chiral = 2Lxx (2ω)Lyy (ω)Lzz (ω) sin �ω cos �ωχxyz . (14.5)

The general expression for Eq. (14.4) is

χeff ,αin−γout = [
χeff ,45◦s sin 2α + χeff ,chiral cos2 α

]
sin γ

+
[
χeff ,sp sin2 α + χeff ,pp cos2 α + 1

2
χeff ,chiral sin 2α

]
cos γ. (14.6)

Here the Fresnel factor Lii (ω) terms were clearly defined by Zhuang and Wei et al.
[96, 97], and α and γ are the polarization angles measured from the optical plane of
the incident laser beam and the detection polarization angle in the outgoing signal beam,
respectively. Equation (14.6) shows that χeff in any experimental configuration with
linearly polarized light can be directly expressed as a linear combination of these four
independently measurable χeff terms. It is clear that when χeff ,chiral = 0, the interface is
achiral, Eq. (14.6) is reduced back to the expression for the achiral surface [16]. When
the interface chirality is changed from one enantiomer to its mirror image, both χxyz and
χeff ,chiral change sign.

Since the values of the chiral terms are generlly two orders of magnitude smaller
than the values of the achiral terms [5, 7, 9, 44, 86], the χeff ,chiral term is much smaller
than the χeff ,achiral terms. Using Eq. (14.6), there are various ways to make the SHG-LD
measurement on the chiral as well as achiral interface. The simplicity and accuracy of
the SHG-LD technique for in situ quantitative measurement and analysis of the chiral
interfaces is clear.

For the s-detection with the fixed γ = 90◦ and α = 0◦, the χeff ,ps = χeff ,chiral term
is purely chiral. Because the pure chiral term is generally very small compared to the
achiral terms, the pure chiral terms usually cannot be directly measured. However, fitting
the I s

α (2ω) at γ = 90◦ [Eq. (14.7)] can quite accurately determine the relative sign and
amplitude of the χeff ,sp and the χeff ,chiral terms. One has

I s
α (2ω) ∝ |χeff ,45◦s sin 2α + χeff ,chiral cos2 α|2, (14.7)

I s
45◦(2ω) ∝ |χeff ,45◦s + 1

2
χeff ,chiral |2,

I s
−45◦(2ω) ∝ | − χeff ,45◦s + 1

2
χeff ,chiral |2. (14.8)

Whether I s
45◦(2ω)> I s

−45◦(2ω) or I s
45◦(2ω) < I s

−45◦(2ω) solely depends on the relative
sign of the χeff ,45◦s and the χeff ,chiral terms. With the I s

45
◦ (2ω) and I s

−45◦(2ω) values, the
degree of the chiral excess (DCE) can be readily calculated according to Eq. (14.1).

Even though Eq. (14.7) is simple and easy to use, it has not been explicitly written
in the literature only until recently [17, 35, 58, 118], and there were recent cases where
the s-detection SHG-LD data were observed but not properly interpreted [124], missing
the opportunity for important applications.

Now let’s look at the p-detection with the fixed γ = 0◦. One has

I p
α (2ω) ∝

∣∣∣∣χeff ,sp sin2 α + χeff ,pp cos2 α + 1

2
χeff ,chiral sin 2α

∣∣∣∣
2

, (14.9)
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I p
45◦(2ω) ∝

∣∣∣∣1

2
[χeff ,sp + χeff ,pp + χeff ,chiral ]

∣∣∣∣
2

,

I p
−45◦(2ω) ∝

∣∣∣∣1

2
[χeff ,sp + χeff ,pp − χeff ,chiral ]

∣∣∣∣
2

. (14.10)

Here, it is difficult to fit the data with Eq. (14.9) to accurately determine the values of
all three χeff ,sp , χeff ,pp , and the χeff ,chiral terms, especially the much smaller χeff ,chiral

term [16]. This fact limits the accuracy and application of the SHG-LD p-detection in
the chiral surface studies [16, 101].

14.2.3.2. Symmetry Relationships Between the χijk and βi′j′k′ Terms.
Generally, χijk is the ensemble orientational average of the second-order molecular polar-
izability tensor elements βi ′j ′k ′ in the molecular system [15, 95, 96].

χijk = Ns

∑
i ′j ′k ′=abc

〈Rii ′Rjj ′Rkk ′ 〉βi ′j ′k ′ , (14.11)

where Ns is the molecule number density; the operator 〈〉 denotes the orientational ensem-
ble average over the Euler rotation matrix transformation element Rλλ′ from the molecular
coordinate λ′(a , b, c) to the laboratory coordinate λ(x , y , z ) [107], through the three Euler
angles (θ , ψ , φ) [125]. The subscript (i,j,k ) of the χijk corresponds to the laboratory
coordinate (x,y,z ), and the subscript (i ′,j ′,k ′) of the βi ′j ′k ′ corresponds to the molecular
coordinate (a,b,c). Here in Eq. (14.11), the convention to incorporate the local field fac-
tors into effective refractive indices, which are needed to calculate the Lzz (ω) or Lzz (2ω)

in Eqs. (14.4) and (14.5), is followed [96].
For a rotationally isotropic chiral molecular interface or thin film, there are seven

nonzero achiral χijk tensor elements (i.e., χzzz , χzxx = χzyy , χyzy = χyyz = χxzx = χxxz )
and four chiral χijk tensor elements (i.e., χxyz = χxzy = −χyzx = −χyxz ) [16, 30, 126].

The connections between the macroscopic χijk tensor elements and the microscopic
βi ′j ′k ′ tensor elements as defined in Eq. (14.11) were derived in literature for both SHG
[16, 36, 119] and SFG [15, 94, 127]. However, special attention needs to be paid to the
correctness of the expressions [127] or the conventions of the Euler transformation used
[36, 94]. As pointed out above, there are 12 different ways to perform the Euler angle
transformation [125], and in each of them the definition of the Euler angles and the order
of the rotational transformations are slightly different. These transformations are usually
classified into the X convention [15, 16, 36], as adopted here, or the Y convention [94].

It is conceptually important to understand the simple symmetry-invariant relation-
ships between the χijk and βi ′j ′k ′ terms. The βi ′j ′k ′ tensor elements belonging to different
molecular symmetry categories are listed and classified in Table 14.1. It should be noted
that many of the βi ′j ′k ′ tensor elements with the similar symmetry properties are grouped
together and are inseparable in the macroscopic tensor expressions. They are labeled as
β1, β2, and β3, as listed in Table 14.1. Using these classification, general expressions
between χijk and βi ′j ′k ′ can be reached for the achiral C∞v and chiral C∞ interfaces.

For a rotationally isotropic achiral or chiral molecular interface—that is, C∞v or
C∞, respectively—the achiral terms generally satisfy

χzxx

χxzx
= (β1 + β2 − 2β3)D − (β1 − β2 − 2β3)

(β1 − β2)D − (β1 − β2 − 2β3)
,

χzzz

χxzx
= 2(β2 + 2β3)D + 2(β1 − β2 − 2β3)

(β1 − β2)D − (β1 − β2 − 2β3)
,

(14.12)
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TABLE 14.1. Independent Nonvanishing elements of βi′ j′k ′ for various molecular symmetries
[16]a

Symmetry Location of Nonvanishing Independent β1, β2, β3 of C∞v surface
Classes Mirror Plane Tensor Elements β1 β2 β3

C1 No mirror (βccc , βcaa , βcbb) βccc
βcaa +βcbb

2
βaca +βbcb

2〈βaca = βaac , βbcb = βbbc〉
[βaaa , βabb , βbab = βbba ]
[βbbb , βbaa , βaba = βaab ]
[βacc , βcac = βcca ]
[βbcc , βcbc = βccb ]
{βcab = βcba , βabc = βacb , βbac = βbca }

C1v (Cs ) x̂ ẑ (βccc , βcaa , βcbb) βccc
βcaa +βcbb

2
βaca +βbcb

2〈βaca = βaac , βbcb = βbbc〉
[βaaa , βabb , βbab = βbba ]
[βacc , βcac = βcca ]

C2 No mirror (βccc , βcaa , βcbb) βccc
βcaa +βcbb

2
βaca +βbcb

2〈βaca = βaac , βbcb = βbbc〉
{βcab = βcba , βabc = βacb , βbac = βbca }

C2v x̂ ẑ , ŷ ẑ (βccc , βcaa , βcbb) βccc
βcaa +βcbb

2
βaca +βbcb

2〈βaca = βaac , βbcb = βbbc〉
C3 No mirror (βccc , βcaa = βcbb) βccc βcaa βaca

〈βaca = βaac = βbcb = βbbc〉
[βabb = βbab = βbba = −βaaa ]
[βaab = βaba = βbaa = −βbbb ]
{βabc = −βbac = βacb = −βbca}

C3v x̂ ẑ (βccc , βcaa = βcbb) βccc βcaa βaca

〈βaca = βaac = βbcb = βbbc〉
[βabb = βbab = βbba = −βaaa ]

C4, C6, C∞ No mirror (βccc , βcaa = βcbb) βccc βcaa βaca

〈βaca = βaac = βbcb = βbbc〉
{βabc = −βbac = βacb = −βbca}

C4v , C6v , C∞v x̂ ẑ , ŷ ẑ (βccc , βcaa = βcbb) βccc βcaa βaca

〈βaca = βaac = βbcb = βbbc〉
a Here the βi ′ j ′k ′ tensors are classified according to their symmetry properties and whether they appear in the
macroscopic χijk terms when the interface is with C∞v symmetry. The terms in ( ) are symmetric terms that
appear in the nonvanishing macroscopic susceptibility tensor terms (χijk ), terms in 〈〉 are asymmetric terms
that appear in χijk terms, terms in [ ] are asymmetric terms that do not appear in the χijk terms, and terms in
{} are chiral terms only for chiral molecules.
Source: W. K. Zhang, H. F. Wang, D. S. Zheng, Phys. Chem. Chem. Phys 2006, 8 , 4041–4052. Reproduced
with permission of the PCCP Owner Societies [16].

For the four nonzero chiral elements [14, 126]—that is, χxyz = χxzy = −χyxz =
−χyzx of the surface of chiral liquids—the molecules need to be chiral (C1, C2, C3, C4, C6,
and C∞ as in Table 14.1), which is the case of the so-called “intrinsic chirality” [8], one
has [16]

χxyz = χxzy = −χyxz = −χyzx

= 1

2
Ns [〈cos2 θ〉(βabc − βbac)

−1

2
〈sin2 θ〉(βbca − βacb)]. (14.13)
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If the molecule is achiral, macroscopic chirality arises only when the molecule cannot
rotate freely around its axis; that is, the Euler angle ψ (the twist angle) cannot be
integrated or ensemble-averaged [94]. This is the case of the so-called “orientational
chirality” or ‘structural chirality’ [8]. One has [16, 36, 94]

χxyz = χxzy = −χyxz = −χyzx

= 1

2
Ns [〈sin2 θ sin ψ cos ψ〉(βaca − βbcb − βcaa + βcbb)

+〈sin θ cos θ sin ψ〉(βabb − βacc − βbab + βcac)

+〈sin θ cos θ cos ψ〉(−βaba + βbaa − βbcc + βcbc)]. (14.14)

When both “intrinsic chirality” and “orientational chirality” exist, whether the
observed surface chirality is from the “intrinsic chirality” or the “orientational chirality”
is an issue that needs to be discussed [8]. In general, both the chiral and achiral tensors
in the molecular microscopic polarizability βi ′j ′k are to be present in the macroscopic
susceptibility tensors through Eq. (14.11) [8, 36, 94, 127]. However, at the molecular
level, the values of the chiral βi ′j ′k ′ tensor elements are, in general, two orders of
magnitude smaller than the values of the achiral terms [5, 7, 9, 44, 86]. Therefore, it
is expected that in such cases, the “orientational chirality” contribution shall dominate
over the “intrinsic chirality” contribution in the macroscopic chiral χijk tensors, as
going through the ensemble average as in Eq. (14.11). This fact shall make the
SHG-LD measurement of the “intrinsic chirality” difficult. It also raises questions on the
interpretations in the early SHG-CD studies on the mechanism of the significant chiral
response [4, 93]. However, this suggests that in the SHG-LD or SHG-CD measurement
of the protein or DNA helix or β-sheet 3-D structures, only the “orientational chirality”
from the achiral molecular terms need to be considered, and the more complex “intrinsic
chirality” contributions can be neglected because they are much smaller. Equation
(14.14) is therefore also a valid approximation for the case when the molecule is chiral.

The discussion here on the χijk and βi ′j ′k ′ tensor elements are equally valid for the
SHG and SFG. The only difference is that in SFG, the three indices in the χijk denote the
polarization vector of optical electric field directions for the sum frequency, the visible,
and the infrared, respectively.

14.2.4. Theory of SFG-LD

Chiral SFG-VS signal from monolayer or membrane interfaces was only obtained recently
in specific polarization combinations from interface or membrane [59, 83, 87, 99, 128].
All these measurements used the chiral only polarization combinations. Since the values
of the chiral terms are, in general, two orders of magnitude smaller than the values of the
achiral terms [5, 7, 9, 44, 86, 87], the χeff ,chiral term is generally much smaller than the
χeff , achiral terms, and the chiral-term-only measurement is usually subject to large errors.
Similar to the SHG-LD, SFG-LD measurement can also be carried out. Since the chiral
SFG-VS is allowed and dominating in the chiral liquid, the first SFG-LD experiment
for the bulk chiral liquid was carried out by Shen and co-workers for the (S )- and (R)-
limonene bulk liquids in 2000 [33]. The first SFG-LD measurement of the chiral liquid
surface, where the achiral signal is dominating, was reported in 2009 [120].

With SHG-LD formulation established, the case for the SFG-LD from the linearly
polarized incident lights is straightforward. However, unlike SHG, where the frequencies
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of two incoming optical fields are always identical, in SFG, each of the three optical fields
are different and unexchangeable. The consequence is that in order to make the SFG-LD
measurement as accurately as the s-detection SHG-LD for chiral surface measurement,
the polarizations, of the sum frequency and the visible fields need to be fixed with
a certain relationship, and this shall make the SFG-LD with similar accuracy as the
s-detection SHG-LD. This technique is called the twin polarization angle (TPA) method.

14.2.4.1. SFG-LD for Chiral Surface. Sum frequency generation (SFG) is the
second-order nonlinear process when two photons at the frequency ω1 and ω2 simultane-
ously interact with a molecule to generate a photon with the frequency at the sum of the
two frequencies, that is, ω = ω1 + ω2. In the SFG-VS, ω1 is usually fixed at a visible
light frequency, and the SFG signal at ω is recorded varying ω2 in the infrared region.
When ω2 is in resonance with the vibrational frequency of the interfacial molecules, the
SFG signal is enhanced to give the spectroscopic response of the interfacial molecular
vibrations [15, 96]. When ω1 or ω is also in resonance with or close to the electronic res-
onances, the SFG process is called double resonance SFG (DR-SFG), and the SFG signal
can be greatly enhanced [87, 129]. However, because the DR-SFG involves processes
in the electronically excited states, quantitative analysis and interpretation of the of the
DR-SFG signal is more complicated [130]. The discussion in this chapter is therefore
limited to the non-DR-SFG cases.

The schematics representations of the surface SFG is in Figure 14.1.
The intensity of the SFG signal (I (ω)) from a surface is proportional to the intensities

of the incident visible and infrared light beams (I (ω1) and I (ω2), respectively), as well
as the square of the effective susceptibility χeff of the interface [15, 96].

I (ω) = 8π3ω2sec2β

c3n1(ω)n1(ω1)n1(ω2)
|χeff |2I (ω1)I (ω2), (14.15)

χeff = [ê(ω) · L(ω)] · χijk : [L(ω1) · ê(ω1)][L(ω2) · ê(ω2)], (14.16)

where c is the speed of light in the vacuum; ω, ω1, and ω2 are the frequencies of the
SFG signal, visible, and IR laser beams, respectively; nj (ωi ) is the refractive index of
bulk medium j at frequency ωi ;βi is the angle of incidence or reflection from interface
normal of the i th laser beam; I (ω) and I (ωi ) are the intensities of the SFG signal and the
incident laser beams, respectively; χijk represents the macroscopic second-order nonlinear
susceptibility tensor elements of the interface; and the ê(ωi ) and the L(ωi ) are the unit
polarization vector and the Fresnel factor at frequency ωi , respectively.
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Figure 14.1. Schematic representation of

reflection-geometry SFG measurement [105]. The

laser light at frequency ωi is incident on the

interface at angle βi . The input polarization angle

αi is clockwise from the p-polarization direction.

The frequency and angles of the SFG signal beam

is denoted with the subscript s. The dielectric

constants of medium 1, medium 2, and interfacial

film at frequency ωi are ε1(ωi ), ε2(ωi ), and ε′(ωi ),

respectively.
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For an azimuthally isotropic interface formed by the chiral molecules (symmetry
C∞), there are seven nonvanishing macroscopic susceptibility tensor elements χijk , that
is, χxxz = χyyz , χxzx = χyzy , χzxx = χzyy , and χzzz ; and there are six nonvanishing chiral
tensor elements, that is, χxyz , χyxz , χzxy , χzyx , χxzy , and χyzx [5, 16, 94]. One has

χeff = [sin � cos �1χsps + cos � sin �1χpss

+ cos � cos �1χpps ] sin �2

+ [sin � sin �1χssp + sin � cos �1χspp

+ cos � sin �1χpsp + cos � cos �1χppp] cos �2 (14.17)

with the achiral responses in ssp, sps, pss, and ppp polarization combinations as

χssp = Lyy (ω)Lyy (ω1)Lzz (ω2) sin β2χyyz ,

χsps = Lyy (ω)Lzz (ω1)Lyy (ω2) sin β1χyzy ,

χpss = Lzz (ω)Lyy (ω1)Lyy (ω2) sin βχzyy ,

χppp = −Lxx (ω)Lxx (ω1)Lzz (ω2) cos βcos β1 sin β2χxxz

− Lxx (ω)Lzz (ω1)Lxx (ω2) cos βsin β1 cos β2χxzx

+ Lzz (ω)Lxx (ω1)Lxx (ω2) sin βcos β1 cos β2χzxx

+ Lzz (ω)Lzz (ω1)Lzz (ω2) sin βsin β1 sin β2χzzz , (14.18)

and the chiral SFG responses for polarization combinations of pps, spp, and psp as
χpps , χspp , and χpsp , respectively.

χspp = Lyy (ω)Lzz (ω1)Lxx (ω2) sin β1 cos β2χyzx

+ Lyy (ω)Lxx (ω1)Lzz (ω2) cos β1 sin β2χyxz ,

χpps = Lzz (ω)Lxx (ω1)Lyy (ω2) sin β cos β1χzxy

− Lxx (ω)Lzz (ω1)Lyy (ω2) cos β sin β1χxzy ,

χpsp = Lzz (ω)Lyy (ω1)Lxx (ω2) sin β cos β2χzyx

− Lxx (ω)Lyy (ω1)Lzz (ω2) cos β sin β2χxyz . (14.19)

With the laboratory coordinates defined such that z is along the surface normal, and the
xy plane is the plane of interface, Lii (i = x , y , z ) is the Fresnel coefficient determined
by the refractive indices of the two bulk phases and the interface layer, as well as by
the incident and reflected angles [15, 96, 97]. The p polarization is within the xz plane,
and the s polarization is perpendicular to the xz plane. The polarization combination
ssp indicates that the SF signal, the visible beam, and the IR beam are in s , s , and p
polarization, respectively, and so on.

These terms are grouped with the polarization angle of the infrared optical field (�2)

because in the SFG experiment usually the detection is performed with the IR polarization
fixed either at the s(�2 = 90◦

) or p(�2 = 0◦
) polarizations. Since the SFG-VS intensities

can be normalized to those obtained for z-cut quartz crystals, the absolute values for the
three chiral elements χpps , χspp , χpsp and the four nonchiral elements χsps , χpss , χssp , χppp

can be obtained with these experimental measurements.
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The connection between the macroscopic χijk tensors and the microscopic molecular
polarizability βi ′j ′k ′ tensors follows the same discussions in the Section 14.2.3.2. Detailed
expressions can be found in the literature, and attention needs to be paid to the convention
used for the Euler transformation [15, 36, 94, 96, 97, 127].

In the single vibrationally resonant SFG-VS, the IR frequency is near resonance to
molecular vibrational transition, and the second-order molecular polarizability is

β = βNR +
∑

q

βq

ωIR − ωq + i�q
(14.20)

and the tensor elements of βq is related to the IR and Raman properties of the vibrational
mode [97],

β
q
i ′j ′k ′ = − 1

2ε0ωq

∂αi ′j ′

∂Qq

∂μk ′

∂Qq
. (14.21)

These two equations define the vibrational spectral response as observed in the
SFG-VS from the interfaces. In Eq. (14.20), the first term βNR represents nonresonant
contributions; βq , ωq , and �q are the sum frequency strength factor tensor, resonant
frequency, and damping constant of the q th molecular vibrational mode, respectively
[131–134]. In Eq. (14.21), ∂αi ′j ′/∂Qq = α′

i ′j ′ and ∂μk ′/∂Qq = μ′
k ′ are partial derivatives,

respectively, of the electric dipole polarizability tensor and electric dipole moment with
respect to the q th vibrational mode; and Qq is the normal coordinate of the same mode
[97]. Therefore, any nonzero sum frequency vibrational mode has to be both IR- and
Raman-active. This is the transition selection rule for SFG-VS.

The experimentally measured SFG-VS intensity can be directly related to the micro-
scopic molecular polarizability tensor β

q
i ′j ′k ′ through orientational average. Detailed treat-

ment and consideration of the issues in the quantitative measurement and analysis in the
SFG-VS of the achiral molecular interfaces have been well established [15, 17, 94, 96,
97]. The key idea in the quantitative analysis is to systematically employ the polarization
dependence and experimental configuration dependence in the coherent SFG-VS spectra
to elucidate (a) the vibrational spectral details and (b) the orientation and conformation
as well as their changes of the interfacial molecular groups. One important and very
useful result from these analysis is the development of a set of polarization selection
rules that can be used for vibrational and electronic spectral assignment [15, 102–104].
These analyses have led to advances of SFG-VS as spectroscopic tool for the interface
studies.

14.2.4.2. Chiral SFG Selectively Probes Structural Chirality. Unlike SHG,
one important fact for the chiral SFG is that its chiral terms are not surface-selective for
surface of chiral liquids [3]. However, the achiral terms shall remain surface-selective.
This makes the surface SFG a good probe for the chirality of the bulk chiral liquid.

Since the values of the chiral terms are, in general, two orders of magnitude smaller
than the values of the achiral terms [5, 7, 9, 44, 86, 87], the χeff ,chiral term is much
smaller than the χeff ,achiral terms. Therefore, it is known that measurement of the chiral
SFG signal from a molecular monolayer is extremely difficult. Shen and co-workers used
the double resonance enhancement effect to demonstrate the first observation of the chiral
SFG signal from the molecular monolayer [87], and they also questioned the likeliness
and validity of the observation of the chiral only SFG-VS spectra of a protein monolayer
without such enhancement effect [9, 128]. However, recent works do show that such
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chiral signal can arise from the 3-D protein structures, even though the signal is indeed
small [83, 85].

The ability for SHG and SFG to separate the “orientational chirality” (or “struc-
tural chirality”) and “intrinsic chirality” can have great implications in protein and DNA
structure studies. In the linear VCD, ECD, and ROA spectroscopy of proteins, the spec-
trum is usually dominated by the “intrinsic chirality” of the chromophore or the amino
acid units [88]. Still, the sensitivity of far-UV protein CD spectra to protein secondary
structure is widely used to determine the secondary structure and composition of protein
[89–92]. In comparison, surface SHG and SFG are not only submonolayer-sensitive, but
also selective to the “structural chirality.” With double resonance SHG and SFG, protein
chromophores can also be selectively probed [87, 129]. In addition, all the polarization
dependence and tensorial elements can provide much more information about the struc-
tural information of the proteins. A good example was recently published by Yan and
co-workers using SFG to probe the misfolding of human islet amyloid polypeptide at the
air–water interface [83].

14.2.4.3. Experimental Methods for SFG-LD Determination of the Chiral
and Achiral Elements. It was shown recently [120] that (a) direct measurement of the
pure chiral elements in SFG-LD is not only subject to significant experimental errors, but
also incapable of obtaining the sign or phase information of the χchiral terms; (b) single
polarization angle method in SFG-VS can obtain the sign or relative phase of the χchiral

and χachiral terms, but it is subject to significant experimental errors in the determination
of the smaller chiral terms; and (c) twin polarization angle (TPA) method in SFG-LD
can obtain both the sign or relative phase and the most accurate values for the χchiral

and χachiral terms.
Here the unique accuracy and sensitivity with the so-called twin polarization angle

(TPA) is discussed [120]. Discussions on the pure chiral term and single polarization
method can be found in the literature [120].

In the SHG-LD s-polarization detection, the unique accuracy comes from the cos2 α

and sin 2α functions associated with the small chiral and much larger achiral terms,
respectively, as shown in Eq. (14.7). Here α is the polarization angle of the input funda-
mental beam in the SHG measurement. Because the achiral term is much larger than the
chiral term, the maximum intensity is going to be around α = ±45◦, and the interference
between the chiral and achiral terms is going to be maximized around α = ±45◦. This
not only allows direct recognition of the surface chirality by looking at the different SHG
intensities at the α = 45◦ and α = −45◦, but also allows accurate determination of the
DCE value.

Similarly, one simple way to make the SFG-VS-LD similar to the SHG-LD is to
have �2 = 90◦ and let �1 = ±� in Eq. (14.17). Thus, one has

I S
±(�) = |χeff (�)|2 = |χpps cos2 � + 1

2
(χsps ± χpss) sin 2�|2. (14.22)

Another option is to have �2 = 0◦ and let �1 ± � = 90◦. One has

I P
± (�) = |χeff (�)|2 = |χpsp cos2 � ± χspp sin2 � + 1

2
(χssp ± χppp) sin 2�|2. (14.23)

The reason not to have the two cases of �2 = 90◦ with �1 ± � = 90◦ and �2 = 0◦

with �1 = ±� is that in these two cases the cos2 � and sin2 � terms are associated
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Figure 14.2. TPA simulation results with

χpps = 0.5, χspp = 1, χpsp = 0.5, χsps = 5, χpss =
10, χssp = 10, χppp = 20. (a) Solid curve,

I+ = I�,90−�,0◦ ; dashed curve, I− = I�,90+�,0◦ .

(b) Solid curve, I+ = I�,�,90◦ ; dashed curve,

I− = I�,−�,90◦ . The horizontal lines indicates the

different intensities at the peaks—that is, when

� = 45◦ and � = −45◦, and so on. These

differences are the explicit indication of the chiral

contribution. (From F. Wei, Y. Y. Xu, Y. Guo, S. L.

Liu, H. F. Wang, Chin. J. Chem. Phys. 2009, 22,

592–600. Copyright 2009 Chinese Physical Society

[120]. Reproduced with permission.)

with the larger achiral susceptibility terms, while the sin 2� term is associated with the
much smaller chiral susceptibility terms. In these two cases, the surface chirality is not
going to be explicit in the measurement and the DCE values shall be subject to large
experimental errors.

Figure 14.2 illustrates the simulation results for I P± (�) and I P± (�) with the follow-
ing values for the chiral and achiral susceptibility tensors: χpps = 0.5, χspp = 1, χpsp =
0.5, χsps = 5, χpss = 10, χssp = 10, χppp = 20. The choosing of these values is rather arbi-
trary except that it is used to make the chiral susceptibility terms much smaller than the
achiral susceptibility terms. Also, the choice of the values is also in general agreement
with the fact that the ssp and ppp intensity in the SFG-VS measurement are usually larger
than the sps and pss terms.

It is clear that the I P+ (�) and I S+(�) curves have larger SFG intensity and also larger
chiral modulations at the peaks around � = ±45◦. Therefore, the relative magnitude of
the SFG peak signal strengths for the + and − detection curves can directly tell whether
the ssp/ppp pair or the sps/pss pair have the same or opposite signs.
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It is to be noted that in the above discussion all the susceptibility tensors are treated
as real numbers. This is generally valid when the frequency factor is the common denom-
inator for the different χeff terms in Eq. (14.20).

14.3. APPLICATION OF SHG-LD AND SFG-LD

Here two examples are provided to illustrate the applications of quantitative measurement
and analysis in SHG-LD and SFG-LD. In one example, SHG-LD is applied to measure
the chirality and chiral formation mechanism of a chiral Langmuir monolayer formed
by achiral molecules. In another example, SFG-LD is applied to measure the chiral
vibrational spectra of the pure chiral liquid surfaces.

14.3.1. Chirality of Langmuir Molecular Assembly Measured
with SHG-LD

Quantitative SHG-LD in situ measurement of the chiral Langmuir monolayer formed
by the achiral long-chain molecule 5-octadecyloxy-2-(2-pyridylazo)phenol (PARC18,
Figure 14.3) at the air–water interface not only quantitatively characterized its chirality,
but also provided an answer for its chiral structure and mechanism [101].

Previously, no chirality has been observed for the PARC18 Langmuir–Blodgett
(LB) multilayer film [135], even though the LB multilayer film of the achiral molecules
with similar structures—that is, the 5-(octadecyloxy)-2-(2-(thiazolylazo)phenol
(TARC18)—exhibits chirality, which was probed with UV–vis CD spectra of the LB
multilayer [136, 137].

In recent years, various studies have revealed that several achiral molecules formed
macroscopically chiral Langmuir–Blodgett (LB) or Langmuir–Schaefer (LS) films with
the assemblies of achiral molecules [136–152]. It has been believed that in these cases
each constituent molecule in the macroscopically chiral multilayer films remains achiral
as a single entity, but spontaneous symmetry breaking in the close-packed monolayer
and/or the assembly during the monolayer compression leads to the macroscopic surface
chirality, in which two enantiomers coexist with only one of the enantiomers being
predominant [136, 137, 142, 143, 153].

The importance of this subject is obvious [154–156]. However, the mechanism of
this formation is not clear. Previous experiments with scanning microscopy or UV–visible
CD spectra were all conducted ex situ —that is, on the transferred Langmuir–Blodgett
(LB) multilayers [136, 137]—instead of in situ spectroscopic measurement of the Lang-
muir monolayer as it forms [157]. It was believed that the surface chirality was formed
through the compression-induced mechanism. That is, when the monolayer is not fully
packed, there should be no chiral structure; while when the monolayer is fully packed,
the chirality should stay the same under further compression. Such mechanism was sup-
ported by flawed SHG-LD experimental results and interpretation [121, 160]. However,
careful in situ SHG-LD measurement revealed that such surface chirality was not only

O

OC18H37 N

N

NH

Figure 14.3. The stable configuration of the

PARC18 molecule as optimized with the DFT

calculation [101].
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inhomogeneous in the fully packed monolayer, but also spontaneously formed when the
monolayer is not fully packed [101, 121].

The SHG-LD experimental setup is standard [100, 119, 158]. A broadband tunable
(700–1100 nm) mode-locked femtosecond Ti:sapphire laser is now widely available
and its high-repetition rate (usually ∼80 MHz) and short pulse width (<100 fs) make
it suitable for detection of the weak second-harmonic signals. Typically with the laser
power at about 200 mW, even the nonresonant SHG signal from the neat air–water
interface, which usually generates the least SHG signal than any other interface, can
reach >100 counts per second, with the typical dark noise level of less than 1 count per
second. In comparison, the SHG signal from the PARC18 monolayer surface is typically
a few thousand counts per second. Therefore, the SHG-LD experiment is simple and can
be easily realized.

Comparison of the SHG-LD data (Figure 14.4) in both the s detection and p detection
of the chiral PARC18 and the achiral 4′-n-octyl-4-cyanobiphenyl (8CB) Langmuir mono-
layer is revealing [101]. All data have excellent signal/noise ratio and can be described
with Eqs. (14.7) and (14.9). In the s-detection curve of the achiral 8CB monolayer,
the four peaks are with identical intensity; while in the s-detection curve of the chiral
PARC18 monolayer, the four peaks are with two different intensities. According to Eq.
(14.7), this is the result of the existence of the nonzero χeff ,chiral term in the PARC18
monolayer. From the calculated DCE value of the PARC18 and 8CB data as in Figure
14.4, it is obvious that the s detection resulted in accurate DCE values for both mono-
layers, while the uncertainty of the DCE value from the p detection is much higher. One
can easily conclude that the s detection is not only a straightforward way to visualize the
existence of the surface chirality, but also an accurate way to measure the small changes
in the surface chirality. Detailed analysis and simulation using Eqs. (14.7) and (14.9)
well demonstrated the above conclusions [101].

The s-detection SHG-LD data in Figure 14.5 and calculated DCE values in
Figure 14.6 of PARC18 Langmuir monolayer at different surface densities indicate that
the chirality in the PARC18 Langmuir monolayer is not only inhomogeneous, but also
spontaneously formed. In Figure 14.6, nonzero DCE values were obtained when the
monolayer is still in the condensed-phase/gas-phase coexistence region. These clearly
indicate that the PARC18 monolayer possesses chirality well before it became a compact
monolayer. It is to be noted that only with the accuracy provided by the SHG-LD s
detection, such phenomena were able to be nailed down.

The spatial chiral inhomogeneity of the PARC18 monolayer at different positions
was further demonstrated with the SHG-LD data in Figure 14.7. Fitting the data with
Eq. (14.7) resulted in the achiral χ45◦s values and the chiral χchiral , as well as the DCE
values as plotted in Figure 14.8. It clearly indicated that the chiral inhomogeneity is
indeed from the chiral term, which is mainly determined by the twist angle, instead
of the achiral term, which is mainly determined by the tilt angle. Quantitative analysis
of these data also concluded that the chiral signal is not from the so-called “in-plane
anisotropy” [159]. The statistical criterion for the “in-plane anisotropy” using SHG-LD
s detection is [101],

δχ
45◦s

δχchiral

=
∣∣∣∣ 1

2 cos β

∣∣∣∣ . (14.24)

Here δχ
45◦s

and δχchiral are the statistical variation of the achiral and chiral terms in the
random position in the monolayer. β is the incident angle of the fundamental beam from
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Figure 14.4. Comparison of the s- and p-polarization detection of the 400-nm SHG signal from

the PARC18 Langmuir monolayer and the 8CB Langmuir monolayer at the air–water interface

against the input linear polarization of the fundamental light at 800 nm. The laser power for the

PARC18 experiment was 200 mW, and it was 600 mW for the 8CB. The solid lines are the fitting

results using Eqs. (14.7) and (14.9), respectively. For the PARC18, I+135◦ < I+45◦ in the s-detection

curve and thus �I/I = 22.1% ± 1.8% , while for the 8CB, I+135◦ ≈ I+45◦ in the s-detection curve

and �I/I = −1.8% ± 2.9% , indicating that the PARC18 monolayer is chiral and the 8CB Langmuir

monolayer is achiral. The DCE values from the p-detection data are �I/I = −17.3% ± 7.5% for

PARC18 and �I/I = 3.2% ± 12.5% , respectively. The similar pattern for the two p-detection curves

for the PARC18 and 8CB is owing to their similar molecular symmetry. It is clear that comparison

of the SH intensities at the +45◦ (+225◦) and +135◦ (+315◦) in the s detection is a straightforward

way to determine whether the surface is chiral or not. (From Y. Y. Xu, Y. Rao, D. S. Zheng, Y. Guo,

M. H. Liu, H. F. Wang, J. Phys. Chem. C 2009, 113, 4088–4098. Copyright 2009 American Chemical

Society [101]. Reproduced with permission.)
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Figure 14.5. Results of the s-polarization SHG measurements at 380 nm of the PARC18 Langmuir

monolayer at different surface densities at the air–water interface. All the curves were recorded

during one consecutive film compression process. It is clear that the overall chirality of the

monolayer changes not only with the amplitude, but also with the sign at different surface

densities. (From Y. Y. Xu, Y. Rao, D. S. Zheng, Y. Guo, M. H. Liu, H. F. Wang, J. Phys. Chem. C 2009,

113, 4088–4098. Copyright 2009 American Chemical Society [101]. Reproduced with permission.)

the interface normal, which is usually 70◦. Therefore, if the monolayer is with the so-
called “in-plane anisotropy,” instead of the true chiral structure, the ratio is 1.46. The

measured ratio
δχ

45◦s
δχchiral

= 0.2 − 0.5. Further analysis of this ratio using the χxyz tensors in
Eq. (14.14) can quantitatively determine the average chiral twist angle in the PARC18
molecular assembly.

The χ45◦s value is only about 10 times of the χchiral , as shown in Figure 14.8. This
is consistent with the analysis in Section 14.2.3.2 that the macroscopic surface chirality
for the PARC18 monolayer is “orientational chirality” instead of the “intrinsic chirality.”
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4088–4098. Copyright 2009 American Chemical Society [101]. Reproduced with permission.)

In addition to the PARC18 Langmuir monolayer studies, SHG-LD measurement and
quantitative analysis of the 4-(4-(dihexadecylamino)styryl)-N -methylpyridinium iodide
(DiA) and 4-(4-(N -methyl,N -octadecyl-amino)styryl)-N -methylpyridinium iodide (HTC)
chiral Langmuir monolayers also confirmed the inhomogeneous nature and the sponta-
neous formation mechanism of these chiral monolayers [121, 160]. Another conclusion
from this study is that there is no evidence to support the claim that there is significant
magnetic dipole contribution to the chirality of the DiA Langmuir monolayer, as well as
other Langmuir films [121].

The issues on the origin of the surface SHG or SFG signal have been examined
using quantitative measurement and analysis. Historically, the complexity of the tenso-
rial analysis in SHG and SFG often resulted dubious and confusing attributions of signals
appeared to have unknown origins in the SHG or SFG measurements to the bulk quadru-
ple or molecular magnetic dipole terms [7, 10, 27, 160]. Recent detailed experimental and
theoretical studies, including the results discussed here, have shown that there has been
no substantial evidence to support the non-negligible quadrupole and magnetic dipole
contributions to the SHG and SFG signals from molecular surface, as well as SFG from
molecular chiral liquids [33, 34, 119, 121, 161, 162]. These developments have cleared
the way for quantitative analysis and interpretation of the surface SHG and SFG data
using only the tensorial dipolar terms [15–17, 94].

Of course, SHG-LD is not limited to be applied to the chiral molecular assemblies
from the achiral molecules. SHG-LD as described in this chapter can readily be applied
to study the chirality of the monolayer and membrane of the proteins, DNA, and other
chiral molecules. The above SHG-LD experimental data and results demonstrated the
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(4 mm apart from each other) of monolayer with the surface densities at 34.0 Å2 and 26.7 Å2.

These two surface densities are in the liquid condensed phase of the PARC18 phase diagram [101].

It is clear that both the degree and sign of the chirality change with the location in the PARC18

Langmuir monolayer. (From Y. Y. Xu, Y. Rao, D. S. Zheng, Y. Guo, M. H. Liu, H. F. Wang, J. Phys.

Chem. C 2009, 113, 4088–4098. Copyright 2009 American Chemical Society [101]. Reproduced

with permission.)

power of the SHG-LD in interface chirality studies. It showed that the s-polarization
detection in the SHG-LD experiment can be used to accurately determine the degree
of chiral excess (DCE) for the chiral surfaces. These results also indicated that the
SHG-LD technique, as well as other nonlinear optical spectroscopic techniques, such as
SFG-LD and SHG/SFG-CD, and so on, are not only effective and quantitative in situ
probes of the interface chirality, but also effective tools to study the dynamic processes
in the close-packed monolayer or in the self-assembled films at the microscopic scale
using nonlinear optical microscopy. Using these techniques, future in situ experimental
and theoretical investigations on the chirality and dynamics behaviors in the Langmuir
monolayer, Langmuir–Blodgett films, and biological membranes can be established on
a quantitative foundation.
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Figure 14.8. The SHG-LD DCE values,

χ45◦−s and χeff ,chiral values at different

positions of the PARC18 Langmuir

monolayer at the surface densities of

37.0 Å2 and 34.0 Å2, 29.1 Å2 and 26.7

Å2 from fitting the s-detection curve

with the Eq. (14.7). Note that according

to the definition of the SHG-LD DCE

value and the relative signs between

the χchiral and the χ45◦−s terms in the

Eq. (14.7), the SHG-LD DCE values at

each point are with opposite sign to

the corresponding χchiral values.

Furthermore, the inhomogeneity of the

SHG-LD DCE values are the results of

the inhomogeneity of the χchiral term,

while the χ45◦−s term remains

homogeneous in the PARC18 Langmuir

monolayer. (From Y. Y. Xu, Y. Rao, D. S.

Zheng, Y. Guo, M. H. Liu, H. F. Wang, J.

Phys. Chem. C 2009, 113, 4088–4098.

Copyright 2009 American Chemical

Society [101]. Reproduced with

permission.)

14.3.2. Chiral Spectra and Chirality of Chiral Liquid Surface
with SFG-LD

Here the surface SFG-LD technique with both the single polarization angle (SPA) and
twin polarization angle (TPA) methods is applied to obtain the chiral and achiral SFG-VS
spectra of the (S )-limonene and (R)-limonene air–liquid interfaces. From the comparison
of the achiral and chiral spectra, the vibrational spectral peaks of the limonene molecule
can be assigned explicitly. Using the TPA measurement, the surface degree of chiral
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Figure 14.9. The chemical structure of the enantiomer pair

(S)-limonene and (R)-limonene.

excess (DCE) and the absolute values for the chiral and achiral susceptibilities can be
accurately measured.

Limonene is one of the benchmark molecules for VCD and ROA studies [163, 164]
as well as chiral SFG-VS studies [33]. The structure of (S )- and (R)-limonene is shown
in Figure 14.9.

The SFG-LD experiment was carried out with a 10-Hz 23-ps scanning SFG spec-
trometor [102, 165, 166], and the details can be found in the literature [120]. The incident
angle of the visible beam is 63◦

(β1) and it is 50◦
(β2) for the IR beam, and the SFG

signal was collected around 62◦
(β) at the reflection geometry. To perform the single

polarization angle (SPA) detection, the visible wavelength was fixed at 532.1 nm and the
IR beam was tuned from 2800 cm−1 to 3000 cm−1 with 2-cm−1 increment. To perform
the twin polarization angle (TPA) experiment, the wavelength of the IR beam was set
at a specific value and the SFG signal was recorded when the polarization angles of the
visible beam and SFG signal were varied accordingly. The spectral intensity is normal-
ized to the intensities of the corresponding visible and IR laser pulses, and then to the
z-cut α-quartz surface signal to obtain the absolute value of the surface SFG response.
The details of the normalization procedure were described previously [104].

Figure 14.10 shows the achiral ssp and ppp surface SFG-VS spectra of the air–liquid
interfaces of the (S )-limonene, (R)-limonene, and their racemic mixture at room temper-
ature [167]. Figure 14.11 shows the chiral �I = Ip45◦p − Ip−45◦p spectra for air–liquid
interface of the (S )-limonene and (R)-limonene. In the achiral spectra, those for the
(S )-limonene and (R)-limonene are slightly different from each other. The origin of
these differences are yet to be determined. No doubt that the signal-to-noise ratios in
these spectra still need to be improved. Nevertheless, the spectral peak positions for
the (S )-limonene and (R)-limonene agree with each other very well. The ssp spec-
tra have apparent spectral peaks at 2830 cm−1, 2860 cm−1, and 2915cm−1, while the
ppp spectra have apparent spectral peaks at 2835cm−1 (weak), 2880 cm−1, 2925 cm−1,
and 2965 cm−1, respectively. The spectral features in the ssp polarization combination
are apparently different from those in the ppp polarization combinations. According to
the well-established polarization selection rules in surface SFG-VS [15, 102, 103], the
stronger ssp peaks belong to the symmetric C–H stretches; while the stronger ppp peaks
belong to the asymmetric C–H stretches. It is interesting to note that the number of
spectral features can be resolved from the polarization dependent SFG-VS is generally
more than the number of peaks can be identified in the IR or Raman spectra in the liquid
phase under the same condition [15, 102, 103]. Therefore, the polarization selection rules
in SFG-VS help greatly on assigning these spectral features.

In Figure 14.11, the two �I = Is45◦p−Is−45◦p spectra for the (S )- and (R)-limonene
are almost mirror image to each other. This indicates the chiral nature of the SFG-VS
spectra thus obtained. In comparison, the chiral spectra features in Figure 14.11 are
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Figure 14.10. The achiral ssp and ppp SFG-VS

spectra for (S)- and (R)-limonene, as well as the

racemic mixture at βVis = 63◦ and βIR = 50◦. The

apparent peaks in the ssp spectra are

2830 cm−1, 2860 cm−1, and 2915 cm−1; while

the apparent peaks in the ppp spectra are

2835 cm−1 (weak), 2880 cm−1, 2925 cm−1, and

2965 cm−1, respectively.

2835 cm−1, 2880 cm−1 and possibly the 2920–2930 cm−1 (weak). These spectral peak
positions are in agreement with the chiral SFG-VS spectral features of the (S )- and
(R)-limonene bulk liquid, as reported by Belkin and co-workers previously [7, 33]. As
discussed above, the surface chiral spectra as measured here should be dominated with
the bulk chiral SFG contributions. Therefore, there is no surprise that the surface chiral
SFG-VS spectral features are at the same positions as the SFG-VS spectra from the
bulk liquid. However, the relative strengths of these peaks are different due to reasons
unknown so far.

Moreover, these three chiral peaks are in agreement with the peak positions in the
ppp spectra from the air–liquid interface except for the missing 2965 cm−1 in the chiral
spectra. The absence of the 2965-cm−1 peak (attributed to the asymmetric C–H stretches
of the –CH3 groups in the limonene molecule) in the chiral spectra suggests that the
–CH3 groups are with insignificant chiral characteristics. Furthermore, all three chiral
spectral positions are different from the positions of the peaks observed in the ssp spectra,
as shown in Figure 14.10. These facts explicitly suggested that all the chiral spectral
features have the character of the asymmetric C–H vibration. This is consistent with the
fact that all the chiral susceptibilities have to have no mirror symmetry. Therefore, none
of these chiral spectral features can be assigned to the symmetric C–H stretching modes
as in the literature [33, 163, 164].

The above discussion indicates the importance to compare the achiral and chiral
surface SFG-VS spectra in different polarization combinations for understanding both
the chiral and achiral spectral features for (S )- and (R)-limonene. It also suggests that
the surface SFG-VS is a very important addition to the VCD, ROA, and bulk chiral
SFG-VS techniques.
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Figure 14.11. The chiral SFG-VS spectra for (S)- and (R)-limonene as obtained using the single

polarization angle (SPA) measurement. The vertical axis is the normalized absolute value for the

�I = Ip45◦p − Ip−45◦p. The chiral spectra indicates that there are three chiral vibrational bands in

the 2800- to 3000-cm−1 region, that is, the 2835-cm−1, the 2880-cm−1, and possibly the 2920- to

2930-cm−1 bands. It is clear that these peaks are the same as the peaks in the ppp spectra, but

different from the peaks in the ssp spectra in the Figure 14.10. These facts are consistent with

the fact that the chiral peaks have to have the asymmetric characters instead of the symmetric

characters [120].

Now using the various TPA techniques discussed above, the DCE and absolute
values of the macroscopic susceptibility tensors of the air–liquid interface of the (S )-
and (R)-limonene can be accurately determined. TPA measurement was performed for
the three chiral peaks at 2835 cm−1, 2880 cm−1, and 2920 cm−1 [120]. Here only the
I P± (�) results for the 2880 cm−1 are presented in Figure 14.12. The different intensities
at � = 45◦ and � = −45◦ explicitly indicate that the surface is chiral. The I S±(�) curves
are with small SFG intensity and not presented. The reason is clear from Eqs. (14.22) and
(14.23), because of the fact that the sps and pss terms are relatively small in comparison
to the ssp and ppp terms.

The polarization-dependent I P± (�) TPA curves behaved just as predicted by the
theoretical treatment and simulation in the Section 14.2.4.3. The fitting results of these
TPA curves with Eq. (14.23) as well as the calculated DCE values using Eq. (14.1) are
listed in Table 14.2.

According to these results, the following conclusions can be made.

1. The DCE values obtained from the I P+ (�) curves are accurate. This is because
the ssp and ppp terms are with the same sign, and thus the I P+ (�) signals are
much stronger. The error bar for DCE thus obtained is only ∼1%. This indicates
that the TPA method can be used to accurately measure the chirality of chiral
surfaces. Considering the fact that the polarization angle was manually adjusted
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TABLE 14.2. Calculated DCE Values as Well as the Susceptibility Tensor Elements from the
TPA Data as in Figure 14.2 for the 2835-cm−1, 2880-cm−1, and 2920-cm−1 Peaksa

Peak Position 2835 cm−1 2880 cm−1 2920 cm−1

R DCE− −6.4±5.0% −53.1±15.0% −7.0±1.4%
DCE+ 25.1±0.9% 25.4±1.3% 11.6±0.8%

S DCE− −15.5±7.9% 84.8±55.0% 4.3±0.2%
DCE+ −25.9±2.3% −23.7±0.4% −9.1±0.8%

R χppp 0.26±0.06% 0.29±0.01% 0.25±0.05%
χssp 0.28±0.06% 0.20±0.01% 0.38±0.03%
χspp 0.01±0.02% 0.004±0.01% 0.001±0.01%
χpsp 0.03±0.02% 0.03±0.01% 0.02±0.01%

S χppp 0.24±0.01% 0.30±0.02% 0.21±0.02%
χssp 0.30±0.01% 0.20±0.02% 0.40±0.01%
χspp 0.01±0.02% 0.02±0.01% 0.02±0.01%
χpsp −0.05±0.02% −0.05±0.01% −0.03±0.01%

a The TPA data for the 2835-cm−1 and 2920-cm−1 peaks are not shown. The unit of the susceptibilities is
10−20m2 · V−1.
Source: F. Wei, Y. Y. Xu, Y. Guo, S. L. Liu, H. F. Wang, Chin. J. Chem. Phys . 2009, 22 , 592–600. Copyright
2009 Chinese Physical Society [120]. Reproduced with permission.

in this experiment, much better data quality and less experimental error can be
expected when automation and computer controls are introduced.

2. The DCE values for the (S )- and (R)-limonene are almost identical in magnitude
but opposite in sign from the more accurate DCE+ values. This suggests that the
surface structures of the (S )- and (R)-limonene are indeed similar.
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3. The absolute values for the ssp, ppp, psp, and spp macroscopic susceptibility ten-
sors for the (S )- and (R)-limonene air–liquid surfaces are obtained directly from
the TPA measurement. The spp term value is small and below the noise level.
This suggests that the TPA approach can be used as a standard technique for
measurement of the nonlinear susceptibilities for the molecular surfaces. Quan-
titative calculation and comparison with the SFG measurement of the (S )- and
(R)-limonene bulk liquid are yet to be done. It is expected to generate much more
information on the chirality of the (S )- and (R)-limonene.

Here the difference between the chiral psp/spp and the achiral ssp/ppp susceptibilities
is about 1 to 10. This is also consistent with the fact that the chiral psp/spp terms
contain significant bulk contributions, while the ssp/ppp terms are dominated by the
surface contribution. One would expect that the chiral terms of the (S )- or (R)-limonene
monolayer is going to be at least one or two more orders of magnitude smaller. How
to accurately measure the intrinsic monolayer chiral susceptibility is still an yet to be
accomplished task, except for the case with double resonance SFG as demonstrated by
Shen and co-workers [34].

Comparison of the surface chiral psp/spp values measured here with the bulk psp/spp
values obtained in the literature gives the information on the depth of the bulk liquid
to the measured surface SFG chiral signal. Here in Table 14.2 the surface psp χeff ,chiral

value at 2880 cm−1 is on the order of 0.05 × 10−20 m2 · V−1, while the psp |χchiral |2 at
2880 cm−1 is about 1.75 × 10−28 m2 · V−2, as measured by Shen and co-workers [33].
From the definition of the surface susceptibility, one knows that the surface χeff ,chiral

differs from the bulk χchiral by the factor of Fresnel factors and a length (depth) factor
[17, 168]. It is known that for dielectric liquid surfaces the Fresnel factors are usually not
all very different from unity [169]; the length (depth) factor is therefore about 4 × 10−8m,
that is, ∼40 nm. Considering the fact that in the typical SFG measurement the spot size
is usually about 0.5 mm, this gives a volume of 1 × 10−10 cm−3. The molecular weight
of limonene is about 136. Thus, this volume corresponds to 7 × 10−13 moles of the
limonene molecules. In comparison to the large amount of sample required in the bulk
or linear chiroptical spectroscopic measurement, the measurement with surface SFG is
indeed very sensitive.

Even though the surface SFG-LD in chiral studies is still in its infancy, the data
and discussion above demonstrated the power of the chiral and achiral surface SFG-
LD techniques for studying both the surface and bulk chirality. Not only the chiral and
achiral contribution to the vibrational spectra can be explicitly assigned and analyzed,
but also the surface susceptibility of the chiral liquid or membrane can be quantitatively
measured.

14.4. PERSPECTIVES AND FUTURE DIRECTIONS

In this chapter, the principles and detailed formulation of the surface SHG-LD and SFG-
LD are presented with examples for their application to the in situ measurement of the
surface chirality of molecules and molecular assemblies. In particular, the s detection in
the surface SHG-LD and the twin polarization angle (TPA) in the SFG-LD can be used
for accurate surface chirality measurement.

With the discussion on the connections between the macroscopic surface susceptibil-
ity tensors and the microscopic molecular polarizability tensors, the mechanisms for the
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contribution to the surface chirality as observed in the SHG-LD and SFG-LD measure-
ment are clarified. One important conclusion is that in the surface SHG-LD and SFG-LD
measurement, the “intrinsic chirality” is significantly smaller than the “structural chiral-
ity.” Therefore, surface SHG-LD and SFG-LD are sensitive to the 3-D structure of the
protein, instead of the “intrinsic chirality” of its amino acid units. This simple fact makes
SHG-LD and SFG-LD ideal techniques for elucidation and determination of the structure
of the proteins, as well as other chiral structures in the biological system. Similar treat-
ment can also be systematically developed for the SHG/SFG CD and SHG/SFG ORD
techniques. In principle, they shall provide complementary or more detailed information
to the SHG/SFG LD techniques.

The formulations presented in this chapter allows not only quantitative measurement
using the surface SHG-LD and SFG-LD, but also quantitative analysis and interpretation
of the data by directly connecting the observed macroscopic surface nonlinear optical
properties to the microscopic molecular nonlinear optical properties, which can in prin-
ciple be readily calculated or computed using ab initio or non-ab initio computational
methods. All these are possible because the interface provides a simple and clear refer-
ence frame for such analysis. With the surface as the reference frame, the achiral and
chiral (including intrinsic chirality and structural chirality) contributions can be well sep-
arated in the surface SHG and SFG measurement and analysis, allowing further explicit
theoretical treatment of each. For example, the polarization dependence in the SHG-LD
and SFG-LD allowed development of the polarization selection rules for explicit spec-
tral assignment and allowed development of orientational/structural determination of the
surface molecular moieties [15]. Future studies using these concepts and analysis shall
provide unique information on the spectroscopy, structure, and interactions of the chiral
and achiral molecules at the interface and in the membrane.

The surface SHG and SFG can directly benefit the study and understanding of the
chirality of molecules and molecular assemblies in three directions.

Firstly, surface SHG and SFG are sensitive analytical tools for unambigeous chiral
detection. It is very promising to develop them into routine laboratory analytical tools for
sensitive chiral detection and structural determination. Because the relative signs between
the chiral terms and the achiral terms depend on the chirality of the molecule or structure,
this in principle can be used as the effective tool for absolute chirality determination.

Secondly, surface SHG and SFG have great potentials and promises in studying
the protein and biological membrane structure. The ability for surface SHG and SFG
to separate and quantitatively measure the achiral, structural chiral and intrinsic chiral
contributions allows direct comparison with the theoretical modeling and computation. In
comparison to the linear chiroptical spectroscopy, the tensorial nonlinear susceptibilities
and their polarization dependence shall have great advantages for the purpose of 3-D
structural determination.

Thirdly, the unique ability for sensitive detection and spectral analysis with the
surface SHG and SFG vibrational and electronic spectroscopy can shed new lights on
the understanding of the molecular spectra of both chiral and achiral molecules. Surface
SHG and SFG can help solve a great deal of uncertainties, confusions, and puzzles in the
linear spectroscopy. Understanding these issues can significantly enhance our ability to
determine the absolute configuration of the simple chiral molecules with the synergetic
efforts of different chiroptical spectroscopic techniques.

Applications of surface SHG and SFG spectroscopic techniques to chiral and achiral
molecular studies require synergy of the experiment and theory. Because traditionally
it was considered a very difficult task to obtain and interpret the SHG and SFG data
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into properties that can be easily compared with theoretical predictions, relatively little
has been explored to synergize the SHG and SFG experimental and theoretical efforts in
more quantitative fashion. Recent developments in surface SHG and SFG measurement
and quantitative analysis, as shown in the formulations and examples in this chapter,
have removed most of such obstacles. With the development of the laser technology
and detection techniques, not only SHG and SFG experiments can be much more easily
designed and conducted, but also the accuracy in the SHG and SFG experiment can
allow detailed comparison of the experimental data and the results of theoretical predic-
tions. Calculation and computation of the tensorial second-order nonlinear optical and
chiroptical properties is not trivial. However, the problem can be simplified since for
most of the cases only the dipolar terms need to be considered, in comparison to the
linear chiroptical spectroscopy where the coupling between the dipolar and the magnetic
dipolar terms needs to be treated. Joined with the theory, surface nonlinear spectroscopy
shall reveal great details in the spectra, structure, and interactions of chiral molecules
and chiral structures.

In comparison to other chiroptical spectroscopic techniques, surface SHG and SFG
are still in their infancy. Nevertheless, even with simple examples as presented in this
chapter, as well as the previous Chapter 13, the tremendous potentials and promises
of the surface nonlinear chiroptical methods can be noticed. It is up to the researchers
in various fields with all sorts of scientific problems to grab the opportunities in this
relatively open field.
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PHOTOELECTRON CIRCULAR
DICHROISM

Ivan Powis

15.1. INTRODUCTION

Chiral asymmetry in the angular distribution of photoelectrons that are emitted upon
ionization with circularly polarized radiation is one of the more recent, and remarkable,
chiroptical phenomena to be investigated. Perhaps the most immediately striking charac-
teristic of this effect is the magnitude of the asymmetry factors that are encountered from
a sample of randomly oriented, isolated (i.e. noninteracting) molecular enantiomers. Rou-
tinely, these are found to be in the range 0.01–0.4 and thus are many orders of magnitude
greater than typical chiroptical asymmetries, such as seen for example in conventional
absorption circular dichroism (CDA) spectroscopy.

A more extensive list—contrasting the features expected of photoelectron circu-
lar dichroism [1] (PECD), the technique developed to record chiral angular distribution
parameters, with, for example, CDA—suggests some of the potential of this newer
approach. First, the giant asymmetry factors indicate a sensitivity advantage that is suffi-
cient to enable work with dilute, solvent-free samples. In fact, experimental constraints on
the electron detection mandate working in a high-vacuum environment with low-density
vapors, thereby focusing attention on the bare, isolated molecular system. But compatible
molecular beam techniques may also be introduced, perhaps augmented by simultaneous
detection of the accompanying parent ion in coincidence with the emitted photoelectrons.
That permits selective examination by electron spectroscopy of well-characterized clus-
ter species. PECD investigations can thus be readily extended to examine intermolecular
interactions in molecular recognition phenomena, or to create controlled microsolvation
to better understand the role of solvent effects on a chiral species.

Comprehensive Chiroptical Spectroscopy, Volume 1: Instrumentation, Methodologies, and Theoretical
Simulations, First Edition. Edited by N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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Secondly, the spectral range available is not then restricted by any solvent cutoff and
extends, effectively, from the molecular ionization threshold (typically around 155 nm,
or 8 eV photon energy) through to core excitation regions in the soft X ray range (2 nm,
600 eV, and beyond). The PECD spectrum is dispersed not only by photon energy, hν,
but also by electron energy, Ekin , which is recorded along with the photoelectron angular
distribution. This provides for the creation of a feature-rich two-dimensional map (hν vs .
Ekin ) of the chiral asymmetry parameters. As in conventional photoelectron spectroscopy
(PES), the electron energy coordinate allows the differentiation of contributions made by
the ionization of different molecular orbitals, and these prove to each have distinctive
PECD signatures. In certain circumstances, especially core orbital photoionization, the
molecular orbital will itself be highly localized, offering some capability for probing
specific regions in the molecular structure. Even when individual orbital contributions
are not resolvable due to spectral congestion, and so the conventional PES appears broad
and relatively featureless, the PECD curves may still be strongly structured; and guided
by realistic theoretical modeling of the PECD phenomenon, unambiguous assignments
of absolute chiral configuration may still be achieved [2].

Of equal surprise to those already familiar with studies of molecular photoionization
is the sensitivity of the PECD measurement to more subtle features of molecular structure,
such as conformation and chemical substitution. The traditional form of the photoelectron
angular distribution function, I (θ), is well known in this context:

I (θ) = 1 + βP2(cos θ), (15.1)

with θ being the angle of electron emission measured from the electric vector of a
linearly polarized light source and P2 the second Legendre polynomial function. The
so-called anisotropy parameter,1 β, ranges −1 ≤ β ≤ +2 with β = 0 describing a fully
isotropic distribution. Many molecular studies have established that β typically rises in
a semiquantitatively predictable manner from approximately zero at threshold toward its
positive limit with increasing electron kinetic energy. In the absence of resonances, the
information content of β is then perhaps somewhat limited. In contrast, the additional
chiral distribution parameter that will be introduced to describe ionization with circu-
lar polarizations varies dramatically with the above-mentioned factors in a manner that,
although reliably predictable from quantum mechanical calculations of the photoioniza-
tion dynamics, has detail that defies simple intuition.

The author’s own interest in this topic was motivated by a challenge to propose
instrumental ways to identify and distinguish the optical isomers of volatile odorant
molecules in real-time breath analysis [3], since in many cases these are perceived to
have very different smells/tastes. Thus motivation comes from a defined analytical need,
although to date our own studies, and those by other groups, have been directed toward
developing a sound theoretical and experimental base for the technique. Experimentally,
PECD has been investigated for a range of molecules running from small chiral prototypes
such as methyl-oxirane [4–6] and glycidol [7, 8] through to some terpene natural products
such as carvone [9, 10], camphor [11–14], fenchone [15, 16], and endo-borneol [2]. The
catalogue of studies also includes investigations on bromocamphor [11, 17], alaninol [18],

1 Also known as the asymmetry parameter, although the distribution it describes has inversion symmetry and
thus is not actually asymmetric. Here we will avoid this terminology to prevent confusion with the additional
chiral distribution parameter that has been introduced to describe the true forward–backward asymmetry in the
angular distribution probed by PECD.
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and 3-hydroxytetrahydrofuran [19]. Recently the author and co-workers have started to
examine the effects of clustering on PECD obtained from n-mers of camphor [20],
epichlorohydrin, and glycidol [21] as anticipated above.

15.2. THE PHOTOELECTRON ANGULAR DISTRIBUTION
AND CIRCULAR DICHROISM

A more complete, but much less widely recognized, form of the photoelectron angular
distribution expression, Eq. (15.1), can be given:

I {p}(θ) = 1 + b{p}
1 P1(cos θ) + b{p}

2 P2(cos θ). (15.2)

Both equations apply to the single-photon ionization of a randomly oriented molecular
sample. Here the Pj are now first- and second-order Legendre polynomials, whose coef-
ficients, b{p}

j , have an explicit dependence on the light polarization state or helicity, p.
For linearly polarized light the index p equals 0, while p is ±1 for, respectively, left-
and right-circular polarizations. It should also be noted that the angle θ is understood to
be measured from the electric vector in the case of linear polarization, but is taken from
the direction of light propagation for circularly polarized light (CPL).

A full derivation of Eq. (15.2) can be found elsewhere [1, 22, 23], but here we will
summarize its key characteristics. The coefficients, b{p}

j , are determined by the quantum
mechanical photoionization dynamics and thus will depend on the identity of the ionized
orbital and vary with ionization energy. Constraints implied by conservation of photon
and electron angular momentum impart certain symmetry related properties to these
coefficients. First,

b{0}
1 = 0 (15.3)

so that the first Legendre polynomial term is always absent for linear polarizations.
Hence, in this case Eq. (15.2) has just a single remaining anisotropic term given by the
P2(cos θ) function and thus reduces to the more common form [Eq. (15.1)] with the
identity β ≡ b{0}

2 .
For photoionization with CPL, one finds that the additional P2 coefficients are sym-

metric,

b{+1}
2 = b{−1}

2

(
= −1

2
b{0}

2

)
, (15.4)

but the P1 coefficients are antisymmetric,

b{+1}
1 = −b{−1}

1 ; (15.5)

that is, the first anisotropic (P1) term in Eq. (15.2) changes sign with switch of the
light helicity. Similarly, the b{p �=0}

1 coefficients will swap sign with an exchange of the
molecular helicity (enantiomer):

b{p}
1 (R) = −b{p}

1 (S ). (15.6)
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Conversely, however, for an achiral molecule b{p}
1 is necessarily always zero. This is

due to a complete internal cancellation of the dipole matrix elements contributing to
this parameter in such cases. Consequently, it is only for the specific combination of
photoionization of a chiral molecule by CPL that the first Legendre polynomial term in
Eq. (15.2) may contribute to the observed angular distribution; otherwise the simplified
form [Eq. (15.1)] is sufficient.

The expansion of the first Legendre polynomial term appearing in Eq. (15.2) in
fact gives just b{±1}

1 cos θ . The cosine is of course odd with respect to the inversion
θ = 0◦ → θ = 180◦ so that some forward–backward asymmetry in the photoelectron
angular distribution (PAD) can be anticipated for chiral molecule photoionization with
CPL. One can thus define

GAD = I {p}(0◦
) − I {p}(180◦

) = b{p}
1 cos(0◦

) − b{p}
1 cos(180◦

) = 2b{p}
1 , (15.7)

where use has been made of the fully normalized distribution functions, Eq. (15.2), and
the relation P2(cos 0◦

) = P2(cos 180◦
).

Alternatively, the antisymmetry of the b{±1}
1 coefficients displayed in Eq. (15.5)

suggests a dichroism associated with the angle-resolved electron yield. The asymmetry
factor for this can be defined, again in terms of the fully normalized distributions functions
of Eq. (15.2), for a given detection angle, θ , as the difference between the yield obtained
with left and right CPL:

γ (θ) = I {+1}(θ) − I {−1}(θ) = 2b{+1}
1 P1(cos θ) = 2b{+1}

1 cos θ , (15.8)

where it is noted that the invariance of b{±1}
2 with helicity switches expressed in Eq.

(15.4) causes the P2 terms to be eliminated.
The alternative asymmetry factors, Eqs. (15.7) and (15.8), are seen to provide essen-

tially the same information content, namely the sign and magnitude of a specific choice
of b{p}

1 (R/S ) parameter, which is then trivially related to the others via Eqs. (15.5) and
(15.6). In principle, therefore, a single measurement that determined the angular distribu-
tion would be sufficient to extract information contained in the chiral b{±1}

1 parameters,
although in practice, as will be seen, two or more measurements obtained with switched
circular polarizations of the ionizing radiation to yield the dichroism from the difference
signal are preferred.

The derivation of Eq. (15.2) [1, 23, 24], and thus also the dichroism it predicts
in an angle-resolved photoelectron spectrum [Eq. (15.8)], proceeds in the pure electric
dipole (E1) approximation for the light–matter interaction, and it requires no recourse to
consideration of the typically much weaker magnetic dipole (M1), or electric quadrupole
(E2) interaction terms. This contrasts with the situation in CDA, where the dichroism
results from E1·M1 or E1·E2 interaction terms and is consequently weak compared to the
overall electric dipole transition strength. Photoelectron circular dichroism can therefore
be expected to be much the stronger effect. The first realistic numerical calculations [23,
25] predicted asymmetry factors ranging from a few percent up to ∼40%, and subsequent
experimental work has fully borne out these expectations.

That such strong anticipated dichroism is present already in the electric dipole
approximation can be attributed to the differential nature of the PECD measurement;
detection of an angle-resolved electron allows the final state in the photoabsorption
process to be probed more completely. On the other hand, the electric dipole PECD
disappears in a fully integral cross-section measurement (as in CDA), as can be seen
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by considering the asymmetry expression [Eq. (15.8)] integrated over all θ . At the level
of the pure electric dipole approximation, there is no dichroism associated with the
total photoionization cross section. Extending the derivation of, for example, Eq. (15.2)
to include higher order radiation–matter interaction terms [26] introduces additional
dichroism associated with the isotropic term in the angular distribution (proportional to
the total photoionization cross section) and with the anisotropic Legendre polynomial
terms (including a further P3 term for the case of E1·E2 interactions). However, these
much weaker asymmetries are effectively swamped by the electric dipole contribution in
an angle-resolved PECD measurement, and Eq. (15.2) has proven fully adequate to deal
with experimental data to date.

While the present chapter stops short of repeating the full derivation for Eq. (15.2),
it should be noted that the theoretical treatment underpinning this phenomenological
description describes, essentially, a specific transfer of photon angular momentum to
the outgoing electron, which is mediated via a scattering of the photoelectron off the
chiral molecular ion, as it departs the molecular region. It will be seen from results to
be discussed that this scattering by the chiral molecular potential plays a major role in
many cases.

An analogy can be offered which, although inexact, can help an appreciation of why
there should be a forward–backward scattering asymmetry of the photoelectrons. Imagine
a length of threaded rod (molecular framework), carrying a nut (electron), held away from
an observer. Spinning the nut (representing exciting the electron to be ejected) will cause
it to travel toward one end or the other of the rod (molecule). Which direction it departs
will depend on the thread (enantiomer) and the sense of the rotation imparted to the nut.
For a normal right-hand screw thread, a right-handed rotation imparted by the observer
will cause the nut to move away. Conversely, a left-handed spin of the nut will see it move
toward the observer. Turning the rod/nut assembly through 180◦ and repeating will not
change these (lab-frame) directions of travel relative to the observer. Hence the orientation
of the rod/molecule is unimportant; instead, what causes a specific forward or backward
motion is the handedness of the thread/enantiomer and of the angular momentum given
the nut when its motion is excited. The rod’s thread, like the chiral molecular potential,
thus plays its role in the chirally specific model of photon–electron–molecule interaction
and in creating the resulting strong forward–backward asymmetry in the nut/electron
angular distribution.

This mechanical analogy cannot be developed further. In the real molecular case
the interactions are quantum mechanical in nature, with many interference terms whose
mutual cancellation and/or reinforcement varies rapidly with changing energy etc., such
that the realistic outcome cannot be guessed by intuition, but instead requires a full
numerical calculation of the photoionization matrix elements.

15.3. EXPERIMENTAL APPROACHES

Equation (15.2) was first derived by Ritchie [22] over three decades ago, but its specific
significance for the photoionization of randomly oriented chiral molecules with circularly
polarized light (CPL) was not exploited until a decade ago, when advances in the tech-
nology of so-called insertion devices for synchrotron radiation sources provided for the
first time convenient and reproducible highly polarized radiation across the vacuum ultra-
violet (VUV) and soft X-ray (SXR) regions that is required for valence and inner-shell
ionization studies.
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15.3.1. Light Sources

Synchrotron radiation itself is produced when electrons (or positrons) are accelerated
around a storage ring, and it can be emitted in a very broad energy band extending from
the infrared to the hard X ray [27]. Although naturally linearly polarized in the plane
of the storage ring, light emitted in a direction slightly above and below this plane of
circulation becomes elliptically polarized, and this was exploited in the first attempts to
measure PECD [17]. However, this approach carries a number of practical difficulties
for a dichroism measurement with two opposing polarizations; the light intensity falls
on moving out of plane, and achieving two CPL beams with well-balanced intensities
and known, matched degrees of polarization is very challenging. Even then, the different
propagation directions of the alternately polarized beams introduces severe instrumental
alignment difficulties, such that the implied measurement approach with alternating light
helicity has to be effectively abandoned. These first studies were then made by switching
not polarization, but the handedness of the molecular enantiomers in front of a fixed CPL
beam [11, 17]. While fine for a demonstration experiment, this clearly has limitations
when both enantiomers may not be readily available, or indeed one may have a sample
of unknown configuration to investigate.

Insertion devices (undulators, wigglers) are magnetic arrays that are introduced into
straight sections of the storage ring [28, 29]. Initially introduced to increase brilliance of
the light source in a selected wavelength region, these devices also allow full polarization
control by causing rapid oscillating deviations of the circulating electron packets as they
pass through. Two such matched arrays, placed to produce fields in the horizontal and
vertical planes, can introduce orthogonal excursions of the traversing electrons, result-
ing in components of horizontal and vertical polarization in the emitted light beam. If
these oscillations are in phase, a linear light polarization results, which may be rotated
as the amplitude of horizontal and vertical excursions is varied. Moreover, a relative
displacement of the two magnetic arrays along the electron beam direction introduces a
defined phase shift between the orthogonal oscillations, allowing controllable elliptically
polarized light to be produced. A complete corkscrew path for the electron beam, created
by such a two-axis device, will result in emission of fully circularly polarized light [30].

The undulator light output has to be transmitted along a beamline to the experimental
end station via various optical elements, including a monochromator. In the wavelength
regions considered, these are all reflection optics (gratings, mirrors) that can introduce
polarization changes due to different reflectivities of s and p components. In a beamline
designed for polarization studies, care will have been taken to compensate for depo-
larization at different elements and to have a predictive model for this where possible.
Nevertheless, there can be long-term shifts in beamline depolarization effects due to,
for example, pollution buildup on optical surfaces. Consequently, some form of in situ
polarimetry to measure the degree of polarization actually achieved at the sample can be
beneficial [31–33].

Various elliptically polarizing undulators have been introduced (e.g., references
34–40). More traditional designs utilize permanent magnets, and these have the
disadvantage that changing the phase to switch between left and right CPL requires very
precise mechanical movement of magnet assemblies of substantial mass; polarization
switching can thus be slow (perhaps several minutes). One solution to this has been
adopted at the BESSY II synchrotron [36, 37]. Here two undulators are placed in series,
one behind the other, with a very small angular displacement between the output light
beams. One may then be set for right CPL, the other for left CPL, and the two optical
beams will pass almost in parallel through the beamline optical path to the final focusing
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mirror before the experimental chamber, where they are refocused to a common spot.
The spatial separation achieved in the central beamline is sufficient to allow insertion of
an in vacuo mechanical chopper to alternately block the left and right beams, thereby
providing a much more rapid polarization switch at the experiment. Alternatively,
electromechanical designs [34, 38, 39] permit simpler switching of a single undulator
by reversal of one set of coil currents.

Either of the above approaches allows polarization switching frequencies of the
order of 0.1–0.001 Hz, which is probably about optimum for these measurements. This
is clearly well below the 50 kHz familiar in CDA, but the strength of PECD means that
there is no need for recourse to lock-in detection to extract very low level signals. Rather,
the switches during the course of a measurement cycle are intended to minimize effects
of medium-term drifts in light intensity, sample vapor pressures, and possibly alignment,
which may occur on these timescales; short-term stability is typically not a problem.

Technical improvements in modern synchrotrons continue to provide better signal
through increased brightness and focusing of optical beams, along with much improved
beam stability. Additionally, the introduction of continuous “top-up” operating modes
to maintain a constant stored beam current can now eliminate the long-term quasi-
exponential (τ ≈ hours) decay in light intensity that used to be typical at such light
sources.

15.3.2. Fixed-Angle-Resolved Electron Detection

The simplest experimental arrangement consists of placing a single-electron analyzer
system, with a defined angular acceptance (typically ±3◦) at some fixed angle, θ , with
respect to the light-beam propagation direction (Figure 15.1), and then measuring the
asymmetry or dichroism spectrum as the polarization is switched. The experimental
asymmetry factor is then defined as the normalized difference between the background
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Figure 15.1. Schematic showing an

angle-resolving hemispherical

electron analyzer system used for

PECD experiments at the BESSY

synchrotron.
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corrected spectra, S {±1}(θ), recorded with left and right CPL, respectively:

�(θ) = (S {+1}(θ) − S {−1}(θ))

((S {+1}(θ) + S {−1}(θ))/2)
. (15.9)

It is assumed that each angle-resolved spectrum can be expressed in terms of a total
ionization rate, N {±1}, and an angular distribution function; hence S {±1} = N {±1}I {±}(θ).
The experimental methodology developed for these measurements aims to ensure that the
overall ionization rates are set, or otherwise compensated, so as to be equal for the two
helicities [10]. This entails switching polarization rapidly enough to eliminate medium-
term drifts, plus other steps necessary to minimize instrumental contributions to the
asymmetry. If then it is assumed that N {+1} = N {−1}, Equation (15.9) can be written
directly in terms of the angular distribution functions, I {±}(θ), defined in Eq. (15.2).
Thus,

�(θ) = (I {+1}(θ) − I {−1}(θ))

((I {+1}(θ) + I {−1}(θ))/2)
= 2b{+1}

1 P1(cos θ)

1 + b{±1}
2 P2(cos θ)

, (15.10)

where the second step exploits the symmetries of the b{p}
j coefficients [Eqs. (15.4) and

(15.5)]. This measure of the dichroism is seen to depend also on the b{±1}
2 coefficient

(equivalently the β anisotropy parameter), but it is common to choose θ = 54.7◦, the so-
called magic angle at which P2(cos θ) = 0 so that by writing the remaining P1 polynomial
explicitly, one obtains

�(54.7◦
) = 2b{+1}

1 cos(54.7◦
). (15.11)

Consequently, at the magic angle the experimental dichroism asymmetry defined in Eq.
(15.9) allows direct determination of the chiral b1 coefficient, whereas at other observation
angles some prior knowledge or associated determination of the b2 parameter would also
be necessary. The observed asymmetry is reduced from the maximum value of 2b{+1}

1 that
might be obtained at 0◦ (or 180◦) by the factor of cos(54.7◦

). This is approximately a half,
and the sensitivity disadvantage is easily outweighed by the convenient simplification
seen in Eq. (15.11).

It ought to be noted that Eq. (15.2) applies to light polarization rates of 100% and
has to be modified for elliptical polarization (i.e., when we have the Stokes parameter
0 < S3 < 1) [41]. This introduces an additional dependence on φ, the detector azimuthal
angle from the principal axis of the polarization ellipse. In such cases, more care may
need to be taken to either estimate, or eliminate, a potential “contamination” of the
measured dichroism, �, by additional terms including the b{p}

2 parameters [8, 18].
This arrangement, with a standard hemispherical electrostatic energy analyzer, has

been used for various core-level PECD measurements at BESSY II [8, 10, 14, 16]. The
spectrometer was, however, fitted with an array detector in the analyzer’s image plane
to allow multichannel detection of the dispersed electrons. The consequent energy mul-
tiplexing provides an obvious advantage in data acquisition rate but, equally important,
allows parallel, simultaneous detection across an energy range sufficient to span one or
more bands in the measured photoelectron spectrum. Eliminating a need to scan the ana-
lyzer during data acquisition means that any effects of pressure and intensity drifts are
uniform across the studied band profile.
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Other groups have used an arrangement with dual, opposing hemispherical analyzers
set to observe directions θ and θ + 180◦ [11, 18]. In principle, simultaneous observa-
tion of the electrons scattered in diametrically opposed directions should permit the
forward–backward asymmetry in the angular distribution to be recorded with a single,
fixed circular polarization, thus providing access to the chiral b{p}

1 coefficient. However,
in practice, there are considerable practical difficulties in ensuring that the two analyzer
systems have equal transmission and detection efficiency and have the same field of view
of the ionization volume. Consequently, these instruments still employ switching of the
molecular handedness (enantiomer) or photon helicity. The second analyzer data channel
then provides a check on reproducibility of the measured dichroism, or may be suitably
combined in the data treatment to effectively merge both data streams when extracting
the dichroism.

15.3.3. Photoelectron Imaging

An alternative method that has been developed for studying valence-shell PECD is based
upon photofragment velocity map imaging (VMI), a technique that has been widely
adopted for molecular photoionization and reaction dynamics studies [42]. The basic
principle of this approach may be understood with reference to Figure 15.2.

An electron emitted from a molecule will, after some specified time, be found to
lie on the surface of a sphere having a radius determined by the velocity (energy) of
the electron. A large number of electrons of the same energy would be distributed over
the surface of this sphere according to their angular distribution. If, as the electron shell
expands, the electrons are being uniformly accelerated by an electrostatic field, away
from the ionization region towards a position sensitive detector, then a two-dimensional
projection of this three-dimensional shell can be recorded. The strength of the electric
field can be varied to control the flight time and, thus, control the physical size of
the expanded electron shell, allowing it to be made commensurate with the area of the
detector.

Figure 15.2 also shows what happens if a second ionization channel were to yield
electrons of an alternative, lower kinetic energy. In that case a second, smaller shell of
electrons can be anticipated, appearing as a smaller diameter feature in the 2-D projection.
Isotropic distributions for both channels have been assumed in the figure, but it should
be obvious that any variations in electron angular distribution will appear as intensity
variations in the detected 2-D image. The projection from 3-D electron distribution to
2-D image implies some loss of information; however, it is often the case that some
cylindrical symmetry must exist in the experimental arrangement (for example, in the
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PECD situation the propagation direction of a beam of CPL along the Z axis, parallel to
the detector plane, creates such a symmetry axis). In such cases, mathematical inversion
techniques can recreate the full 3-D distribution, displayed in Figure 15.2 as a slice
through the expanded shells [42]. This provides a “cleaner” image, with electrons of
different energy dispersed at different radius, and in the process it also allows the angular
distribution around Z to be quantitatively extracted. Consequently, the radial distribution
in the inverted 3-D image provides a spectrum of the electron energy, with angular
distribution parameters available across this spectrum as a function of the energy/radius.

A limitation of this approach arises when, in a realistic situation, the ionization
volume is of finite size. The consequent uncertainty in the starting position of any electron
leads to a blurring of the detected image, with a corresponding smearing of the rings seen
after inversion and hence a limitation on achievable resolution. Velocity map imaging
[43] seeks to overcome this limitation by means of a simple electrostatic lens arrangement
incorporated into the electron acceleration region. By analogy with optical lenses, the
operation of such a lens can be described by a transfer matrix formulation, such that the
position, r , and direction, r ′ = dr/dY , of each ray or electron trajectory at the image
plane of the detector can be directly expressed in terms of the initial position and direction,
R, R′:

(
r
r ′

)
=

(
a11 a12

a21 a22

)(
R
R′

)
. (15.12)

Normal optical imaging, as in a camera, would prefer a12 = 0, such that each point
R in the object uniquely maps to a point r in the image, independent of the ray’s initial
direction R′ (i.e., there is no spherical aberration), with a linear magnification given by
a11. Velocity map imaging, in contrast, seeks to establish the converse lens condition that
a11 = 0. Hence, for a given electron energy or speed one finds r ≈ a12R′, showing that
all electron trajectories having the same speed and the same initial angle (i.e., having the
same velocity vector) will be mapped, to a reasonable approximation, to a single point r
in the 2-D image—independent of initial position, R, in the ionization source. Blurring
and resolution loss due to finite interaction region dimensions can thus be minimized.

The electron imaging approach has both conceptual and practical appeal for PECD
studies. The full 4π electron angular distribution may be collected, and the detection
scheme offers both energy and angle multiplexing, with obvious advantages for data
acquisition rates. For PECD measurements made with synchrotron radiation the VMI
spectrometer design originally proposed by Eppink and Parker [43] has been modified
with an additional lens structure to extend the useful kinetic energy range that can be
recorded [44]. Recorded images can then immediately offer visual insight into the elec-
tron distribution. In principle, the chiral asymmetry in the electron angular distribution
could be observed directly from a single image recorded with a fixed helicity light. For
practical purposes, however, recording the dichroism by subtracting images recorded
with interleaved left and right CPL is preferred. With carefully planned data-acquisition
procedures, the subtraction can be used to eliminate apparent instrumental asymmetries
(e.g., due to nonuniform sensitivity across the face of the imaging electron detector)
and, because the full angular distribution is observed, detailed prior knowledge of β

parameters is not required [12].
Example dichroism images obtained at two different photon energies in a study of S -

methyl oxirane PECD [45] are displayed in Figure 15.3. In the left-hand column the raw
2-D projection images appear (with the photon beam propagating vertically up relative
to the displayed images). The lower photon energy (10.8 eV) is a little above the first
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Figure 15.3. VMI images showing PECD in (S)-methyloxirane, with pseudo-color mapped

intensities and X, Y axes that are marked in detector pixel units. The photon beam propagates

vertically upwards, parallel to the image plane in these recordings. Left column: unprocessed 2-D

photoelectron dichroism image (left CPL-right CPL). Right column: after treatment with pBaseX

algorithm. (See insert for color representation of the figure.)

ionization potential. The electrons thus come from the HOMO orbital, and one readily
sees the electron angular asymmetry with a negative difference (L-R) in the forward (up)
direction and a counterbalancing positive difference in the backward (down) direction.

A variety of algorithms have been introduced for the mathematical inversion of
2-D projection images recovering the full 3-D distribution [42]. The pBaseX method
developed by the author and colleagues [46] is particularly well-adapted for the present
circumstances. In particular, it can handle both positive and negative pixel values encoun-
tered in these bipolar dichroism images and will yield directly the Legendre polynomial
coefficients, b{p}

j , as a function of electron energy (radius).
3-D slice images recovered using the pBaseX method are shown alongside the 2-D

projection images in the right-hand column of Figure 15.3. The structure that can be
discerned in the hν = 10.8 eV 2-D image is now much clearer in the processed 3-D
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slice. The two prominent outer rings correspond to vibrational structure in the HOMO
ionization as does other, less intense, inner structure seen on closer examination. All
have a qualitatively similar forward-backward asymmetry which the full analysis shows
to have a magnitude of 10–20%.

In the second example in Figure 15.3 a higher photon energy was used (11.5 eV)
which is now sufficient to ionize both the HOMO and the next, HOMO-1, orbitals in
methyl oxirane. Because the more tightly bound HOMO-1 orbital has a higher ionization
energy, these electrons are emitted with a lower kinetic energy than the HOMO electrons,
and so in these images the HOMO-1 electrons fall inside the rings just attributed to
the HOMO band. Again, the detail is more apparent in the 3-D slice generated by
mathematical inversion of the 2-D projection image, but in either case it is very clear
that the forward–backward asymmetry along the photon beam direction is in the opposite
sense for the HOMO-1 electrons.

15.4. EXPERIMENTAL RESULTS AND DISCUSSION

In this section some recent, representative results are presented with the intention that
they introduce and highlight some of the capabilities of the PECD technique.

15.4.1. Carbon 1s core electron PECD

15.4.1.1. Fenchone. Fenchone, C10H16O, is a camphor-like molecule with a rigid
bicyclic skeletal framework. The structure of the 1R, 4S -fenchone enantiomer and its C
1s X-ray photoelectron spectra (XPS) are shown in Figure 15.4. These particular data
were recorded using a photon energy of 299.5 eV and a detection angle of 54.7◦ to the
photon beam direction [16]. A moderately heated (50◦C–80◦C) sample inlet and gas cell
were used to generate sufficient vapor pressure from the solid fenchone sample.

Two peaks are evident in the XPS, the less intense one being readily assigned
to ionization of the carbonyl C 1s orbital as it experiences a shift in binding energy
attributable to the attached O atom. The main, unshifted peak consists of superimposed
contributions from all other C atom sites in the molecule. Included in the figure are
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individual spectra, S {±1}, that have been recorded with the two different helicities of the
circularly polarized X-ray beam. While the main peak intensities appear to be identical, a
difference arises for the carbonyl C atom peak, so that the dichroism for photoionization
at this site is clearly visible in the expanded view (Figure 15.4). With due allowance in
the data treatment to ensure that the observations made with either helicity are strictly
comparable in terms of integrated photon flux etc. [16], and following removal of any
achiral background signal, the asymmetry, �(54.7◦), defined in Eq. (15.9) is simply
obtained from the normalized subtraction S {+1} − S {−1}. Values for this asymmetry are
plotted point by point across the two XPS peaks in Figure 15.4. For the example given in
this figure, it is seen that this asymmetry averages around 11% across the carbonyl peak.
Then from Eq. (15.11), after factoring out the cos(54.7◦) term, one estimates 2b{+1}

1 to
be almost 0.2. This also, of course, indicates an expected magnitude approaching 20%
for the forward–backward asymmetry factor, GAD [Eq. 15.7], pertaining to the carbonyl
C 1s electron angular distribution.

The conventional view of core XPS is that it provides essentially an elemental probe,
the photoemission from each atomic site having a characteristic atomic binding energy
that responds only weakly to the molecular environment via shifts induced by changes
in the valence electron distribution of the molecule. In the present case, the carbonyl
C 1s orbital can be considered to be spherical (thus achiral) and highly localized at a
site which, although adjacent, is not itself one of the asymmetric carbons. From such
a standpoint, the huge PECD displayed in the photoemission from the carbonyl site is
all the more surprising, because the initial orbital would seem to be essentially unaware
of the handedness of the molecular framework. In fact, this observation provides very
clear evidence for the importance of final-state interactions—a scattering of the outgoing
photoelectron off the chiral molecular framework—as the origin of the asymmetry in
the asymptotic photoelectron angular distribution. This does not imply that the nature of
the initial orbital is necessarily unimportant or makes no contribution (as will be clearly
demonstrated in the valence region), but does indicate that PECD is likely to be sensitive
to relatively long-range, delocalized interactions within the molecular system.

Therefore, successful theoretical modeling of PECD has to incorporate the final,
continuum-state electron-scattering effects and thus go beyond nowadays routine bound-
state electronic structure treatments. Although relevant computational approaches are not
discussed further in this chapter, details may be found in, for example, references 5, 23,
and 47.

Determinations of the PECD asymmetry, �, such as shown in Figure 15.4, were
made for a range of photon energies just above the C K-edge and were repeated with
the (1S , 4R)-fenchone enantiomer. The extracted values for the carbonyl C 1s−1b{+1}

1
parameters are averaged over the relevant XPS band profile at each energy and then
plotted in Figure 15.5. One sees a variation of the b{+1}

1 parameter with photon energy
(and correspondingly with electron kinetic energy) and also that the resulting PECD
spectrum for the (1R)- enantiomer is reliably mirrored by that of the (1S )- enantiomer,
as anticipated in the electric dipole treatment. This is in fact useful for corroborating the
true molecular nature of the observed asymmetry, as any residual instrumental asymmetry
or artefacts would not switch with sample exchange.

Qualitatively, one observes that from ∼10 eV above the ionization threshold, the
magnitude of the chiral asymmetry diminishes with further increase in the ejected elec-
tron’s kinetic energy. Similar trends have been observed in a number of other studies.
Such behavior can be roughly rationalized since it would be expected that slower emitted
electrons will be more strongly scattered by the chiral molecular potential, whereas faster
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electrons would be less strongly deviated as they pass out of the molecular vicinity. Nev-
ertheless, some caution needs to be exercised in applying this as a statement of principle,
because often the high-energy attenuation of the PECD is far from monotonic.

Figure 15.5 includes computed b{+1}
1 parameter curves for either enantiomer, calcu-

lated using a continuum multiple-scattering (CMS-Xα) method [16]. Below 10 eV kinetic
energy the theoretical treatment works well, with the calculations reproducing the sign,
and indeed the magnitude, of the experimental data. This degree of theory–experiment
concurrence would certainly be sufficient to allow a confident assignment of the absolute
configuration of an unknown enantiomeric sample. The greater discrepancy that appears
at higher energy, centered around 12.5 eV, can be tentatively ascribed to a continuum
resonance state, by analogy with a similar feature observed in the closely related camphor
molecule [47].

The above discussion has focused on the carbonyl C 1s ionization as the most favor-
able case. The strong core-electron binding energy shift at the carbonyl site means that
it is fully separated from all other C 1s−1 features in the XPS and thus allows the PECD
to be studied for a single, well-characterized, highly localized initial orbital. In contrast,
only the net asymmetry of the other C 1s−1 ionizations can be recorded experimentally
because all photoemission from these atomic sites is superimposed under the principal
XPS peak. At the 299.5 eV photon energy shown in Figure 15.4 the composite 1s−1

asymmetry from the tetrahedral C atomic sites is essentially zero, although at other pho-
ton energies that were included in this study of fenchone [16] more varied behavior
was observed. However, for now the large number of variables involved precludes fully
quantitative modeling of this composite peak PECD.

15.4.1.2. Carvone. The enantiomers of the terpene molecule carvone provide a
classic example of a pair of optical isomers having very different perceived odors. Car-
vone displays a simple carbon region XPS with a minor carbonyl C 1s photoemission
peak shifted some 2 eV to higher binding energy from the principal photoemission line,
which is again a superposition of the other saturated C atomic sites. Like the fenchone
molecule considered above, this therefore provides an opportunity for the study of PECD
from a single localized and well-characterized initial orbital. Unlike fenchone, carvone
is a more flexible molecule that can adopt several distinct conformations.
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It was already apparent in some of the earliest theoretical PECD calculations for the
amino acid alanine that a very strong dependence on molecular conformation was pre-
dicted [25], a view reinforced by subsequent theoretical PECD calculations [19, 48, 49].
Indeed, the seemingly enhanced sensitivity to conformation of the PECD phenomenon
has been a recurring feature of several more recent combined theoretical/experimental
PECD investigations (e.g., references 2, 7, 8, 18, and 19). Carvone presents another
opportunity to examine this facet.

A schematic for the (S )-carvone enantiomer and its conformer structures are shown
in Figure 15.6. The six identified conformers are associated with positioning of the iso-
propenyl tail group, and they subdivide into those with either axial or equatorial structures.
Within each subgroup, three rotational conformations of the tail group are possible. Gen-
erally the three equatorial conformers are expected to be the more stable due to the
reduced steric hindrance between tail group and the ring. This expectation is confirmed
by electronic structure calculations [9], the Eq1 structure being found the most stable.
Suggested thermal populations at the experimental temperature (∼350 K) lie in the range
30% to 50% for Eq1 and approximately 20% to 25% for Eq2 or Eq3; the expected axial
conformer populations total 5% to 25%. The uncertainty in these Boltzmann populations
stems from the variations in results obtained with different computational methods, but
in all cases it is clear that axial conformers are a minority population.

An experimental PECD spectrum of (S )-carvone was obtained following the same
procedures as outlined for fenchone [9, 10]. Asymmetries were estimated from the dif-
ference spectra of the carbonyl C 1s XPS band recorded with alternating CPL over a
range of photon energies in the 300 eV region. Values for the b{+1}

1 parameters were then
extracted as intensity-weighted averages formed over the band profile at each photon
energy, and these are plotted as a function of energy in Figure 15.7.

Figure 15.8 shows individual carbonyl C 1s−1 PECD curves calculated using the
CMS-Xα method for (S )-carvone conformers [9, 48]. There are, as anticipated, significant
variations between the different conformers. A broad distinction can be drawn between
the equatorial and axial conformer results; in the region centered around 10 eV electron

(S)−carvone

O
H

Eq1 Eq2 Eq3

Ax2 Ax3
Ax1

Figure 15.6. The conformers of (S)-carvone.

The oxygen atom is shaded dark gray, the

asymmetric carbon is shown in mid-gray, and

the unsaturated carbon in the isopropenyl tail

is reproduced in light gray for greater clarity.

(Redrawn from reference 9.)



422 COMPREHENSIVE CHIROPTICAL SPECTROSCOPY, VOLUME 1

295 300 305 310 315 320 325 330

–5

0

5

10

15

5 10 15 20 25 30 35

–0.04

–0.02

0.00

0.02

0.04

0.06

0.08
(S)-carvone

O
H

G
A

D
 %

Photon Energy (eV)

CMS-Xα Calculations
<MP2 pop.>
<B3LYP pop.>

Electron Energy (eV)

b 1
{+

1}

Figure 15.7. PECD for ionization of the

carbonyl C = O C 1s electron from (S)-carvone.

The data are presented as the chiral b{+1}
1

parameters (left axis). Equivalent angular

distribution asymmetry factors may be read off

the right axis. The experimental data points are

compared with theoretical CMS-Xα results in

which the conformer averages follow thermal

populations obtained from either MP2/6-31G∗

or B3LYP/6-31G∗ calculations. (Redrawn from

reference 9.)

0 10 20 30 40

–0.1

0.0

0.1

–0.1

0.0

0.1
Eq1
Eq2
Eq3

Ax1
Ax2
Ax3

b 1
{+

1}
b 1

{+
1}

Electron Kinetic Energy (eV)

Figure 15.8. CMS-Xα calculations showing

carbonyl C 1s PECD of individual conformers of

(S)-carvone. (Redrawn from reference 9.)

kinetic energy the former are predicted to have positive b{+1}
1 parameters, the latter neg-

ative. Even within the equatorial conformer subgroup (and also within the axial group)
there are clear differences expected between conformers; in particular, around 10 eV the
Eq3 conformer curve is quite different from either the Eq1 or Eq2. A simple visual com-
parison between the experimental PECD (Figure 15.7) and predicted conformer PECD
(Figure 15.8) reveals the close similarity between experiment and Eq1, Eq2 conformer
calculations in the 10 eV region where the asymmetry peaks. These are, of course, the
conformers expected to dominate a thermal sample. Conversely, the different sign of the
experiment and the axial conformer predictions tend to rule out a dominant presence
for these.

Somewhat more quantitatively, an appropriate 350 K thermal average of the dif-
ferent conformer curves can be formed using calculated energetics of the conformers
to estimate thermal populations. Two such thermally averaged curves are included in
Figure 15.7 for direct comparison with experiment, based upon alternative MP2/6-31G∗∗
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and B3LYP/6-31G∗∗ calculations for the relative stabilities [9]. Neither produces perfect
agreement, but both corroborate the broad, semiquantitative conclusions of the previous
paragraph.

Reflecting upon the differences seen, even amongst the equatorial conformers, it
may seem remarkable that an initial electron, localized on the carbonyl group, should be
so sensitive to rotational orientation of a substituent group on the opposite side of the
molecular ring. Perhaps, however, the structural sensitivity of PECD is less surprising if,
recalling above discussions of the importance of final state scattering in these localized
carbonyl C 1s1 photoemissions, one considers that the processes studied are essentially
akin to low-energy diffraction of electrons generated in situ from a point source. At
another level, it has been argued that this enhanced structural sensitivity occurs because
of the unique way that even very small shifts in the phase of the outgoing electron
waves can make a significant contribution to the chiral term in the photoelectron angular
distribution, Eq. (15.2) [1, 48]. Attenuation of scattering effects induced by small or
remote structural changes is thus countered in the detailed photoionization dynamics, in
a manner that is only seen for the chiral term.

15.4.2. Valence Shell PECD

15.4.2.1. Glycidol. The PECD of glycidol has been studied in both the core
(O 1s−1, C 1s−1) [8] and valence [7] ionization regions; here we focus on the lat-
ter. Measurements were made using the velocity-map imaging method described above.
Figure 15.9 shows the PECD of the R- and S -enantiomers, recorded at a photon energy
of 21.2 eV. The equal magnitude, but opposite sign, of the two enantiomers’ PECD is
an obvious feature, and again it helps underscore the true molecular origin of the chiral
asymmetry.

Also included in the figure, on the same energy scale but with arbitrary intensity
scaling, are two corresponding photoelectron spectra. The first is the VMI spectrum,
obtained from the radial intensity distribution of the same images from which the PECD
was extracted. The normal VMI PES and PECD spectra are thus derived from the same
data with, consequently, identical experimental conditions including energy resolution.
The second PES is a He(I) spectrum (also hν = 21.2 eV), recorded in a separate instru-
ment by scanning a dispersive electrostatic analyzer at a resolution estimated ≤50 meV
[7]. This affords somewhat better energy resolution than VMI can achieve when, as here,
it is asked to disperse a full ∼12 eV (hν−I.P.) energy range across the detector image.

The He(I) PES has several distinct bands, which have been assigned to the different
valence orbital ionizations of glycidol [7]. In comparison, the more modest VMI resolu-
tion provides a spectrum that, though structured, lacks some of the distinctive peaks to be
seen in the He(I) spectrum. It is then significant that the spectrum of the PECD displays
more prominent structure than does the simultaneously recorded VMI PES. Using the
He(I) spectrum as a guide to the expected positions of the individual orbital structure
that must underlie the measured VMI curves, there is a clear correlation between some
of the additional structure visible in the PECD and the expected orbital energies. The
VMI PECD measurement yields, in effect, better resolution of the orbital structure than
the accompanying VMI PES despite the identical energy dispersion.

A reason for this is found by considering the different characteristics of the data.
While adjacent bands in the photoelectron spectra will typically have commensurate
intensity, adjacent orbitals will have PECD that, at any given photon energy, may differ
not only in absolute magnitude but also in sign. Moreover, away from any resonant
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behavior the photoelectron relative intensities will be only a very slowly varying function,
of photon energy, while the PECD has regularly been found to vary much more rapidly.

Deconvolution of the PECD curves appearing in Figure 15.9 to extract the b{+1}
1

parameter values associated with individual valence orbitals requires minimal effort. This
can be repeated for VMI measurements made at different photon energies. An example
of such b{+1}

1 versus hν data for the HOMO orbital is shown in Figure 15.10. The figure
is drawn as for the R-enantiomer of glycidol. In fact, some of the data were obtained
from measurements made with the S -enantiomer. These have been negated for plotting
to eliminate the enantiomer mirroring as seen, for example, in Figure 15.9.

Equilibrium structures of gaseous glycidol have been investigated theoretically and
experimentally [8, 50, 51]. Each of the two torsional angles, H-OH-C-C and OH-C-C-OR

(see Figure 15.11; here H and R subscripts are used to distinguish the hydroxyl and
ring O atoms, respectively), can adopt gauche±, or anti, positions, generating 3 × 3 = 9
possible conformers. The four lowest-energy conformers are drawn in Figure 15.11. Two
of these, C1(g+g−) and C2(g−g+), are stabilized by intramolecular hydrogen bonding
and are predicted to account for nearly all the population of a thermal sample of glycidol
having an approximate 2:1 ratio of C1 to C2. Experimental data are consistent with these
predictions [50, 51].
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(Redrawn from reference [8].)

Figure 15.10 includes CMS-Xα calculations of the glycidol HOMO orbital PECD
for each of these conformer structures C1–C4, which can thus be separately compared
against experiment and one another. Again the differences predicted for the different
conformers are quite striking. In particular, neither the C3 nor C4 PECD displays the
same sign as the experimental observations in the key region around 10 eV electron
kinetic energy. The comparison of the C3 and C4 calculated PECD with the experimental
data thus appears to be sufficient to rule out a dominant contribution from either in the
experimental sample; this, of course, is just as predicted from the calculated stabilities
[7, 8] and by previous experimental observation [50, 51]. Extending such comparisons to
the PECD observed for other orbitals with the relevant calculations for these, and other,
conformer structures provides, in totality, convincing corroboration for the C1, and to a
lesser extent C2, conformations as the dominant experimental structures [7, 8]. Further



426 COMPREHENSIVE CHIROPTICAL SPECTROSCOPY, VOLUME 1

refinements to the model, allowing for the intramolecular H bond in the ground-state
conformation, lead to further improved agreement with experiment.

The differences seen between the predicted conformers’ PECD merit further com-
ment. Not only do the C3(g+a) and C4(aa) display pronounced differences compared
to experiment as seen in Figure 15.11, they also are quite distinct from one another.
However, from Figure 15.11 it may be noticed that these structures differ, principally, in
the positioning of the hydroxyl H atom. While the HOMO orbital of glycidol, which is
the subject of the data in Figure 15.11, has some O 2p character, it is relatively delocal-
ized without any significant density at the hydroxyl H atom. Nevertheless, this H atom
evidently exerts a profound influence on the chiral scattering dynamics of the emitted
photoelectron. So while valence PECD data, such as that shown in Figure 15.9, clearly
demonstrate an important effect stemming from initial state (orbital) influences, results
here continue to show an important role for final state (scattering) in controlling the
phenomenon.

15.4.2.2. endo-Borneol. Presentation of selected results obtained in a recent
investigation [2] of the bicyclic terpene molecule endo-borneol allows further develop-
ment of some of the themes introduced in preceding sections. Endo-borneol (C10H18O)
is a camphor derivative, with the ketone, C O, replaced by an alcohol, CH—OH. In
consequence there are thus three low energy conformers of endo-borneol, corresponding
to the minima expected in the C—OH torsional potential. One should by now expect
that quite different PECD behavior would be predicted for the photoionization of these
conformers and this indeed proves to be the case.

In consideration of the HOMO orbital PECD, recorded over a range from 10 eV
to 24 eV, an equally weighted average of the three conformer predictions gave good
agreement with the experimental data, significantly better than any one conformer PECD
curve alone [2]. Electronic structure calculations that were performed at various levels
of treatment indicated little effective difference in stability of the three endo-borneol
conformers, such that an approximately 1:1:1 population ratio is a reasonable expectation
for the vapor of this compound, supporting the deduction made from the experimental
HOMO PECD data.

The full valence photoelectron spectrum of endo-borneol may be expected to be very
heavily congested, due to the high density of electronic states. From calculations, one
estimates that ∼27 orbitals per conformer would have an ionization energy falling in the
region below 22 eV. Allowing for shifts between the conformers’ ionization energies, a
high degree of intrinsically overlapping orbital band structure appears inevitable, such
that experimental resolution of the majority of the individual orbital contributions is not
feasible. Figure 15.12 shows the VMI results obtained for (S )-endo-borneol at a photon
energy of 23.6 eV [2]. The VMI-PES has some structure, but it is clear that assignment
to individual orbital bands cannot be contemplated.

Appearing on the same energy scale in Figure 15.12, are the PECD measurements.
While the modulation of these across the energy range is a little greater than that of the
PES, the individual data points must clearly still represent a superposition of contributions
from several underlying orbitals. A full theoretical simulation has been attempted, based
upon first simulating the PES of each conformer from calculated ionization potentials and
photoionization cross sections and then folding the resulting stick spectrum with realistic
instrumental and rovibrational width functions [2]. Calculated b{+1}

1 parameters for each
orbital are then blended with a relative weighting dictated by the intensity distribution of
the simulated PES to generate an overall PECD curve from this purely theoretical model.
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These conformer specific b{+1}
1 curves are included in Figure 15.12, as is the 1:1:1

weighted average of these, as suggested by the probable conformer populations under the
relevant experimental conditions. Considering the range of parameters required to produce
the simulations, the agreement with experiment that these demonstrate, especially for the
1:1:1 conformer average, is very good. In particular, the latter accurately captures the
absolute magnitude, and sign, of the experimental PECD over much of the electron energy
range. These findings and conclusions were replicated in further individual simulations
that spanned a range of different photon energies [2]. Photon-energy-dependent trends
evident in the experiment appeared to be reliably reproduced in the theoretical model.

The overall quality of the theoretical model in reproducing the experimental PECD
in a system of this complexity, without the introduction of empirical parameterization,
is quite significant. The agreement in sign and magnitude, demonstrated over a range
of electron and photon energies, provides a clear, unambiguous basis for assignment of
absolute configuration from the calculation.

15.4.2.3. Camphor Dimers. Although inherently a gas-phase technique, the
instrumentation developed for PECD measurements can readily be extended by use
in conjunction with supersonic molecular beam sources. This greatly widens the
opportunities for study—for example, by creating (a) partially solvated molecules and
(b) van der Waals or hydrogen-bonded cluster species [52]. The last example selected
for inclusion in this chapter highlights these capabilities and summarizes recent results
obtained for homochiral dimers of camphor [20], which can ultimately be compared
with benchmark results previously established for PECD in the monomer [11–13, 47].

In this context, a further capability of the technique can be introduced. Formation of
the photoelectron is, of course, accompanied by creation of the corresponding residual
ion (or possibly by fragmentation products thereof). In the VMI method, these photoions
can be extracted by means of the same electrostatic source field applied to the electrons;
the ions are accelerated in the opposite direction and pass through a time-of-flight mass
analyzer before being detected [44, 53], so ion mass spectra and PES/PECD spectra of
the sample can be recorded simultaneously. But the technique is more potent than just
this. Using timing detectors, individual ion–electron pairs can be detected in delayed
coincidence. The temporal correlation thus established, with allowance for a longer flight
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time of the ion from the source to the ion detector, identifies an ion and electron orig-
inating from the same molecular photoionization event. Consequently it is possible, for
example, to filter out (usually by post-processing software) all but those electrons formed
in coincidence with a selected ion mass, thus recording the PES/PECD spectra from a
selected molecular mass.

Coincidence detection schemes have an obvious advantage for the present context,
in distinguishing the PECD signals from dimer and monomer camphor species. A general
difficulty arises when fragmentation of the monomer and/or dimer ion occurs on a short
timescale before mass analysis of the ion. If this cannot be positively ruled out, there is
thus some ambiguity whether the recorded mass is that of the parent neutral species that
was ionized, or merely a fragment thereof. The latter could potentially derive from either
monomer or a larger n-mer species. In this camphor investigation, however, the cool-
ing provided in the supersonic beam source additionally allowed vibrationally resolved
photoionization spectra to be recorded [20], even for such a large system. This, together
with careful analysis of the threshold yield behavior allowed clear, unambiguous selec-
tion of distinct monomer and dimer photoionization behavior over a range of 2 eV from
threshold to be established.

The b{+1}
1 parameters derived for low-energy HOMO band photoionization of the

homochiral R –R camphor dimer species are compared with those of the (R)-camphor
monomer in Figure 15.13. Although the data are at present limited, there are clear dif-
ferences in the PECD of the monomer and dimer. No such differences were observed
in the more traditional angular distribution term, the β parameter, measured in the same
experiments [20]. The chiral measurement does, therefore, provide the prospect for a
greater sensitivity to clustering reactions in this and, by extension, other systems.

15.5. PROSPECTS

The requirement for a source of circularly polarized ionizing radiation has, to date,
limited experimental investigations to a small number of groups with access to appropriate
synchrotron radiation sources. The focus of investigations in such circumstances has been
to establish the underlying quantum physics rather than development of applications,
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although potential applications in breath odor analysis initially stimulated this author’s
interest in the topic. The principles and understanding of the phenomenon are now firmly
established, allowing one to look to applications founded on a secure theoretical basis.
The use of laboratory-based (laser), circularly polarized photoionization sources would
be a major step in making the technique more widely available, and this can now be
foreseen.

The principles of the phenomenon, and theoretical modeling built on these, are suffi-
ciently well established to allow confident treatment of new systems, with the possibility
to identify structural conformation and absolute configuration from a theory–experiment
comparison. These comparisons are not clouded by any uncertainty in the induced chiral-
ity and response of a solvent shell. The range of photon energies that may be examined
is enormous, and some elemental sensitivity can be achieved by measurement near an
atomic edge. Alternatively, a 2D-mapping of PECD response versus photon energy ver-
sus electron energy (target orbital) is capable of providing a very richly detailed response
map, which could prove to have some “finger print” capabilities even before quantitative
modeling is performed.

Simultaneous recording of a sample’s mass spectrum could well be convenient for
proposed analytical applications, perhaps in conjunction with resonance-enhanced laser
multiphoton ionization schemes that offer additional selectivity in the photoionization
analysis of mixtures. More explicitly, electron–ion coincidence detection (or covariance
mapping [54, 55]) could be adopted to allow PECD information to be associated to
specific ion mass-selected channels.

A prospect that is already now being actively pursued is the use of molecular beam
sources to generate and sample cluster and micro-solvated species. The unique capabilities
of PECD suggest a role in probing chiral molecular recognition phenomena, a topic of
significant current interest.

Finally, the extraordinary magnitude of the chiral asymmetry exhibited in the phe-
nomenon suggests that it perhaps ought to be considered in astrophysical models specu-
lating upon terrestrial homochirality [56].
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MAGNETOCHIRAL DICHROISM
AND BIREFRINGENCE

G. L. J. A. Rikken

16.1. INTRODUCTION

Natural circular birefringence (NCB) or natural optical activity, which occurs exclusively
in chiral media, and magnetic circular birefringence (MCB), better known as the Faraday
effect, which is induced by a longitudinal magnetic field, show a strong phenomenological
resemblance. In both cases, the direction of polarization of linearly polarized light is
rotated during propagation through the medium. Interpreting magnetic optical activity as
a sign of magnetically induced chirality, Pasteur was the first to search—in vain—for
an enantioselective effect of magnetic fields [1]. These searches were partly motivated
by the hope of finding an explanation for the homochirality of life [2]. Although several
positive results were reported, all were revoked or could not be confirmed [3, 4].

The symmetry requirements for any process to yield a chiral result were formulated
by Barron, who pointed out that no enantioselectivity of magnetic fields per se is allowed
[5, 6]. In 1962 the first implicit prediction appeared of a cross effect between natural
and magnetic optical activity, which discriminates between the two enantiomers of chiral
molecules [7], but the author apparently did not recognize the importance of his result.
Later on, this was followed independently by a prediction of magnetospatial dispersion
in noncentrosymmetric crystalline materials [8]. This cross effect has been called magne-
tochiral anisotropy and has since then been predicted independently several more times
[9–12]. Its existence can be most easily appreciated by expanding the dielectric tensor
of a chiral medium subject to a magnetic field to first order in the wavevector k and
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© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

433



434 COMPREHENSIVE CHIROPTICAL SPECTROSCOPY, VOLUME 1

magnetic field B , retaining all symmetry-allowed terms [8]:

εij (ω, k , B) = εij (ω) + αijl (ω)kl + βijl (ω)Bl + γijlm(ω)kl Bm . (16.1)

For high-symmetry media like gases, liquids, cubic crystals, or uniaxial crystals with
their optical axis parallel to B , and the propagation direction of the light parallel to B ,
the optical eigenmodes are right- and left-handed circularly polarized waves, denoted by
+ and −. For such media, Eq. (16.1) can be simplified to [8, 9]

ε±(ω, k , B) = ε(ω) ± αD/L(ω)k ± β(ω)B + γ D/L(ω)k · B , (16.2)

where xD (ω) = −xL(ω) refers to right (D)- and left (L)-handed media, α describes nat-
ural optical activity and β describes magnetic optical activity. The material parameters
ε, α, β, and γ are all generally complex-valued, and we will denote their real and imag-
inary parts by x ′ and x ′′, respectively. From the above equation, the essential features
of MChA become immediately clear. They are (i) the dependence on the relative ori-
entation of k and B , (ii) the dependence on the handedness of the chiral medium (i.e.,
enantioselectivity), and (iii) the independence of the polarization state of the light. A
simple, intuitive physical picture behind MChA is that any spinning particle, which also
moves parallel to its rotation axis, is a chiral object [5]. An electron in a magnetic field
is spinning due to the induction of a net spin or orbital angular momentum by the field.
When it moves parallel to the magnetic field—for example, because it has absorbed
linear momentum from a photon or an external static electric field—it is chiral, and its
interaction with the chiral geometry of the molecule depends on the relative handedness
of the electronic motion and the molecular framework.

Baranova and co-workers were the first to present a simple microscopic model [10]
that can give an order-of-magnitude estimate for MChA in optical absorption. It is an
extension of the classical Becquerel model for NCB [13] and it interprets MChA as a
result of the Larmor precession in NCB. Baranova and co-workers find (CGS units)

γ (ω) = e

2mc

∂α

∂ω
, (16.3)

where e and m are the electron charge and mass. When studying NCD or MCD, it is
convenient to normalize the dichroism by the normal absorption in dimensionless dissym-
metry factors g ≡ 2(A+ − A−)/(A+ + A−), where A± is the optical extinction coefficient
for right/left-circularly polarized light. If the absorption strength is not too large (i.e.,
ε′± � ε′′±), the dissymmetry factors for NCD and MCD can be simply expressed in the
imaginary parts of the terms of Eq. (16.2):

gNCD = 2α′′k
ε′′ , (16.4)

gMCD = 2β ′′B
ε′′ . (16.5)

Here we define the magnetochiral anisotropy factor similarly:

gMChA ≡ 2
A(B ↑↑ k) − A(B ↑↓ k)

A(B ↑↑ k) + A(B ↑↓ k)
= 2γ ′′kB

ε′′ . (16.6)
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The gNCD is usually quite constant across one given optical transition. Then we can
write α′′(ω) ≡ C · ε′′(ω), where C is a constant. Using the classical Becquerel result
β(ω) = e/2mc · ∂ε/∂ω, our definition for gMChA leads to

gMChA = eCkB

mcε′′
∂ε′′

∂ω
= gNCD gMCD/2. (16.7)

This simple model therefore gives as an estimate for the relative strength of MChA in
absorption the product of the relative strengths of NCD and MCD, a result that seems
in line with physical intuition for a cross effect. A more sophisticated model is given
in Chapter 1 by G. H. Wagnière. A detailed molecular theory for MChA in molecular
liquids and gases has been formulated for the first time by Barron and Vbrancich [14]. It
requires complete knowledge of all molecular transition moments involved and therefore
cannot be easily used to obtain quantitative predictions. More recently, the first ab initio
calculations of MChA in simple molecules have appeared [15, 16].

Before continuing, it should be noted that the words “birefringence” and “dichroism”
in the names of these effects is confusing, as these terms are usually reserved to dif-
ferences for different optical polarizations in refractive index and absorption coefficient,
respectively. More adequate names would be “magnetochiral nonreciprocal refraction”
and “magnetochiral nonreciprocal absorption.” However, in the following we will adopt
the historically accepted terminology.

16.2. MChD IN LUMINESCENCE

Although there always seemed to be theoretical unanimity on the existence of magne-
tochiral anisotropy, it had not been observed experimentally until a few years ago. One
of the reasons is certainly that MChA is always accompanied by MCD and NCD, which
complicates its unequivocal experimental observation. It is therefore essential to try to
devise experiments that are intrinsically insensitive to the presence of these two unwanted
effects. We will see below that that is not always possible. For a claim of an observation
of MChA to be credible, it is therefore crucial that all fundamental characteristics of
the effect are experimentally confirmed. Furthermore, as the above arguments showed,
MChA is a product of magnetic and chiral effects on the optical properties of the sys-
tems. As each of them individually is in general not very strong, it will be intuitively
clear that the MChA effect will usually be very weak and thus difficult to observe. The
best chances for its observation are therefore provided by systems in which both the
magnetic field and the chirality have simultaneously a relatively large influence on the
optical properties.

The most strongly chiral optical transitions reported in literature are the 5D0 → 7F1,2

luminescent transitions in tris(3-trifluoroacetyl-(±)-camphorato) europium(III) complexes
(Eu((±)tfc)3). Although some discussion exists on the exact value of their anisotropy
factor, it is close to unity. These transitions also have been shown to have a considerable
MCD. According to the argument above, such complexes are therefore likely candidates
to show a significant magnetochiral effect. These transitions are most conveniently stud-
ied in luminescence, because the 7F1,2 level is hardly populated at room temperature,
and the absorption transition 7F1,2 → 5D0 has therefore very low extinction, whereas its
luminescence can be efficiently excited by exciting the ligands, which have a strong and
broad UV absorption and can transfer this excitation to the Eu ion. An additional advan-
tage of these transitions is that no self-absorption of the luminescence occurs for realistic
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sample sizes. Such a self-absorption would have severely complicated the quantitative
analysis because it would depend on handedness, polarization, and magnetic field.

The experiment performed by us to observe MChA measures the difference in the
luminescence intensity of the 5D0 → 7F1,2 transition in the directions parallel and antipar-
allel to B [17, 18] (Figure 16.1) of a solution of one handedness of the complex in
deuterated dimethylsulfoxide, in which the largest NCD has been observed. The lumi-
nescence is captured by optical fibers and guided to monochromators, after which it is
detected by photodiodes. Because such fibers have a finite numerical aperture (in our
case 0.45), they also capture light that is not exactly parallel or antiparallel to the field.
This will reduce somewhat the observed value of the MChA. In order to increase sensi-
tivity, the magnetic field is alternated and the intensity difference IB̂↑↑̂k − IB̂↑↓̂k as given
by the difference between the two photodiode signals is phase-sensitively detected by
a lock-in amplifier. Factors related to excitation intensity, complex concentration, and
sample geometry are eliminated by dividing the lock-in output by the total, static lumi-
nescence signal, as given by the sum of the two photodiode signals. To avoid problems
with MCD, the luminescence excitation was done along the direction perpendicular to the
magnetic field, with unpolarized light from a UV lamp. The magnetochiral luminescence
anisotropy factor gMChA can then be expressed as

gMChA =
∂

∂B (IB̂↑↑̂k − IB̂↑↓̂k )

IB̂↑↑̂k + IB̂↑↓̂k

B . (16.8)

Figure 16.2 shows the experimental results for gMChA for the two enantiomers of the
complex, showing significant MChA at the two transitions 5D0 → 7F1 and 5D0 → 7F2.
An essential characteristic of MChA is that gMChA should be of opposite sign for the
two enantiomers, as observed. The results shown in the inset confirm the expected lin-
ear magnetic field dependence of gMChA. Figure 16.2 therefore constitutes the complete
proof for the existence of MChA in luminescence and all of its characteristics. The
Baranova model Eq. (16.7), using the reported values for MCD and NCD for these

+ –

L

F

BAC

MM

LA

S

Figure 16.1. Schematic setup for detecting

magnetochiral luminescence anisotropy. Sample

(S) is excited around 350 nm with filtered (F),

unpolarized light from a mercury-discharge

lamp (L). Luminescence is collected in the

directions parallel and antiparallel to the

magnetic field by optical fibers (numerical

aperture 0.47), specific emission wavelengths

are selected by a grating monochromator (M,

spectral resolution 2 nm), and detected by

silicon photodiodes. The intensity difference

between the two directions is phase-sensitively

detected by a lock-in amplifier (LA) at the

frequency of 0.9 Hz at which the magnetic field

is alternated. (Redrawn from reference 17.)



MAGNETOCHIRAL DICHROISM AND BIREFRINGENCE 437

λ (nm)

g 
(1

0–3
)

g 
(1

0–3
)

1,0

0,5

(−)tfc

(+)tfc

B = 1 T

B ( T)

−0,5

−0,3−1,0

0,0

0,0

0,0 0,5

590 600 610 620

Figure 16.2. Magnetochiral luminescence anisotropy of

Eu((±)tfc)3 complexes, dissolved in deuterated dimethyl

sulfoxide (5% wt/wt), as a function of luminescence

wavelength, with excitation around 350 nm. The

(alternating) magnetic field strength was 0.9 T. Filled

symbols represent the Eu((+)tfc)3 complex; open symbols

represent its enantiomer, the Eu((−)tfc)3 complex. Dashed

lines are only meant to guide the eye. The inset shows the

magnetochiral anisotropy of the Eu((−)tfc)3 complex as a

function of magnetic field strength, excitation around

350 nm, luminescence detected at 615.8 nm. Solid line is a

linear fit. (Redrawn from reference 17.)

transitions, predicts the anisotropy factor to be gMChA/B ≈ 5.10−3T −1 for the 5D0 → 7F1

transition and gMChA/B ≈ 4.10−4T −1 for the 5D0 → 7F2 transition, in reasonable agree-
ment with our observations. This simple model therefore seems to be useful to find order
of magnitude estimates of MChA.

The results above represent the first unequivocal evidence for the existence of MChA
in luminescence. More recently, MChA has also been observed in refraction [19, 20] and
in absorption [21, 22], as discussed below.

16.3. MChD IN OPTICAL ABSORPTION

The absorption of unpolarized light by a chiral medium with a dielectric constant as
given by Eq. (16.2) is most readily calculated by considering linearly polarized light,
which can be decomposed into two circularly polarized waves of the same amplitude
and opposite handedness. If ε′± � ε′′±, |αk |, |βB |, |γ kB | and neglecting reflection, the
intensity transmission coefficient T for linearly polarized light incident on such a medium
with thickness L is found to be

T (ω, k , B) = exp

{
−kL

(
2n ′′ + γ ′′k · B

n ′

)}
cosh

{
kL

n ′ (α
′′k + β ′′B)

}
(16.9)

where n ′ + in ′′ ≡ √
ε. This result holds for an arbitrary linear polarization, and therefore

also for unpolarized light, and takes into account the change of the polarization state of
the light on its path through the sample. The weak character of MChD suggests that the
best method for its detection would be using an alternating magnetic field and phase-
sensitive detection of the modulation of the transmitted intensity. When alternating the
magnetic field at a frequency � and using Eq. (16.9), one finds the following for the
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ratio between the modulated transmitted intensity I� and the static transmitted intensity
I0, for I� 
 I0:

I�
I0

= − kBL√
2n ′

(
γ ′′k − β ′′ tanh

α′′k2L

n ′

)
. (16.10)

The first term on the right-hand side represents the pure magnetochiral anisotropy in
absorption. The second term stems from a cascading of natural and magnetic circular
dichroism. Cascading occurs because NCD creates an excess of one circularly polarized
component in the initially unpolarized light. Because of this excess, the MCD then leads
to a transmitted intensity modulation at �. This cascaded MChD shows all the essential
features of MChD given above, but can be discriminated from the pure effect by its
dependence on the sample thickness and on the concentration of the active species.
The cascaded effect would, for instance, occur in a binary mixture of molecules, one
of which shows strong NCD while the other has strong MCD. Because both materials
with gNCD > 0.1 and materials with gMCD > 0.1T −1 are known, it is possible that a quite
strong cascaded MChA could be observed in mixtures of such materials.

We have studied the chiral uniaxial crystal α − NiSO4 · 6H2O, because of its very
large gNCD and its reasonably large gMCD [21]. Because of the weakly allowed char-
acter of the visible and near-infrared optical transitions of the [Ni(OH2)6]2+ complex,
α′k , β ′B , γ ′kB 
 ε′, and the analysis outlined above should apply quantitatively. The
handedness of each crystal was determined by measuring its NCD, and the MCD was
found to be the same for the two crystal enantiomers. The transmission of the crystals,
with their optical axes and the propagation direction of the light parallel to B , is measured
with unpolarized light, with the magnetic field alternating and the transmitted intensity
modulation being phase-sensitively detected. The ratio between the modulated intensity
and the static intensity is equal to 	AMChA · L · B , where

	AMChA = (γ ′′k2 − β ′′k tanh α′′k 2L
n ′ )/

√
2n ′. (16.11)

Figure 16.3a shows the experimental spectra for 	AMChA for two crystals of opposite
handedness, proving the essential characteristic of MChD that 	AMChA should be of
opposite sign for the two enantiomers. Also shown is the cascaded MChD, calculated from
the second term in Eqs. (16.10) and (16.11), using the observed NCD and MCD. From
both the magnitude and lineshape of this calculated cascaded contribution to the MChD,
it is clear that α−NiSO4 · 6H2O shows predominantly the pure effect. The prediction for
MChD on the basis of the Baranova model is also shown in Figure 16.3a, although the
MCD of α−NiSO4 · 6H2O does strictly speaking not fulfill the validity requirements for
this model. The lineshape is evidently not correct, but the predicted magnitude agrees
well with the experimental results, again confirming the usefulness of this simple model
and the validity of its underlying assumptions.

We have also studied the MChD in absorption for the Cr(III)tris-oxalato complex
in solution [22]. Both the NCD and the MCD spectrum of this complex are known. In
particular, the spin-forbidden transition from the ground state 4A2g to the excited 2Eg

state shows fairly large values for both gNCD and gMCD , so we can expect a substantial
gMChA at this transition. The samples consisted of solutions of the pure enantiomers,
resolved according to a literature method [23], in dimethylsulfoxide (DMSO). This sol-
vent was used because in DMSO we have found the thermal racemization rate of the
tris(oxalato)Cr(III) ion to be very low. No measurable decay of NCD occurred in such
solutions over periods of days at room temperature, whereas in aqueous solution the
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(b)
Figure 16.3. (a) Absorption (solid line) and

magnetochiral absorption anisotropy of left (L)-

and right (D)-handed α-NiSO4 · 6H2O crystals

(circles). Dashed lines are only meant to guide

the eye. Also shown are the calculated cascaded

MChA effect (squares) and the prediction for

MChA on the basis of the Baranova model

(triangles). (b) Absorption (solid line) and

magnetochiral absorption anisotropy (circles) of

left (L)- and right (D)-handed tris(oxalato) Cr(III)

complexes in DMSO.

NCD disappears on the timescale of hours. Concentrations were varied up to 0.3 molar.
Figure 16.3b shows our result for the MChD spectrum of the two enantiomers. These
spectra are clearly of opposite sign. It was verified that gMChA varies linearly in B , again
proving the existence of MChD in absorption. The dispersive-type lineshape is indica-
tive of so-called A-terms [14], implying that the magnetic field influence on the optical
properties is through the Zeeman effect. As discussed above, an order of magnitude
estimate of the MChD, using the Baranova model, is approximately gNCD · gMCD/2. At
λ = 701 nm we have found gMCD/B = 2 10−3 T−1 and gNCD = 2.2 10−3 which yields
an estimate of gMChA = 2 10−6T −1, close to the observed value. Because this value is
quite low, and near the detection limits of our setup, one may wonder if this result is
not strongly influenced by a cascaded contribution. In order to answer this question, we
have studied the concentration dependence of the MChD. Figure 16.4 shows the MChD
of this complex at a given wavelength as a function of the concentration of the complex,
expressed as optical extinction for the given sample length. No significant concentration
dependence of the experimental MChD is observed. This is to be expected for the true
MChD, because it is a purely molecular property. The cascaded effect, however, should
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Figure 16.4. Magnetochiral anisotropy as a

function of concentration of the l-tris(oxalato) Cr(III)

ion in DMSO, expressed as optical density, at a

wavelength of 696 nm (AL = 0.7 corresponds to a

concentration of 0.2 M).

change with concentration, because both MCD and NCD are proportional to the con-
centration, and the cascaded effect is the mathematical product of both [Eq. (16.10)].
Figure 16.4 therefore shows that under these conditions, the true MChD dominates the
cascaded effect. Using Eq. (16.10), we estimate that the cascaded effect contributes less
than 10% to the observed MChD.

Our experimental limits of observation of MChD with our current setup are instead
determined by the relative strength of MChD with respect to the normal absorption.
For reasonable integration times, this limit is actually around gMChA ≥ 5 10−7T−1. To
go beyond this value, we would require larger magnetic fields and, in particular, higher
modulation frequencies, since these would allow much lower noise in sources, detectors,
and electronics.

It should be noted that MChD is by no means limited to the optical wavelength range.
In fact, the equations above show that the effect becomes larger at large wavevectors (i.e.,
at short wavelengths), as confirmed by the observation of MChD for the absorption of X
rays in Cr2O3 crystals [24]. However, interesting studies of MChD can also be envisaged
at small wavevectors (e.g., in the infrared), in the form of vibrational transitions, or even
at radiofrequencies, where MChD could allow for enantioselective nuclear magnetic
resonance spectroscopy.

16.4. ENANTIOSELECTIVE MChD PHOTOCHEMISTRY

Asymmetric photochemistry with circularly polarized light (CPL), based on NCD, is
well established and has been extensively reviewed [25, 26]. It is essentially based on
the fact that somewhere in the reaction chain, a rate constant is proportional to the
rate of absorbed photons, which is different for the two enantiomers. The Cr(III)tris-
oxalato complex discussed above also has been extensively studied in this context, in a
process called photoresolution [27]. This complex is unstable in aqueous solution and
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spontaneously dissociates and reassociates. In equilibrium, one has a racemic mixture
(equal concentrations of right- and left-handed complex). The dissociation is accelerated
by the absorption of light, so under CPL irradiation, the more absorbing enantiomer
will dissociate more often, whereas the subsequent random reassociation has the same
rate for both enantiomers. This leads to an excess of the less absorbing enantiomer, the
handedness of which depends on the handedness of the CPL. If this photoresolution is
much faster than the thermal racemization, the size of the enantiomeric excess ee in
dynamic equilibrium can be shown to be given by eeCPL = gNCD/2 [27]. As soon as the
irradiation stops, the system will return to the racemic state due to thermal dissociation
and random reassociation of the complexes.

Following the same reasoning, one should expect to obtain an enantiomeric excess
through MChD when unidirectionally irradiating a racemic solution of this complex with
unpolarized light in a magnetic field parallel to the irradiation direction. The handedness
of the excess will be determined by the relative orientation of the light and the magnetic
field. By a calculation similar to that used for photoresolution with CPL, detailed below,
we find that to first order the magnitude of the excess in dynamic equilibrium is given
by eeMChA = gMChA/2, where gMChA is the magnetochiral anisotropy asymmetry factor
defined in Eq. (16.6). In view of the smallness of gMChA, the observation of such an excess
represents a serious experimental challenge. Our setup for this experiment is shown in
Figure 16.5 [28]. It consists of (a) a tunable optically pumped 0.5-W Ti-sapphire laser
(680–750 nm) to drive the photoresolution and (b) a small green helium–neon laser
(543.7 nm) with a photoelastic modulator to detect phase sensitively the resulting ee
through its NCD (gNCD = 4.4 × 10−2). The sample consists of a 50 μL of an initially
racemic aqueous solution of potassium Cr(III)tris-oxalate, kept at 10◦C to slow down
thermal racemization.

We have first studied the dynamics of the photoresolution process of this complex
under these conditions using circularly polarized light, without a magnetic field. The time
to reach an equilibrium ee was found to be 6 min, whereas the thermal racemization time
was around 70 min (Figure 16.6).

GreNe

PEM

Ti-sapphire

LA

B

Figure 16.5. Experimental setup for determining

photoresolution of the Cr(III)tris-oxalato complex.

Monochromatic irradiation is performed with a

Ti:sapphire laser around 696 nm, with a polarization state

that can be selected between linear, circular, and

unpolarized. The latter was obtained after passing the

light through 10 m of 1-mm-diameter optical fiber. We

have carefully checked that the light leaving the fiber has

no net circular component exceeding 10−4. Typical

irradiation powers are 100 mW, which are absorbed in

50 μL of 0.2 M aqueous solution of K3Cr(ox)3, with a

sample length of 7 mm, kept at 10◦C. Enantiomeric excess

(e.e.) is detected by measuring the NCD at 543.7 nm

(green He–Ne laser, GreNe) using a photoelastic

modulator (PEM) and a lock-in amplifier (LA).

Measurements of ee are performed within 1 min after the

magnetic field and the irradiation were switched off.

(Redrawn from reference 28.)
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(Redrawn from reference 28.)
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triangles). The water spectrum is corrected
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The result of the same experiment, using unpolarized light and applying a paral-
lel magnetic field of 7.5 T, is shown in Figure 16.7, as a function of the excitation
wavelength. Figure 16.8 shows for a given wavelength the dependence of the ee on the
magnetic field strength, for fields parallel to the light and perpendicular to the light. In
the first case, the ee is strictly linear in the field, including the sign, whereas in the
second case, no significant ee can be detected. Both observations are as to be expected
for MChA-driven photoresolution.

At λ = 701 nm we have found gMCD/B = 2 × 10−3 T−1 and gNCD = 2.2 × 10−3 for
this complex (see Section 16.3) which yields an estimate for the gMChA = gNCD gMCD/2 =
2.2 × 10−6 T−1 and for the eeMChA = gMChA/2 = 1.1 × 10−6 T−1, close to the observed
value of 1.7 10−6 × T−1, again confirming that we are dealing with true MChA. Still,
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the smallness of the effect means that one should seriously consider the possibility of a
cascading contribution, as discussed below.

Modeling the MChD photoresolution in detail is more complex than the photoresolu-
tion by CPL, because, similar to the absorption case discussed above, unpolarized incident
light may become partially circularly polarized by MCD or NCD. This CPL component
will then, through the classical photoresolution process, also give rise to an enantiomeric
excess. We have developed a detailed model to obtain a quantitative description of enan-
tioselectivity through MChD in photoresolution, taking into account all possible causes
for an enantiomeric excess. This model also provides all the elements necessary to quan-
titatively model the MChD equivalents of other asymmetric photochemical processes
with CPL that are well established and understood, like photodecomposition and direct
photosynthesis [25, 26]. Here we will give only a short version; more details can be
found in reference 22.

We assume a racemic mixture of equal concentrations of dextro- (ND ) and levo-
enantiomers (NL) of the complex, together with partly dissociated, achiral complexes
(NX ). The incident, unpolarized light beam is described as having equal intensities of
left- and right-circularly polarized light, Il and Ir respectively, propagating along the z
direction. Because of optical absorption and chemical reactions, Il , Ir , ND , and NL will
depend on the spatial coordinate z and time t . This can be expressed by the following
differential equations:

∂ND (z , t)

∂t
= −D

∂2ND (z , t)

∂z 2
− YND (z , t)(Ir (z , t)αD ,r

+ Il (z , t)αD ,l ) + KNX (z , t) − pND (z , t),
(16.12)

∂NL(z , t)

∂t
= −D

∂2NL(z , t)

∂z 2
− YNL(z , t)(Ir (z , t)αL,r

+ Il (z , t)αL,l ) + KNX (z , t) − pNL(z , t),
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∂Ir

∂z
(z , t) = −Ir (z , t)(ND (z , t)αD ,r + NL(z , t)αL,r + NX (z , t)αX ,r ),

(16.13)
∂Il

∂z
(z , t) = −Il (z , t)(ND (z , t)αD ,l + NL(z , t)αL,l + NX (z , t)αX ,l ).

where D describes the diffusion of complexes, Y the photodissociation process, K the
random reassociation into chiral complexes, and p the thermal dissociation of chiral
complexes. The different molar absorption coefficients for levo- and dextro-complexes
and left- and right-circularly polarized light are given by (see reference 22)

αD ,r = k

n ′ (ε̃
′′ + α′′k + β ′′B + γ ′′ B k),

αD ,l = k

n ′ (ε̃
′′ − α′′k − β ′′B + γ ′′ B k),

(16.14)

αL,r = k

n ′ (ε̃
′′ − α′′k + β ′′B − γ ′′ B k),

αL,l = k

n ′ (ε̃
′′ + α′′k − β ′′B − γ ′′ B k),

where, as before, α′′ describes NCD, β ′′ describes MCD, and γ ′′ describes MChD.
Equations (16.12) and (16.13) have to be solved self-consistently, with the following
boundary conditions:

1. Racemic mixture before irradiation:

ND (z , t = 0) = NL(z , t = 0) = const ≡ N

2
. (16.15)

2. Total Cr(III) concentration independent of z and t :

ND (z , t) + NL(z , t) + NX (z , t) = const ≡ Ntotal. (16.16)

3. Irradiation with unpolarized light:

Ir (z = 0, t) = Il (z = 0, t) = const ≡ I0

2
. (16.17)

For the moment, we neglect diffusion; that is, we put D = 0 in Eq. (16.12). It can
be shown that even infinitely rapid diffusion does not affect the dominant terms in the
results for the enantiomeric excess [22]. The essential features of the model can already be
obtained from Eq. (16.12) in the photostationary state. This yields, upon rearrangement,

	N (z )

N (z )
≡ ND (z ) − NL(z )

ND (z ) + NL(z )
= Ir (z )(αL,r − αD ,r ) + Il (z )(αL,l − αD ,l )

Ir (z )(αL,r + αD ,r ) + Il (z )(αL,l + αD ,l ) + 2p
Y

. (16.18)

By insertion of Eqs. (16.13) and (16.14) into Eq. (16.18) and defining 	I ≡ Il − Ir and
I ≡ Il + Ir , we get

	N (z )

N (z )
= α′′k	I (z )

β ′′B	I (z ) + ε′′I (z ) + n ′p
kY

+ γ ′′ B kI (z )

β ′′B	I (z ) + ε′′I (z ) + n ′p
kY

. (16.19)
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We see that there are two terms that can lead to an enantiomeric excess (	N �= 0).
The first term on the right-hand side is proportional to α′′ (i.e., NCD) and to 	I (i.e.,
a net circularly polarized component in the light). This is the classical photoresolution
mechanism studied by Stevenson and Verdieck [27]. It will be clear that if a net circular
component is generated upon propagation of an initially unpolarized light beam, this
term will also lead to an enantiomeric excess. This is exactly what MCD does, as will
be shown below. The second term on the right-hand side of Eq. (16.19), proportional
to the magnetochiral parameter γ ′′, describes the true magnetochiral enantioselective
photochemistry, which only depends on the total intensity I , independent of the state
of polarization. Equation (16.19) can be simplified because for all cases β ′′B(Ir (z ) −
Il (z )) 
 ε′′(Ir (z ) + Il (z )) and for our experimental conditions, thermal dissociation is
negligible (p = 0). This yields

	N (z )

N (z )
≈ α′′k	I (z )

ε′′I (z )
+ γ ′′ B k

ε′′ = gNCD

2

	I (z )

I (z )
+ gMChA

2
. (16.20)

The first term is the Stevenson and Verdieck result [27] (for circularly polarized light,
	I /I = 1). The second term describes the enantiomeric excess due to the true magne-
tochiral anisotropy.

From the equations above, it will be clear that as far as the light is concerned, the
only important quantity is 	I /I . It can be easily shown that in the photostationary state,
Eqs. (16.13) and (16.14) lead to

	I (z )

I (z )
= − tanh

⎛⎝ k

n ′

z∫
0

α′′k(ND − NL)(z
′) + β ′′B(ND + NL)(z

′) dz ′

⎞⎠ , (16.21)

where we have used αX ,r = αX ,l as the (partly) dissociated ion is no longer chiral.
Equation (16.21) only contains the parameters α′′ and β ′′, combined with 	N and N
respectively, indicating that the appearing circular polarization is exclusively due to MCD
and NCD in accordance with our understanding of MChD as a polarization-independent
phenomenon. Equation (16.21) can be simplified by inserting the extinction coefficient
A ≈ N kε′′√

ε
′ and refractive index n ′ ≈ √

ε′, which yields

	I (z )

I (z )
= − tanh

⎛⎝A

2

z∫
0

(
gNCD

(
	N (z ′)
N (z ′)

)
+ gMCD

)
dz ′

⎞⎠ (16.22)

The sets of differential equations (16.12) and (16.13) have now been reduced to the two
coupled equations (16.20) and (16.22), which can be solved iteratively. The details can
be found in reference 22. Here we give the result up to third order in the anisotropy
factors:(

	I (z )

I (z )

)
= − tanh

(
gMCD

2
Az − g2

NCD gMCD

16
A2z 2 + gNCD gMChA

4
Az + O(g4)

)

≈ −gMCD

2
Az + g2

NCD gMCD

16
A2z 2 + g3

MCD

24
A3z 3 − gNCD gMChA

4
Az + O(g4)

(16.23)



446 COMPREHENSIVE CHIROPTICAL SPECTROSCOPY, VOLUME 1

and (
	N (z )

N (z )

)
≈ gMChA

2
− gNCD gMCD

4
Az + g3

MCD gNCD

48
A3z 3

+ g3
NCD gMCD

32
A2z 2 − g2

NCD gMChA

8
Az + O(g5), (16.24)

leading to

ee = gMChA

2
− gNCD gMCD AL

8
− g2

NCD gMChAAL

8

+ g3
MCD gNCD (AL)3

192
+ g3

NCD gMCD (AL)2

96
+ O(g5). (16.25)

In each higher iteration order n , additional terms of the order g2n are obtained. Because
such terms are very small, Eq. (16.25) should already be a good estimate of the enan-
tiomeric excess. The first term on the right-hand side of Eq. (16.25) describes the
true enantioselective magnetochiral photochemistry. All other subsequent terms are due
to cascading. For our experiment on Cr(III)tris-oxalato complexes, we have AL ≈ 1,
gMCD ≈ 10−2, and gNCD ≈ 10−3, so we can conclude that amongst the cascading terms,
the term gMCDgNCDAL/8, is dominant. This term describes the first cascading step—that
is, the enhancement of one enantiomer over the other due to the effect of a net circu-
larly polarized light component that results from MCD. Because MCD only depends on
ND + NL, the diffusion of the enantiomers of the complex does not in first order affect
the cascading mechanism. This justifies its neglect.

In Figure 16.7 we compare our results for the photochemical enantiomeric excess
spectrum with our MChD spectrum of the resolved ion, described earlier. The MChD
spectrum was obtained at a concentration that is a factor 2 lower than the photochemical
excess spectrum, and with a sample length that is also a factor 2 smaller. Therefore AL
is a factor of 4 smaller in the MChD spectrum than in the photochemical spectrum. The
good agreement between the two spectra confirms that the cascading term [the second
term on the right-hand side of Eq. (16.25)] does not contribute significantly and that the
true magnetochiral effect dominates the cascaded one in our photochemistry results.

We conclude from our experimental results and their good agreement with detailed
modeling that indeed the MChA can lead to ee in a photochemical reaction in magnetic
field. Our results can only suggest that magnetochiral anisotropy merits consideration in
the discussion on the origins of the homochirality of life [29]. Issues of spectral, spatial,
and temporal averaging have to be addressed, similar to the case of photochemistry with
CPL, and a study of MChA in diamagnetic molecules of biological relevance is clearly
needed. Because much smaller MChA effects are expected in such systems, this remains
a significant experimental challenge.

16.5. MAGNETOCHIRAL DICHROISM IN A FERROMAGNET

So far all examples of molecules showing MChA were paramagnetic or diamagnetic, and
the observed effects are strictly linear in the external magnetic field. Testing the MChA
of a chiral ferromagnet has two fundamental interests compared to the measurements
performed on such systems: (i) The effect being proportional to the magnetization must
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be enhanced in the ferromagnetic state and (ii) the bistability inherent to the existence
of a magnetically ordered state can be exploited for data storage with a detection based
on MChA rather than magnetic circular dichroism. In order to incorporate structural
chirality at the molecular level, the magnetism in such systems must be based on organic
or metal–organic molecules, rather than inorganic materials. Significant progress has
been made in the science of these so-called “molecular magnets” since they were first
discovered in the early 1990s. Much less progress has been made in the even more
demanding task of producing molecular materials exhibiting both long-range magnetic
order and chirality through the concomitant control of both the magnetic properties via
electron spin interactions and chirality via the absolute configuration of the structural
elements. An important design strategy for achieving a large boost in the MChD is
expected to be that the same structural centers must support both the chirality and the
magnetism. Alternatively, one might aim for a strong cascaded MChD by having very
strong MCD and NCD on two different centers.

In order to observe ferromagnetic MChD, Train et al. [30] have designed
and synthesized the two enantiomers of an inorganic coordination compound that
crystallizes as a chiral ferromagnet with magnetic and optical properties tailored to
support a large MChD. They have constructed a chiral bimetallic [MnIICrIII (ox)3]−
anionic network by introducing a configurationally stable chiral alkyl chain on a
tetra-alkyl ammonium cation. The pairs of MnII and CrIII ions are bridged by oxalate
ligands C2O4

2−, with each metal ion being tris-chelated and thereby exhibiting a
propeller-like chiral structure of D3 symmetry. A subtle supramolecular enantioselective
interaction of the enantiopure chiral cation with a racemic mixture of the metallic
components permitted the construction of two-dimensional heterometallic layers with
opposite absolute configurations at the two metal centers, resulting in mirror-image
single crystals of [N(CH3)(n − C3H7)2((S )sec-C4H9)]+[(�)-MnII(	)-CrIII(ox)3]− or
[N(CH3)(n-C3H7)2((R)sec-C4H9)]+[(	)-MnII(�)-CrIII(ox)3]−, where R and S denote
the absolute configurations of the chiral alkyl chains and 	 and � represent the
absolute configurations of the propeller-like chiral metal centers, which crystallize
in the chiral space group P63. The magnetic properties of the two enantiomers of
[N(i -Bu)MePr2][MnCr(ox)3] in the paramagnetic region indicate that the exchange
interaction between the manganese(II) and the chromium(III) ions is ferromagnetic with
a Curie–Weiss temperature of 9.3 K. The compounds undergo an abrupt paramagnetic
to ferromagnetic phase transition at TC = 7 K.

We have performed MChD absorption measurements on plate-like single crystals
with the c axis aligned along the light propagation direction. Unpolarized incident light
was guided onto the sample by means of optical fibers, as was the transmitted light,
which was detected by a photomultiplier. The wavelength-dependence of the optical
transmission of the crystals was measured in an alternating field superconducting magnet
(Bmax = 1.2 T, frequency 4.3 Hz), in which the sample temperature could be varied
between 70 K and 2.5 K. A commercially available mercury short arc lamp in combination
with a monochromator has been used as a light source. The use of an ac magnet allows
for the direct phase-sensitive measurement of the MChA in the optical transmission (see
Section 16.3).

In Figure 16.9, the MChD is plotted as a function of wavelength for the two enan-
tiomers being in the ferromagnetic phase. Clearly, the enantiomers show a strong and
opposite anisotropy in their optical response, thus proving the existence of MChA in the
chiral ferromagnetic state. The MChA is significant in magnitude in the range between
570 nm and 640 nm, whereas the NCD peaks around 550 nm, like most chiral Cr3+
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Figure 16.9. Magnetochiral dichroism

measured at 4.0 K for

[N(CH3)(n-C3H7)2((S)sec-C4H9)]+

[(�)-MnII(	)-CrIII(ox)3]− (up triangles) and

[N(CH3)(n-C3H7)2((R)sec-C4H9)]+

[(	)-MnII(�)-CrIII(ox)3]− (down triangles).

(Redrawn from reference 30.)

systems. This behavior is not yet understood and complicates a comparison with the
results on paramagnetic Cr3+ shown above. However, it is safe to say that the effect is at
least two orders of magnitude larger in the ferromagnetic state than in the paramagnetic
state at 1 T.

In order to study the relation between the ferromagnetism and MChD, the temperature
dependence of the MChD is measured for [N((S )-sec-Bu)MePr2][(	)-Mn(�)-Cr] at a
fixed wavelength, chosen at the maximum MChD signal at 615 nm (Figure 16.10). In
the paramagnetic phase a relatively weak anisotropy is observed. The MChA increases
gradually when approaching the Curie temperature and gains an order of magnitude
around the transition into the ferromagnetic phase. This behavior follows the thermal
variation of the magnetization, also shown in Figure 16.10.

Our results confirm the expected enhancement of MChA in the ferromagnetic state.
Practical applications of such an effect have to await the discovery of room-temperature
chiral ferromagnets.
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Figure 16.10. Temperature dependence of

the MChD effect (down triangles) measured

at 615 nm and field-cooled (up triangles)

magnetization of

[N(CH3)(n-C3H7)2((S)sec-C4H9)]+

[(�)-MnII(	)-CrIII(ox)3]− (arbitrary units).

(Redrawn from reference 30.)
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16.6. MAGNETOCHIRAL BIREFRINGENCE

So far only MChA in absorption and emission have been described. Their experimen-
tal observations prove that the imaginary part of the corresponding complex material
parameter in Eq. (16.2) is unequal to zero; and through the Kramers–Kronig relations,
we can infer that therefore the real part of this parameter cannot be zero either; that is,
magnetochiral anisotropy must also exist as a difference in refractive index for unpo-
larized light propagating in chiral media, parallel or antiparallel to the magnetic field.
This effect was baptized magnetochiral birefringence (MChB). The first experimental
observation of such an effect was reported by Kleindienst and Wagnière [19], using a
dedicated interferometer designed to cancel all contributions from MCB and NCB. A
few years later, the existence of MChB was confirmed by Vallet et al. [20], using a ring
laser interferometer. Although both experiments convincingly showed the existence of
MChB, the values they reported for the same substance are different by a factor of 20,
which so far remains unexplained. Detailed calculations [6, 15] seem to favor the lower
values of the experimental observations, but have not yet been proven to be reliable in
this domain.

The MChA luminescence and absorption experiments measure γ ′′ [Eq. (16.2)] and
are intrinsically resonant with electronic transitions in the medium. In the previous
sections, we have reported fairly large effects, with relative anisotropies up to 10−3

T−1. In contrast, in the two MChB experiments mentioned above, which were per-
formed far away from electronic resonances and which measure γ ′, only refractive index
anisotropies up to 10−8 T−1 were reported. For both cases, the observed orders of mag-
nitude agree with those predicted by the simple Baranova model [10]. One may wonder
whether under resonant conditions the refractive MChA effect could be much larger.
Such a situation was considered theoretically by Eritsyan, who calculated the transmis-
sion through a nonabsorbing cholesteric liquid crystal in a magnetic field parallel to the
helix axis, for wavelengths close to the cholesteric Bragg resonance [31]. In this work,
only the α′ and β ′ terms of Eq. (16.2), corresponding to NCB and MCB, were taken
into account, but nevertheless a strongly resonant transmission anisotropy of the order of
10−4 T−1 was predicted. We have already pointed out in Sections 16.3 and 16.4 that in
absorption and photochemistry, these two terms together can lead to a cascaded form of
MChA, proportional to α · β, that has (phenomenologically speaking) the same properties
as the genuine MChA, proportional to γ . Eritsyan’s prediction therefore corresponds to
a cascaded resonant MChB. Note that the existence of such an enhancement is not triv-
ial, because the Bragg resonance involves forward and backward traveling waves in the
medium, and the MChA has opposite signs for these two propagation directions, which
might lead to the conclusion that MChA is largely canceled out under such conditions,
instead of being enhanced.

Cholesteric liquid crystals (ChLC) show a helical structure in their collective molec-
ular orientation with a pitch that can be in the visible wavelength region. By a proper
choice of ChLC mixtures, both left- and right-handed helices—and consequently, both
signs of α′ and γ ′ —can be realized. Around wavelengths resonant with the cholesteric
pitch, α′k can reach values up to 0.5. In the isotropic phase, these materials have typi-
cally α′k � 10−5T−1, implying an enhancement of five orders of magnitude of the optical
activity by means of the Bragg resonance. The NCB parameter β ′ will be 10−6 T−1 for
these diamagnetic systems, but it has been experimentally established that the Faraday
effect is enhanced near a Bragg resonance [32]. Intuitively, one could therefore expect
a strong enhancement of the MChA on the Bragg resonance and we have specifically
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designed an experiment to observe such enhancement [33]. The ChLC sample cells used
consisted of two glass plates separated by a spacer with a thickness that can be chosen
between 10 μm and 1 mm. The cells were filled with the LC mixture in the isotropic
phase and alignment of the helix axis perpendicular to the plates was obtained by gen-
tly shearing the plates. The good crystalline quality could be easily verified by visual
inspection. Two different mixtures of cholesteryl chloride and cholesteryl oleyl carbonate
were used, one with a left-handed helix (1:3 ChCl/ChOC) and one with a right-handed
helix (4:1 ChCl/ChOC), at temperatures of 300 K and 343 K respectively. Note that the
two types of samples are not (strictly speaking) enantiomers and, therefore, that MChA
strength, line width, and so on, need not be identical. However, the chiroptical proper-
ties of the two types of samples are of similar magnitude but of opposite sign and the
magneto-optical properties should be similar on the basis of the close chemical similarity
of their components. Similar magnitudes and opposite signs should be therefore expected
for the MChA of the two types of samples.

Figure 16.11 shows a typical transmission spectrum, with a clear Bragg resonance,
and the transmission difference between left- and right circularly polarized light, for a
left- and a right-handed sample. The maxima in the circular differential spectra coincide
with the Bragg resonances of the respective ChLCs. The magnetochiral anisotropy of
such ChLCs was measured by applying a 0.5-T alternating magnetic field parallel to
the helix axis. Unpolarized, incoherent light from a lamp, filtered by interference filters
with a typical transmission bandwidth of 10 nm, was guided to the cell by means of an
optical fiber (diameter 1 mm, numerical aperture 0.45). The light transmitted through the
ChLC, parallel to the magnetic field direction, was collected by a similar fiber, which
guided it to a photodiode detector. The magnetic field-induced transmission changes were
phase-sensitively detected by a lock-in amplifier. We define the relative magnetochiral
transmission anisotropy η as

η ≡ 1

B

T (B ↑↑ k) − T (B ↑↓ k)

T (B ↑↑ k) + T (B ↑↓ k)
. (16.26)

The inset of Figure 16.12 shows the observed 	T for a left-handed sample as a function
of magnetic field. A clear linear relation is observed, of opposite slopes for the two
handednesses (not shown). The observed order of magnitude agrees reasonably well with
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Figure 16.11. Transmission difference

between left- and right-circularly polarized

light for two different ChLC mixtures (both

ChCl:ChOC, in different weight ratios, sample

thickness: 50 μm). Top: Left-handed ChLC

(weight ratio 1:3) at room temperature.

Bottom: Right-handed ChLC (weight ratio 4:1)

at 343 K. (Redrawn from reference 33.)



MAGNETOCHIRAL DICHROISM AND BIREFRINGENCE 451

6 4

3

Δt
 (

10
–5

)

2

1

0

4

2η 
(1

0–5
T

–1
)

0

450 500 550 600

0,0 0,1 0,2

B0 (T)

0,3 0,4

Wavelength λ (nm)

650 700 750 800

5

0,5
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(Redrawn from reference 33.)

the predictions by Eritsyan and illustrates that under resonant conditions, refractive MChA
can be quite strong. By rapid cooling to liquid nitrogen temperatures, we could freeze in
the cholesteric structure and we observed the same MChA as at room temperature, thereby
excluding magnetic realignment of the molecules as cause for the observed MChA.

Figures 16.12 and 16.13 show the wavelength dependence of MChA for a left- and
a right-handed ChLC. A clear resonance is observed that is close to the Bragg reso-
nance. This is completely different from the spectrum predicted by Eritsyan, which has
a derivative-type lineshape, with a zero-crossing at the Bragg resonance, and large and
opposite values in the two opposite wings of the Bragg band [31]. This large discrep-
ancy suggests that the theoretical treatment by Eritsyan is incomplete, and that the γ

term of Eq. (16.2) plays a dominant role in the observed MChA. Clearly, the develop-
ment of a theory involving the γ term is called for. Figure 16.14 shows the observed
temperature dependence of η. The observed η clearly vanishes upon approaching the
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cholesteric–isotropic phase transition temperature, which was at 306 K for this sam-
ple. This behavior confirms that the strong MChA results from the collective cholesteric
molecular alignment and the Bragg resonance that accompanies it.

Our results show that resonant enhancement of MChB around the Bragg scattering
condition exists. This suggests that it should be possible to observe MChB in Bragg
scattering of unpolarized or linearly polarized X rays by chiral crystals in magnetic fields.
Thereby one could obtain specific chiral information of crystal structures, as an alternative
to X-ray natural circular dichroism measurements by use of polarization modulation of
synchrotron radiation [24]. Our results also suggest that MChB of molecules could be
measured by incorporating them into a photonic crystal matrix.

16.7. OTHER MANIFESTATIONS OF MChA

Many analogies between electronic transport and light propagation are known. Such
analogies are founded on the wave-particle duality of both electrons and photons. How-
ever, an important aspect of photons, namely their polarization, is not so easily experimen-
tally accessible for electrons. Only in recent years, the subject of spin-polarized electronic
transport has made significant progress and has attracted much attention for applications
in future electronics systems (“spintronics”). At the same time a new polarization-
independent optical effect was discovered, the magnetochiral anisotropy, as described
in the previous sections of this chapter. The existence of this effect and its properties
have been deduced from elementary symmetry arguments. These symmetry arguments
may also be applied to the case of electrical transport, and the question naturally comes
to mind if MChA exists for electronic magnetotransport in chiral conductors. As we
already pointed out in the introduction of this chapter, a spinning particle moving par-
allel to a magnetic field is chiral, so it seems plausible that such chirality will interact
enantioselectively with any chirality of the environment of the particle.

This question has been studied in detail by us [34, 35]. Time- and parity-reversal
symmetry arguments require that up to the second-order magnetic contributions, the
electrical two-terminal resistance R of any chiral conductor is given by

R(B, I)D/L = R0(1 + βB2 + �D/LB · I), (16.27)
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where I is the current traversing the conductor, β describes the normal quadratic magne-
toresistance present in all conductors, and �L = −�D . The third term on the right-hand
side represents magnetochiral anisotropy, similar to the optical case. Experimental ver-
ification of the validity of Eq. (16.27) has been obtained for metallic helices, twisted
wires [34], and carbon nanotubes [35] (Figure 16.15) [36], and the microscopic mech-
anisms underlying these forms of electrical MChA were elucidated. These results open
the possibility to do enantioselective measurements in magnetic fields using techniques
that so far are insensitive to chirality, like scanning tunneling probe spectroscopy, elec-
tron loss spectroscopy, and neutron scattering. Similar to the case of enantioselective
photochemistry using unpolarized light in a magnetic field, the existence of MChA in
electrical transport enables enantioselective electrochemistry in a magnetic field. Indeed,
electro-deposition in magnetic fields parallel to the deposition current was shown to result
in chiral films [37], the handedness of which will depend on the relative orientation of
current and field.

Now that the existence of MChA in electron transport in firmly established, one may
wonder if the effect can exist for general particle or momentum transport—that is, is
there a mechanical MChA? There are several well-known mechanical effects due to a
magnetic field. Anisotropic objects or objects having an anisotropic magnetic suscepti-
bility can be aligned by a magnetic field, proportional to H 2. Also proportional to H 2 is
the magnetostrictive effect. All objects experience a force in a magnetic field gradient,
proportional to M · ∇H , M being the magnetization, which can be used for magnetic lev-
itation. The Einstein–deHaas effect is the only known linear magnetomechanical effect,
and it corresponds to an angular momentum that any object acquires if a magnetic field
is applied. The semiclassical explanation of this effect is that applying a magnetic field
causes Larmor precession of the electrons of the object and that angular momentum
conservation requires the body to rotate in the opposite sense in order to compensate for
the angular momentum of the electrons. The inverse of the Einstein–deHaas effect is
called the Barnett effect, and it describes the magnetization induced in an object that is
set into rotation. Classically speaking, the object’s electrons lag behind when the object
is set in rotation, and this corresponds to a circular current and, therefore, to an axial
magnetization. For a detailed discussion of these two so-called gyromagnetic effects,
see reference 38. When considering magnetomechanical effects for the case of a chiral
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object, imposing time reversal and parity invariance, one readily finds that any chiral
object subject to a magnetic field B will acquire a linear momentum p:

p = ζ D/L B , (16.28)

where ζ D = −ζ L and ζ can be called a magnetochirodynamical coupling parameter. The
inverse effect corresponds to

M = ζ ′D/Lp; (16.29)

that is, any chiral object imparted with momentum p will acquire a magnetic moment.
Calculations have confirmed the general case described in Eq. (16.28) for chiral carbon
nanotubes [39] and for chiral molecules in an isotropic radiation field [40], but so far no
experimental verification of these effects has been reported. Because such a magnetochi-
rodynamical effect would allow separating spatially the two enantiomers in a magnetic
field, it could be of considerable interest.

16.8. CONCLUSION

In this chapter we have described our current understanding of magnetochiral anisotropy.
The optical implementations of MChA are well established, albeit that only a limited
number of data exist and that some of are them are disputed. The existence of MChA
in electrical transport is solidly proven, but there still remains a large unexplored poten-
tial. The existence of MChA in the mechanical properties of chiral systems has been
suggested, but so far no experimental confirmation exists. We firmly believe that the
combination of chirality and magnetic field may still hold some other surprises.

ACKNOWLEDGMENTS

We gratefully acknowledge the contributions of G. Duchs, J. Folling, C. Koerdt, V.
Krstic, E. Raupach, C. Train, and G. Wagnière to this work, as well as the inspiring
discussions with L. Barron, E.W. Meier, B. van Tiggelen, and P. Wyder.

REFERENCES

1. S. F. Mason, From Pasteur to parity non-conservation: Theories of the origin of molecular
chirality, in Circular Dichroism , 2nd ed., N. Berova, K. Nakanishi, R. W. Woody, eds., Wiley-
VCH, New York, 1994.

2. D. B. Cline, ed., Physical Origin of Homochirality in Life, American Institute of Physics, New
York, 1996.

3. M. Avalos, R. Babiano, P. Cintas, J. L. Jimenez, J. C. Palacios, L. D. Barron, Chem. Rev .
1998, 9 , 2391–2404.

4. W. A. Bonner, Orig. Life Evol. Biosph . 1995, 25 , 175–190.

5. L. D. Barron, J. Am. Chem. Soc. 1986, 108 , 5539–5542.

6. L. D. Barron, Science 1994, 266 , 1491–1492.

7. M. P. Groenewege, Mol. Phys . 1962, 5 , 541–553.



MAGNETOCHIRAL DICHROISM AND BIREFRINGENCE 455

8. D. L. Portigal, E. Burstein, J. Phys. Chem. Solids 1971, 32 , 603–608.

9. N. B. Baranova, Y. Bogdanov, B. Y. Zeldovich, Opt. Commun . 1977, 22 , 243–247.

10. N. B. Baranova, B. Y. Zeldovich, Mol. Phys . 1979, 38 , 1085–1098.

11. G. Wagnière, A. Meier, Chem. Phys. Lett . 1982, 93 , 78–82.

12. G. Wagnière, Chem. Phys. Lett . 1984, 110 , 546–549.

13. L. D. Landau, E. M. Lifshitz, L. P. Pitaevski, Electrodynamics of Continuous Media , Pergamon,
Oxford, 1984.

14. L. D. Barron, J. Vrbancich, Mol. Phys . 1984, 51 , 715–730.

15. S. Coriani, M. Pecul, A Rizzo, P. Jorgensen, M. Jaszunski, J. Chem. Phys 2002, 117 ,
6417–6428.

16. B. Jansik, A. Rizzo, L. Frediani, K. Ruud, S. Coriani, J. Chem. Phys . 2006, 125 , 234105.

17. G. L. J. A. Rikken, E. Raupach, Nature 1997, 390 , 493–494.

18. E. Raupach, The Magneto-chiral Anisotropy , Ph. D. thesis, University of Konstanz, ISBN
3-89649-769-3, Hartung Gorre Verlag, Konstanz, 2002.

19. P. Kleindienst, G. Wagnière, Chem. Phys. Lett . 1998, 288 , 89–97.

20. M. Vallet, R. Ghosh, A. Le Floch, T. Ruchon, F. Bretenaker, J. Y. Thépot, Phys. Rev. Lett .
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33. G. Düchs, C. Koerdt, G. L. J. A. Rikken, Phys. Rev. Lett . 2003, 91 , 073902.
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X-RAY DETECTED OPTICAL ACTIVITY
Jose Goulon, Andrei Rogalev, and Christian Brouder

17.1. PHENOMENOLOGICAL BASES

17.1.1. X-Ray Dichroisms

Optical activity (OA) describes a peculiar interaction of matter with a polarized radiation
field: it does exist only in systems with no inversion (I) symmetry, even though its mea-
surement always conserves parity [1]. In this chapter, we review the information content
of OA in the X-ray range. In particular, we shall concentrate on X-ray dichroism experi-
ments in which one measures at a given photon energy E (eV ) = �ω the variations of the
X-ray absorption cross sections σ(E ) on inverting a given Stokes–Poincaré polarization
component Sj (j = 1, 2, 3):

�σj (E ) = σ(E , Sj = −1) − σ(E , Sj = +1).

The Stokes–Poincaré parameters are most conveniently defined in terms of the unit,
complex polarization vectors e. For a transverse electric wave propagating along the z
axis [1]:

S0 = +(ex e∗
x + ey e∗

y ),

S1 = +(ex e∗
x − ey e∗

y ),

S2 = −(ex e∗
y + ey e∗

x ),

S3 = −i (ex e∗
y − ey e∗

x ),

Comprehensive Chiroptical Spectroscopy, Volume 1: Instrumentation, Methodologies, and Theoretical
Simulations, First Edition. Edited by N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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with S0 = 1.S1 and S2 are linear polarization rates relative to azimuthal angles (0, π/2)

and (π/4, 3π/4), whereas S3 is the (left, right) circular polarization rate. X-ray dichroisms
�σj are most often measured over the typical energy range of the X-ray absorption near
edge structure (XANES) [2], which are also called near edge X-ray absorption fine
structure (NEXAFS) in soft X-ray spectroscopy [3]. Recall that the absorption edges are
characteristic of a given element and result from the photoexcitation of electrons in a
given core state—for example, the 1s state at a K-edge, or 2s , 2p1/2, 2p3/2 states at
spin–orbit split L-edges.

Regarding terminology, natural dichroisms refer to measurements conserving time-
reversal symmetry (�). Natural circular dichroism (NCD) has long been identified as a
major chiroptical tool to study optical activity at optical wavelengths, whereas magnetic
circular dichroism (MCD) probes the magneto-optical properties of matter [1].

As recently as 1998–1999 the reality of X-ray natural circular dichroism (XNCD)
was definitively established by a series of joint experiments carried out at the European
Synchrotron Radiation Facility (ESRF) on a variety of gyrotropic single crystals [4–8].
One may wonder why it took such a long time to detect OA in the X-ray spectral range,
given that X rays were discovered by Röntgen in 1895 [9], whereas, precisely the same
year, Cotton reported his first measurement of circular dichroism at optical wavelengths
[10]. One reason is that, for a very long time, there was no suitable source of circu-
larly polarized X rays to carry out such delicate experiments. As emphasized in Section
17.2, X-ray absorption spectroscopy (XAS) greatly benefitted from the development of
third-generation synchrotron radiation sources: The recent availabilty of intense circu-
larly polarized X-ray beams delivered by powerful helical undulators [12, 13] offering
the capability to flip rapidly the circular polarization rate considerably enhanced the sen-
sitivity of both X-ray natural or magnetic circular dichroism measurements [14]. On the
other hand, one should not forget that the existence of natural OA in deep core level
spectroscopies has long been a questionable issue [15].

17.1.2. Spatial Dispersion

Spatial dispersion [11] manifests itself when the transverse plane wave is approximated as

eq eik·r � eq (1 + ik · r), (17.1)

where eq = [ex + iqey ]/
√

2 denotes the circular polarization vector of a photon of helicity
q = ±1 and wavevector k ‖ z. OA arises from the existence of interference terms mix-
ing multipoles of opposite parity—for example, electric and magnetic dipoles (E1M1 ) or
electric dipole and quadrupole (E1E2 ) in the interaction Hamiltonian. The Curie symme-
try principle, however, states that this is possible only in systems with broken inversion
(I) symmetry.

At optical wavelengths, OA is strongly dominated by E1M 1 terms. In deep inner-
shell spectroscopies, the transition probabilities E1M 1 and M 1M 1 are forbidden by
selection rules in the monoelectronic approximation and vanish [16], at least in nonrela-
tivistic theories. Thus, it was the challenge of the first XNCD experiments to prove that
OA could still be measured in the X-ray spectral range due to the contribution of the
E1E2 interference terms which, in contrast, are fairly small at optical wavelengths [17].
There is, however, a dramatic restriction which is that the E1E2 interference terms also
vanish in systems that lack orientational order. This stems from the orthogonality of the
spherical harmonics Y m

� (θ , φ) associated with the electric dipole (� = 1) and quadrupole
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(� = 2), respectively. The immediate consequence is that no XNCD signal should survive
in isotropic samples (e.g., liquid solutions); this explains why most XNCD spectra were
recorded so far on single crystals.

Recently, high-quality data collected at the ESRF with a uniaxial crystal rotated
at the magic angle made it possible to detect a very weak XNCD signal assigned to
nonvanishing E1M 1 terms. The relative intensity of such terms may well increase in the
soft X-ray regime (e.g., below 1 keV); this is supported by recent observations of weak
XNCD signatures measured at the K-edges of light elements (C,N,O . . . ) [18, 19]. One
would expect even more intense (soft) XNCD signatures at the L2,3-edges of first row
transition metals owing to the existence of larger magnetic dipoles at spin–orbit split
edges [20].

Recall that, in single crystals, OA is a tensor property resulting from the spatial
dispersion of the dielectric response. For nonmagnetic materials, it is defined through the
constitutive equation [11, 21]:

Di = [εd ]ij Ej + ηijk∇j Ek (17.2)

where [εd ]ij stands for the rank 2 permittivity tensor whereas the third-rank OA tensor
ηijk should be antisymmetric in the exchange of the first and third indices. Thus, in
Cartesian coordinates, at most 9 components out of 27 could be independent. This makes
it often preferable to substitute ηijk with its dual, rank 2, gyrotropy tensor defined as

g�j = 1

2
εi�kηijk , (17.3)

where εi�k is the Levi–Civita unit tensor. The decomposition of η into irreducible rep-
resentations invariant under the operations of the rotation group O3 was shown to yield
three parity-odd spherical tensors of rank 0, 1, 2, that is, (i) a pseudoscalar; (ii) a polar
vector; and (iii) a traceless, rank 2 pseudodeviator. It has long been recognized that enan-
tiomorphism does exist only for crystal classes that exhibit a nonzero pseudoscalar part.
Jerphagnon and Chemla pointed out that the polar vector part of OA existed in pyroelec-
tric materials [21]. However, it cannot cause any dichroism in absorption or reflection at
normal incidence [22]. It will be shown below that it can be detected in the X-ray reso-
nant scattering regimes [23]. There cannot be any contribution of the E1E2 interference
terms to the pseudoscalar part of the OA tensor: one may thus expect a nonvanishing
XNCD signal only when the pseudodeviator part is nonzero. Table 17.1, derived from
reference 21, clarifies which ones among the 21 classes of noncentrosymmetric crystals
may exhibit XNCD.

17.1.3. Complex Gyration Tensor

Let us assume that all X-ray modes propagating inside a crystal are nearly parallel to
the incident wavevector k. This is quite realistic for X rays, given that their refractive
index n = 1 − δ is very close to unity (δ ≤ 10−5). Then, the complex forward scattering
amplitude can be expanded as [25]

a∗
αβ = α∗

αβ + ζ ∗
αβγ kγ + · · · . (17.4)

The first term (α∗
αβ ∝ [E1E1]αβ) is the rank 2 electric dipole polarizability tensor; the

second one (ζ ∗
αβγ ∝ [E1E2]αβγ ) is the rank 3 complex gyration tensor that contains all
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TABLE 17.1. Irreducible Parts in O (3) of the OA Tensor for Odd Parity Crystal Classes [21]

Pseudo Scalar: Polar Vector: Pseudo Deviator:
Crystal Classes Point Groups Enantiomorphism Pyroelectricity XNCD

43m6m26 Td D3h C3h − − −
432 23 O T + − −
622 32 422 D6D3D4 + − +
6mm 3m 4mm C6v C3v C4v − + −
6 3 4 C6C3C4 + + +
42m D2d − − +
4 S4 − − +
mm2 C2v − + +
222 D2 + − +
2 C2 + + +
m Cs − + +
1 C1 + + +

information about OA. In Eq. (17.4), we deliberately omitted the higher-order contribu-
tions from the electric quadrupole polarizability tensor and the electric dipole–electric
octupole interference terms that mix multipole moments of the same parity and, thus,
do not contribute to OA. As shown by Buckingham and his colleagues [26, 27], one
may check that Re{α∗

αβ} is time-reversal even: These terms are mainly responsible for
X-ray natural linear dichroisms and for the angular dependence of the XANES spectra
of oriented single crystals [28]. In contrast, Im{α∗

αβ}—which is time-reversal odd—is
primarily responsible for X-ray magnetic circular dichroism (XMCD) signatures first
observed by Schütz et al. [29] with firm X rays, or by Chen et al. [30] using soft X
rays. Indeed, the pioneering X-ray Faraday rotation experiment reported by Siddons et
al. [31] also referred to time-reversal odd terms, but involved the energy dispersive part
(f ) rather than the absorbing part (g) of the spectra [25].

Let us focus next on the physical content of the complex gyration tensor:

Im{ζ ∗
αβγ } = −1

3
Re{[E1E2]αβγ − [E1E2]βαγ }

+ 1

ω
Im{εδγα[E1M1]βδ − εδγβ [E1M1]αδ},

Re{ζ ∗
αβγ } = +1

3
Im{[E1E2]αβγ + [E1E2]βαγ }

+ 1

ω
Re{εδγα[E1M1]βδ + εδγβ [E1M1]αδ}.

As shown by Barron [1], the imaginary part is anti-hermitean (Imζ ∗
αβγ = −Imζ ∗

βαγ )

and time-reversal even; it is indeed the term responsible for natural OA. On the other
hand, Reζ ∗

αβγ is hermitean and time-reversal odd : this term is responsible for a so-called
nonreciprocal OA observed only in magnetoelectric (ME) systems. Concentrating onto
the absorptive terms (g) in the formulation of the gyration tensor, one may now predict
the existence of a specific dichroism related to OA for every Stokes component:
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(i) X-ray ME linear dichroism:

�σ1 ∝ Re[ζ ∗
ββγ (g) − ζ ∗

ααγ (g)].

(ii) X-ray ME Jones dichroism:

�σ2 ∝ 2Re{ζ ∗
αβγ (g)}.

(iii) X-ray natural circular dichoism:

�σ3 ∝ 2Im{ζ ∗
αβγ (g)}.

(iv) X-ray magnetochiral dichroism:

σ0(+H ) − σ0(−H ) ∝ Re[ζ ∗
ββγ (g) + ζ ∗

ααγ (g)].

Note that the X-ray ME linear dichroism (XMELD), the ME Jones dichroism, and
the magnetochiral dichroism (XMχD) are all nonreciprocal effects. Recall that the mag-
netochiral dichroism could be observed with unpolarized light [32–35]; this is why this
effect is also called directional dichroism in ME materials. It is quite remarkable that
the ME Jones dichroism and the XNCD both stem from the same components of the
Cartesian gyration tensor, one should pay attention, however, to the key difference that
the nonreciprocal Jones dichroism—which is to be measured with a linearly polarized
light—refers to the real part of the latter tensor components, whereas the imaginary
parts are responsible for XNCD.

17.1.4. Biaxial Crystals and Bigyrotropy

For biaxial crystals that are anisotropic in a plane perpendicular to the direction [0, 0, k ]
of the wavevector, it is preferable to use the linear combinations

t∗ = [α∗
xx + α∗

yy ] + [ζ ∗
xxz + ζ ∗

yyz ],

u∗ = [α∗
xx − α∗

yy ] + [ζ ∗
xxz − ζ ∗

yyz ],

v∗ = [α∗
xy + α∗

yx ] + [ζ ∗
xyz + ζ ∗

yxz ],

w∗ = [α∗
xy − α∗

yx ] + [ζ ∗
xyz − ζ ∗

yxz ]

or the relevant real parts (t,u,v,w ) and imaginary parts (t ′,u ′,v ′,w ′). As pointed out by
Barron [1], the Stokes vector inside the sample is a function of the X-ray penetration
depth d and satisfies the linear differential equation:

∂

∂z
|S(z )〉 = aM · |S(z )〉 (17.5)

where a = 1
2ωNcμ0, μ0 being the free space permeability and N the number density of

absorbing centers. The differential Müller matrix M is to be identified with

M =

⎡
⎢⎢⎣

t ′ u ′ −v ′ w
u ′ t ′ −w ′ v

−v ′ w ′ t ′ u
w −v −u t ′

⎤
⎥⎥⎦ . (17.6)
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The integration of Eq. (17.5) has been detailed elsewhere [25]. We shall restrict
ourselves here to the analysis of XNCD experiments performed with a fully polarized
incident X-ray beam (S1 = S2 = 0; S3 = ±1). Up to the second order, one obtains

�σ3 � 2(a.w .d) − (ad)2[uv ′ − vu ′] − · · · . (17.7)

The first term on the right-hand side characterizes the crystal gyrotropy. However, even in
the absence of spurious natural linear dichroism, there is a second-order term proportional
to [uv ′−vu ′] which can generate an additional XNCD signal that may exist even for
nongyrotropic crystals. This was first anticipated by Born and Huang in 1954 [36].
This second-order term is at the origin of the X-ray crystal optics effect predicted by
Machavariani using a different formalism [37].

17.1.5. X-Ray Circular Intensity Differentials

Graham and Raab noted that a practical way to access the vector part of OA at optical
wavelengths was to carry out reflectivity measurements in a suitable geometry—that is,
with the optic axis c perpendicular to the scattering plane (c ⊥ [k, ks]). Then, the quantity
of interest is the normalized circular intensity differential (CID) defined as

CID (σ ,π) = I L(σ ,π)
S − I R(σ ,π)

S

I L(σ ,π)
S + I R(σ ,π)

S

, (17.8)

where the (σ , π) superscripts need to be specified only when a given polarization compo-
nent of the scattered light (perpendicular or parallel to the scattering plane) is analyzed.
For scattering at 90◦, CID (σ ) and CID (π) refer to polarized or depolarized circular
intensity normalized differences, respectively. Notice that CID (σ ) is equivalent to a mea-
surement of the degree of circularity of the light scattered at 90◦ since, according to
Barron [1], CID (σ ) = −S sc

3 . As pointed out by Graham and Raab [22], the vector part
of OA contributes to a CID ratio that reaches its maximum for scattering at θS = 45◦

but vanishes at either normal or grazing incidences. Unfortunately, it is well known
that specular reflection of X rays is only possible at grazing angles—that is, far from
θS = 45◦.

As detailed elsewhere [23], we found it possible to transpose this approach using
resonant elastic or inelastic X-ray scattering (REXS, RIXS) [24]. Key issues in X-
ray diffraction are related to the anisotropy of the anomalous dispersion (AAD) or the
anisotropic tensor susceptibility (ATS). Actually, the understanding of these questions
has much progressed over the past 20 years thanks to a detailed analysis of the nonzero
components of the E1E2 interference terms.

Neglecting magnetic terms, one may derive the total elastic scattering amplitude
from the main Kramers–Heisenberg formula:

F = e∗
s · ei〈J |ei (k−ks )·r|J 〉 + 1

m

∑
N

〈J |e∗
s · Pe−iks ·r|N 〉〈N |ei · Peik·r|J 〉

EJ − EN + �ω + iγ
(17.9)

where k and ei denote the wavevector and polarization vector of the incident X-ray
beam, ks , with es being similarly the wavevector and polarization vector of the scattered
X-ray beam. In Eq. (17.9), �ω is the photon energy, P = −i�∇, whereas m denotes the
electron mass. The “electrodynamics” convention for the phase of time evolution (e−iωt )
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was preferred to the “crystallographers” convention in which all scattering factors should
be replaced by their complex conjugates. In a crystal, each point G of the Bravais lattice
will add its own contribution F (G). The term F (0) should be expanded into a sum
over all sites n of the unit cell: F (0) = ∑

n eiq·rn fn , where rn is the position of site n ,
q = k − ks is the scattering vector, and fn is the scattering factor for site n . Recall that
fn is the sum of multipole terms:

fn = fnT + fndd + fndq + fnqq + · · · . (17.10)

Here fnT denotes the Thomson scattering contribution: fnT = (e∗
s · ei)f0 where f0 =

〈I |eiq·r|I 〉 is real; fndd is the dipole–dipole contribution, fndq is the dipole–quadrupole
contribution and fnqq is the quadrupole–quadrupole contribution. To simplify notation,
we shall drop hereafter the site index n .

We introduce next the scattering factors f σσ , f σπ , f πσ , and f ππ , where the two
superscripts refer to the linear polarization states of the incident and scattered beams,
respectively. Left/right-circular polarization states of the incident beam will be described
using the complex polarization vectors: ei = (eπ ± ieσ )/

√
2, so that

f L/Rσ = (1/
√

2)(f πσ ± if σσ ),

f L/Rπ = (1/
√

2)(f ππ ± if σπ ).

The total scattered intensity corresponding to a right/left incident light—that is, I L/R =
I L/R,σ + I L/R,π —then becomes

I L/R = |f πσ ± if σσ |2 + |f ππ ± if σπ |2
2

, (17.11)

whereas the unormalized CID—that is, �I = I L
S − I R

S —is given by

�I = −2Im[f σσ (f πσ )∗ + f σπ (f ππ )∗]. (17.12)

One would easily check that

f σσ = f0 + f σσ
dd + f σσ

dq + f σσ
qq ,

f ππ = cos 2θs f0 + f ππ
dd + f ππ

dq + f ππ
qq ,

where θs is the Bragg angle. We also have

f πσ = f πσ
dd + f πσ

dq + f πσ
qq ,

f σπ = f σπ
dd + f σπ

dq + f σπ
qq .

Let us keep in mind that the dominant terms are the Thomson and dipole–dipole contri-
butions. Neglecting again the quadrupole–quadrupole contributions, we finally obtain

�I � −2f0Im(f πσ
dd + f πσ

dq ) + 2 cos 2θs f0Im(f σπ
dd + f σπ

dq )

+ 2Im[f σσ
dd (f πσ

dd )∗ + f σσ
dd (f πσ

dq )∗ + f σσ
dq (f πσ

dd )∗

+ f σπ
dd (f ππ

dd )∗ + f σπ
dq (f ππ

dd )∗ + f σπ
dd (f ππ

dq )∗].
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Let us write explicitly the dipole–dipole and dipole–quadrupole contributions:

fdd =
∑

N

mω2
JN

EJ − EN + �ω + iγ

∑
αβ

e∗
sαeiβdαβ , (17.13)

fdq = (i/2)
∑

N

mω2
JN

EJ − EN + �ω + iγ

∑
αβγ

e∗
sαeiβ(tαβγ kγ − t∗

βαγ ksγ ), (17.14)

where dαβ = 〈J |rα|N 〉〈N |rβ |J 〉; tαβγ = 〈J |rα|N 〉〈N |rβrγ |J 〉, whereas ωJN = (EJ −
EN )/�. Recall that, in a nonmagnetic crystal, the wavefunctions |J 〉 and |N 〉 are time-
reversal even, so that dαβ and tαβγ are real as well. This results in the usual permutation
symmetries: dβα = dαβ and tαγβ = tαβγ ∝ Re[E1E2]αβγ .

17.2. INSTRUMENTATION AND METHODS

17.2.1. X-Ray Source and Optics

Let us insist that the amplitude of the dichroic signal which we want to measure can
be as small as 10−4 of the total X-ray absorption cross section. This sets very high the
level of sophistication of a beamline designed to measure such tiny dichroisms free of
artifacts. Most of the experiments discussed in the next section were carried out at the
ESRF beamline ID12 which is dedicated to polarization-dependent XAS over the energy
range 2–15 keV, which corresponds to rather ”firm” X rays [38]. Since the performances
of this beamline were already discussed elsewhere, we shall highlight only a few points
that, in our opinion, are crucial for X-ray-detected OA (XDOA) experiments.

Three helical undulators (HU) are available in the user operating mode: the first one
(HU-52) is of the HELIOS-II type [12]; the second one (HU-38) is of the APPLE-II type
[13, 39]; the last one is a so-called ”electromagnet-permanent magnet hybrid undulator”
(EMPHU) [40]. All of them can generate either circularly or linearly polarized X rays and
complement one to each other. The EMPHU is restricted to energies below 4 keV and is
flux-limited, but it offers the major advantage that one can flip the circular polarization
from left to right in typically 160 ms. The Helios-II or Apple-II undulators still offer—at
a much slower rate—a perfect control of the polarization with the advantage of much
higher photon fluxes, especially at high energy. A helical undulator of the APPLE-II type
was also used at SPring-8 (Japan) to detect XNCD spectra at the K-edge of oxygen and
nitrogen in the soft X-ray range. There is still some interest in using two coaxial helical
undulator segments emitting X-ray beams with opposite helicities [41]: A kicker magnet
installed in the storage ring could then be used to periodically deflect the electron beam
at low frequency (∼1 Hz) and switch on/off alternatively the radiation of each segment.
Such a complicated concept was first developed at the ESRF for the soft X-ray beamline
branch ID12B [38], but it was finally abandonned.

The monochromator is the most critical component of the XAS spectrometer because
the quality of the spectra can suffer from a poor energy resolution, from the transmis-
sion of unwanted harmonics or from instabilities of the exit beam during energy scans.
The ESRF beamline ID12 is equipped with a UHV-compatible, fixed-exit, double-crystal
monochromator manufactured by KoHzu Seiki Co. according to very strict ESRF spec-
ifications. The high quality of the mechanics allows one to obtain a fixed-exit beam
(within ±5 μm) over the whole Bragg angular range (6◦ –80◦). The monochromator is
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currently equipped with a pair of Si (111) crystals. The temperature of each individual
crystal is kept near −140◦C (±0.2◦) by a cryogenic cooling system developed in-house
and which proved to be completely vibration-free. The stability of the maximum of the
rocking curve was found to be better than 0.1 arcsec over periods of several hours. For
two consecutive energy scans, a reproducibility of 1 meV or even better is currently
achieved.

At this stage, let us emphasize that the high degree of polarization of the undu-
lator beam, unfortunately, is not fully preserved downstream from the double crystal
monochromator, except for completely σ or π polarized beams. This is well illustrated by
numerical simulations of the polarization transfer in a Si (111) double-crystal monochro-
mator. Assuming that the undulator beam is 100% circularly polarized, we have plotted
in Figure 17.1a the Stokes–Poincaré polarization rates (S ′

1, S ′
2, S ′

3) of the monochromatic
X-ray beam over the whole energy range of interest (2–10 keV). Arrows were added
which point to the K-edge photoionization energy of several elements that are relevant
in the context of the results discussed in Section 17.3.

One immediately notices that the values of S ′
3 get dramatically low at ∼2.8 keV;

this makes XNCD or XMCD measurements nearly impossible at that energy because the
Bragg angle coincides with the Brewster angle (�B = 45◦

) at which the monochromator
acts as a perfect linear polarizer (S ′

1 = 1). There is another severe difficulty: Due to
differences in the diffracted intensities of the σ and π components of the electric field,
the Stokes–Poincaré component S ′

2 of the monochromatic beam is never zero, except at
�B = 45◦. Note that the intensity of the unwanted S ′

2 component can be as large as 20%
at 2.2 keV. Even worse: Whenever the helicity of the undulator beam is reverted, not
only the circular polarization of the monochromatic X-ray beam is altered, but there is
also a systematic inversion of S ′

2, whereas S ′
1 remains unchanged. This may dramatically

affect XNCD experiments on biaxial crystals because the weak gyrotropic XNCD signal
can be totally masked by a much stronger linear dichroism signal [8, 43]. One may face
some similar problem with uniaxial crystals whenever the optic axis is not set parallel
to the X-ray wavevector k.
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Figure 17.1. (a) Calculated polarization rates of the monochromatic X-ray beam transmitted by

a Si (111) double-crystal monochromator under the assumption that the incident X-ray beam was

100% circularly polarized. Arrows point to the energies of the absorption K-edges of selected

elements ranging from phosphorous (P) to zinc (Zn). (b) UHV-compatible diamond QWP chambers;

highly accurate rotations or the diamond plate are possible along two orthogonal axes.
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This problem is not so crucial in the soft X-ray range where grating monochromators
operated at grazing incidence are most often used due to the lack of suitable crystals for
experiments below 2 keV. Unfortunately, grating monochromators have a rather poor
efficiency; this is the price to be paid for their excellent polarization transfer.

A full characterization of the polarization state of the monochromatic beam is needed.
This is why beamline ID12 was equipped with a pair of UHV-compatible quarter-
waveplate (QWP) devices operated with diamond single crystals [42]. A picture of such
a device is shown in Figure 17.1b. Regarding X-ray linear dichroism (XLD) experiments,
the QWP device can convert a monochromatic, circularly polarized X-ray beam into a
linearly polarized beam with a freely adjustable azimuthal angle of the polarization vec-
tor [38]; a fast piezoactuator makes it easy to switch from one linear polarization to the
orthogonal one by inverting the sign of the angular offset �θQWP which is of the order
of only 100 arcsec. Flipping the polarization vector several times for each data point of
a spectral scan is quite helpful because the dichroism measurements get less sensitive to
low-frequency instabilities of the source.

17.2.2. Detection Modes

XNCD spectra of thick single crystals cannot be recorded in the transmission mode
owing to their excessive absorption; in practice, it is much more convenient to measure
the total X-ray fluorescence yield. As illustrated with Figure 17.2a, the XNCD cube
chamber is equipped with eight Si-photodiodes collecting the fluorescence photons over
a large solid angle [44]. A backscattering geometry proved to be most convenient since
it makes it possible to (i) set the optical axis of the crystal perfectly collinear with the
wavevector k of the incident X rays and (ii) rotate the crystal around the direction of
k. The latter rotation R(χ ) was found crucial for OA experiments on biaxial systems.
Regarding nonreciprocal dichroisms on ME systems, the sample was inserted inside the
bore of a superconducting electromagnet so that a magnetic field H and an electric field
E both parallel to the wavevector k could be applied simultaneously for ME annealing
or poling.

Recall that raw experimental data should be carefully corrected for fluorescence reab-
sorption [45, 46], as well as for amplitude distortions caused by multiple fluorescence
lines or scattering within the sample. Unfortunately, the detection sensitivity, tends to
deteriorate at low excitation energy (i.e., below 3 keV) due to poor fluorescence yields:
this is why other detection schemes based on total or partial electron yields are most
often preferred in the soft X-ray regime. Such detection modes, however, become sur-
face sensitive due to the small escape depth of photoelectrons; this may complicate the
interpretation of XNCD experiments. For measurements in the gas phase or with nano-
metric thin films, transmission measurements remain the best choice in the soft X-ray
range.

Note that beamline ID12 is equipped with an UHV compatible, high resolution
Bragg-type analyzer operated in the Johann geometry [44]. Resonant inelastic X-ray
scattering (RIXS) or X-ray fluorescence photons emitted along the vertical (Z ) axis are
analyzed using an Si crystal (100 mm in diameter) spherically bent to a fixed curvature
radius (R = 1 m) defining the Rowland circle on which the sample source point as
well as the detector have to be both located. For Bragg angles near 45◦, the analyzer
works again as a linear polarimeter selecting the polarization component normal to the
diffraction plane; as illustrated in Figure 17.2a, the rotation RZ around the vertical axis
makes it possible to explore a possible anisotropy of the emission channel around this
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polarizations of the luminescence. (See insert for color representation of the figure.)

axis. RIXS can be turned into a very rich source of additional information, although it
suffers from dramatically low count rates and poor signal-to-noise ratios in comparison
with the total fluorescence yield detection mode.

Actually, the relaxation mechanisms for the deep core hole created by the absorp-
tion of an X-ray photon are quite complex and involve both radiative and nonradiative
processes. We like to draw attention onto the strong optical luminescence that may be
excited by X rays in some systems (e.g., rare earth organometallic complexes). Actually,
we produced the first experimental evidence of the circular polarization of the X-ray
excited optical luminescence (XEOL) of a solution of the Eu(III)(�-FACAM)3 complex
(1) in which �-FACAM is a 3-trifluoroacetyl-�-camphorato] leavogyre chiral ligand [47].
The experimental setup used for these experiments is shown in Figure 17.2c. Note that
the same experimental configuration could possibly be used to detect a magnetochiral
dichroism in XEOL emission, as predicted by Wagnière [50] and first observed by Rikken
and Raupach in 1997 [49]. Unfortunately, much of the element selectivity expected from
XEOL-detected X-ray excited spectra very often gets lost due to the strong excitation of
luminescence by secondary photoelectrons [48].
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Finally, we have reproduced in Figure 17.2b a schematic view of the X-ray reflec-
tometer which was used to measure the vector part of OA in hexagonal ZnO (zincite)
[23]. The whole reflectometer chamber can be rotated around the horizontal axis (Y )
perpendicular to the diffraction plane [X, Z ] defined with respect to the fixed laboratory
frame {X,Y,Z }, whereas {x,y,z } is a reference frame attached to the crystal. For the (300)
reflection of zincite, the Bragg angle (θS ) decreases from 43.19◦ to 42.75◦ when the
photon energy is scanned over the Zn K-edge XANES range (9654.6–9434.7 eV). For
such small angular changes, there is no need for an expensive 2θ goniometer: One may
simply use a trivial translation (TZ ) of a narrow slit (δSz � 0.5 mm) in front of a large
size (70 × 12mm2) Si photodiode. An azimuthal rotation (�ψ) around the sample axis
was also implemented using a compact vacuum stepper motor attached to the sample
holder.

17.3. XDOA: ILLUSTRATIVE EXAMPLES

17.3.1. XNCD Experiments

17.3.1.1. Uniaxial Crystals. The existence of XNCD was unambiguously con-
firmed by careful measurements performed at the ESRF [4] on a levorotatory crystal of
α-LiIO3 belonging to the enantiomorphous crystal class 6. A fairly large XNCD signal
(up to 6% when normalized to the edge jump) was observed at the iodine L1 absorption
edge. At the L2 and L3 absorption edges, the XNCD signatures were less intense and
exhibited similar spectral shapes with the same sign; this is at variance with the com-
monly inverted sign of the XMCD spectra recorded at spin–orbit split edges. Whereas
spin–orbit and exchange splitting are the driving concepts in XMCD, this is obviously not
the case for the E1E2 interference terms contributing to XNCD. This interpretation was
fully supported by a comparison of the experimental spectra with ab initio simulations
carried out in the framework of the multiple scattering theory [51].

There is often a well-resolved pre-edge feature in the K-edge XANES spectra of
transition metals. This is a favorable energy range to detect XNCD because such pre-
edge signatures are currently assigned to 1s → 3d quadrupolar transitions [28]. As a
typical example [52], we have reproduced in Figure 17.3a the Ni K-edge XAS and XNCD
spectra of enantiomorphous single crystals of an α-NiSO4 · 6H2O. These uniaxial crystals
(with four formula units per unit cell) should belong to the enantiomorphpous tetragonal
space groups P41212 or P43212 [53]. Hexahydrate nickel sulfate has long been known
to show natural OA only in the crystalline state, due to the chiral arrangement of the
water molecules; there are typically four Ni2+(H2O)6 octahedrons located along a screw
axis parallel to the tetragonal c axis which is the optic axis. Enantiomorphous crystals
of hexahydrate nickel sulfate were also used by Hou and Bloembergen to demonstrate
the existence the para-magnetoelectric (pME) effect [54], and, more recently, by Rikken
and Raupach to prove the existence of the magnetochiral dichroism in absorption [55].

As illustrated with Figure 17.3a, the maximum amplitude of the Ni K-edge XNCD
signal normalized to the edge jump is ∼1%. Curiously, this maximum is not found in the
pre-edge region but at somewhat higher energy, whereas the XNCD spectrum extends
well above the absorption edge. This is differing from all XNCD spectra recorded so far
on chiral transition metal complexes. In order to make sure that this XNCD spectrum
had to be assigned to the E1E2 interference term, XNCD spectra were recorded for
several orientations of the crystal—for example, on setting the optic axis either parallel
or perpendicular to the X-ray wavevector. From symmetry considerations [51], it can
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be anticipated that, for point group D4, the angular dependence of the XNCD signal
should vary as 3 cos2 θ − 1, where θ denotes the angle between the X-ray wavevector
k and the optic axis of the crystal. This is confirmed with Figure 17.3a: The orthoaxial
XNCD spectrum recorded with the X-ray wavevector perpendicular to the optic axis
(θ = π/2) is not only twice weaker but, interestingly, it has the opposite sign with
respect to the XNCD spectrum recorded in the parallel configuration. A similar result
had previously been reported by Peacock et al. [56], who measured at the ESRF the
angular dependence of the XNCD spectra of the “propeller”-like cobalt complex 2 =
CoPPL = {�, �[Co(en)3Cl3]}2 · NaCl · 6H2O [57].

Since the sign of the XNCD signal can change for different orientations of the
optic axis, then one should be able to identify one peculiar orientation of the optic
axis for which the contribution of the E1E2 interference terms should vanish; this pre-
cisely happens when the optic axis is set at the magic angle (54.73◦) from the X-ray
wavevector. Clearly, the only chance to detect a hypothetical E1M 1 contribution was
to record XNCD spectra in this geometry. This stimulated us to perform a whole series
of angle-dependent XNCD measurements with enantiomorphous crystals. The results are
illustrated in Figure 17.3b, where we focus on the Ni pre-edge range. We found a very
weak XNCD signal that may reasonably be assigned to the E1M 1 interference term,
the corresponding signals have the opposite sign for enantiomorphous crystals, but their
amplitudes are as small as 3 × 10−5 with respect to the edge jump. By comparison, the
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XNCD signatures recorded in the same energy range with the X-ray wavevector parallel
to the optic axis are ∼60 times larger; this made it possible for the first time to scale
properly the respective contributions of E1M 1 and E1E2 interference terms in the firm
X-ray range. Note that, for a given enantiomer, the E1M 1 and E1E2 signatures do not
peak at the same energy and have the opposite sign.

Interestingly, the E1M 1 signatures were observed essentially in the pre-edge range
in which the final states may be described by localized atomic states. This may perhaps
indicate that E1M 1 transitions become allowed in multielectron processes involving
valence electrons (e.g., shake up/down) and which are not subject to standard selection
rules. Also supporting such a tentative interpretation was the independent observation of a
very weak XNCD signal measured at the Co K-edge with a powdered sample of CoPPL.
This is illustrated with Figure 17.4a (bottom), where we compare the XNCD spectra of
the �-CoPPL complex recorded either with a single crystal or a powdered pellet; for the
sake of comparison, we also reproduced (Figure 17.4a, top) the XNCD spectra of single
crystals of both enantiomers. Recall that the E1E2 interference terms should vanish in a
powdered sample that had no preferred orientational order; we nevertheless measured a
weak residual XNCD signal in the pre-edge range, and this signal had the opposite sign
when compared to the XNCD spectrum of the single crystal of the same enantiomer.
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To fully exploit the enantioselectivity of the XNCD spectra, one would like to benefit
from the higher intensity of the E1E2 interference terms that unfortunately vanish in
powdered samples or solutions. We tried to break artificially the orientational isotropy
of space—for example, on dissolving a chiral compound in a liquid crystal aligned
in a high magnetic field [58]. For this pioneering test experiment, we used a complex
of iron (II)—that is, 3 = (Cp)(I)Fe∗(CO)[–PPh2R], where the absorbing atom (Fe∗)
was in the asymmetric environment of four different ligands: (i) a cyclopentadienyl
moiety η5-C6H5, (ii) an iodine atom (I), (iii) a carbonyl group (CO), and (iv) a chiral
tertiary phosphine (–PPh2R) with R = –NMeC∗HMePh. The stereoselective synthesis
of the corresponding diastereoisomers, first described in reference 59, was reproduced
for us at the university of Burgundy (Dijon, France). Both enantiomers were dissolved
in a commercially available liquid crystal selected for its high diamagnetic susceptibility
(Merck: MLC-6204). We have reproduced in Figure 17.4b the Fe∗ K-edge XANES
spectra of the two chiral solutions magnetically aligned in a 5T magnetic field oriented
along the direction of the X-ray wavector k. In the pre-edge range, we observed XNCD
signatures featuring the opposite sign for the two enantiomers. This experiment turned out
to be very delicate due to the poor solubility of the complex in the liquid crystal phase,
whereas long data acquisitions caused strong radiation damages in the intense ESRF
X-ray beam.

17.3.1.2. Biaxial Crystals. So far, the only successful attempt to extract a
gyrotropic dichroism in a biaxial crystal was performed at the ESRF using single
crystals of potassium titanyl phosphate (KTiOPO4 = KTP) [8, 43]. The origin of
gyrotropy in KTP (crystal class: mm2) is rather ambiguous [60]: It could originate from
acentric distortions of the Ti sites featuring one short (1.75 Å) and five long (2.05 Å)
Ti · · · O bonds; alternatively, it may be caused by a pseudohelical distribution of the K+
cations with a coordination index alternating between 8 and 9. In general, the phosphate
groups are not regarded as contributing to gyrotropic OA. As noted by Thomas et al.
[61], it is a property of crystal class mm2 that no gyrotropic effect should be observed
along the optic axis [001]; one may expect, however, quite significant CD signatures of
opposite sign along the conjugate directions [120] and [120] of KTP.

Experimentally, we faced a problem evocated in Section 17.2.1: The true gyrotropic
XNCD signal was overlaid by a strong, linear dichroism caused by the simultaneous
inversion of the spurious Stokes component S ′

2 of the monochromatic beam when the
helicity (S3) of the undulator radiation was inverted. From Figure 17.1a, one may expect
this effect to be particularly strong at the potassium K-edge. Recall, however, that the
gyrotropic XNCD signal should be invariant in a rotation R(χ) of the crystal around the
direction of the X-ray wavevector—that is, the conjugate directions [120] and [120] for
crystals cut parallel to the (120) and (120) planes, respectively. In contrast, the unwanted
linear dichroisms measured for rotation angles satisfying the condition �χ = 90◦ should
cancel out. Thus, it turned out to be possible to recover the gyrotropic signal on simply
averaging all together the dichroism spectra recorded for χ0, χ0 + 45◦, χ0 + 90◦, χ0 +
135◦. The results are displayed in Figures 17.5a and 17.5b, which confirm the opposite
sign of the gyrotropic XNCD signatures measured with KTP crystals cut parallel to
the (120) and (120) planes, respectively. The gyrotropic XNCD signal measured in the
titanium pre-edge range (∼0.4%) was found much stronger than the signal (∼0.1%)
measured in the potassium rising edge.

Since the gyrotropic XNCD signal was expected to be even weaker at the phospho-
rous K-edge, more sophisticated measurements were needed. Taking full advantage of a
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measured along the conjugated directions [120] and [120], especially in the pre-edge range. The

weak gyrotropic signals were burried in much stronger linear dichroisms that were led to cancel

out in averaging spectra recorded on rotating the crystal by 90◦ around the direction of the

wavevector k.

motorization of rotation R(χ ), the X-ray fluorescence yield was recorded over a whole χ -
scan for each energy of the monochromator and both helicities of the undulator beam. As
illustrated in Figure 17.6A(a), the periodic plots I(±)

F (χ) obtained for the two helicities of
the undulator beam did exhibit a constant phase shift, which was the signature of a spu-
rious linear dichroism. On Fourier filtering the CID signal [Figure 17.6A(b)], it became
possible to extract the Re and Im parts of the linear dichroism [Figure 17.6B(a)] or resolve
even weaker components—for example, due to quadrupolar anisotropies. We identified
two Fourier-filtered components that were rotation-invariant: The first one was perfectly
anticorrelated for measurements carried out with KTP crystals cut parallel to the (120)
and (120) planes, whereas the second one did not change its sign [see Figure 17.6B(b)].
The first component, which had a maximum amplitude of ∼0.08%, was assigned to a true
gyrotropic XNCD signal. The second one, which is slightly weaker (0.05%), was tenta-
tively assigned to a nonvanishing contribution of the second-order term uv ′−vu ′ [8, 43].

In summary, we established that in KTP the crystal asymmetry was strong enough
to induce a mixing of either p and d , or s and p atomic-like, quasi-bound final states
not only at the titanium or potassium coordination sites, but at the phosphorus sites as
well. Fourier filtering methods applied to extended χ scans also revealed an interesting
potentiality that stimulated further applications in refined linear dichroims studies [62].
This review would be incomplete if we did not mention that Tanaka et al. [19] failed
to detect any gyrotropic signal at the oxygen K-edge in the soft X-ray range using KTP
crystals cut parallel to the (120) and (120) planes.
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17.3.1.3. Soft XNCD. The first experiment that demonstrated a clear possibility
to measure the contribution of the E1M 1 interference terms at the carbon K-edge was
performed by Turchini et al. at the ELLETRA synchrotron radiation source [18]. Since
this experiment on methyloxirane was carried out in the gas phase using the transmis-
sion data acquisition mode, there was no ambiguity left regarding any contamination by
the E1E2 mechanism or a possible confusion with another mechanism causing circular
asymmetry in photoemission. As discussed by Alberti et al., photoabsorption and photoe-
mission processes do not probe the molecular asymmetry in the same way [63]: Whereas
in photoemission the photoelectrons feel essentially the asymmetry of the molecular
potential in final states, CD in photoabsorption raises the open question of a molecu-
lar orbital structure for deep core electrons with its corollary that core electrons may
not be fully localized at a given atomic site. Whereas the molecular picture does not
look very convincing to describe inner-shell electrons with binding energies in excess
of 2 keV, neither is a pure atomic picture fully satisfactory to describe the wavefunc-
tions of electrons with binding energies below 500 eV. What makes the investigation of
the E1M 1 interference terms exciting is that the corresponding transition probabilities
become allowed in a molecular picture. Interest in this subject was stimulated by ab initio
calculations performed initially by two groups [64, 65]. In this context, the observation
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of a nonvanishing E1M 1 signal even at the K-edge of nickel shed a new light on this
open question in reinforcing the role of relativistic effects and/or multielectron processes
in the description of the final states.

The interest in soft XNCD was stimulated by the discovery of some enantiomeric
excess (ee) of l-type amino acids in the Murchinson meteorite [66] and the concurrent
idea that homochirality was possibly triggered by VUV or soft X-ray irradiation in
space [67]. The first successful experiment carried out on so-called biomolecules was
done at SPring-8 (Japan) by Nakagawa and his colleagues [19, 68]: They measured the
drain current generated by soft X-rays in d- and l-serine thin films (∼300 nm thick)
evaporated in vacuum on a gold-coated BeCu substrate. This early experiment called
for a few question marks—for example, regarding a possible enantioselective interaction
with the metal surface as observed for cystine and glutathion on gold [69], or l-alanine
on copper [70]. One might also worry about the surface sensitivity of the total electron
yield detection mode. As in the experiment of Turchini et al. on methyloxirane, there
was finally a need to remove from the spectra a polarization-dependent background, the
origin of which was unclear. In more recent work by the same group [71, 72], thin films
of amino acids were evaporated on SiN or SiC membranes whereas the data acquisition
was performed in a safe transmission mode. We have reproduced in Figure 17.7 the
oxygen K-edge XANES and XNCD spectra of d- and l-serine [71]. Given that there is
no apparent orientational order of the adsorbed chiral molecules, it seems highly probable
that the soft XNCD signatures have to be assigned to scalar E1·M 1 interference terms.
This interpretation was supported by recent ab initio simulations [73, 74].

17.3.2. Gyrotropic Dichroisms in REXS and RIXS

17.3.2.1. Vector Part of OA in Zincite. Crystal classes 4mm , 3m , and 6mm
have long been regarded as optically inactive; this is contradicted by Table 17.1, which
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indicates that their OA tensor should have an irreducible part transforming as a polar
vector in O3. Such a puzzling OA already stimulated the curiosity of Voigt in 1905
[75] and that of Fedorov 50 years later [76]. However, as recently as 1978, Ivchenko et
al. measured the OA of an hexagonal crystal of cadmium sulfide (CdS) in the exciton
resonance region where OA effects are enhanced [77, 78]. More recently, Graham and
Raab pointed out that the vector part of OA should affect reflectivity measurements at
optical wavelengths, especially at incidences angles close to 45◦ [22]. We suggested in
Section 17.1.5 that this effect could be detected in the coherent resonant elastic X-ray
scattering regime at Bragg angles near 45◦.

The first experiment of this type was performed at the ESRF using a high-quality
single crystal of zincite (ZnO) featuring the hexagonal structure of wurtzite [23]. Recall
that ZnO has long been known to be pyroelectric [79]. We decided to look at the strong
reflection on the (300) crystal planes because the Zn atoms contribute for 80% of the
structure factor of this reflection characterized by a Bragg angle varying from 43.13◦ to
42.69◦ over the whole energy range of the Zn K-edge XANES spectrum. Hereafter, one
will prefer the now commonly accepted acronym DANES for diffraction anomalous near
edge structure. A brief description of the reflectometer used to record the DANES spectra
was already given in Section 17.2.2. The crystal c axis was kept strictly perpendicular
to the scattering plane. Under such conditions, the angular width of the (300) reflection
was only 5.4 arcsec.

The CID spectra reproduced in Figire 17.8A(a) were obtained from DANES spectra
recorded with (left, right) circularly polarized incident photons. As pointed out by Graham
and Raab [22], the sign of the CID spectra should be inverted if the angle between the c
axis of the crystal and the reflection plane is rotated from +90◦ to −90◦. This is nicely
confirmed by Figure 17.8a. In contrast, such a 180◦ rotation should leave any spurious
linear dichroism unchanged. In Figure 17.8A(b), we show that the noninverted part of
the CID spectra matches fairly well a rescaled XLD spectrum which was simultaneously
obtained in monitoring the fluorescence yield detected by an Si photodiode operated in
the backscattering geometry [23]. This is consistent with the fact that the monochromatic
X-ray beam should be contaminated with a weak S′

2 component, the amplitude of which
was found to be ∼2% at 9.7 keV.

17.3.2.2. CID in the RIXS Regime. In a subsequent project, we tried to reproduce
the same experiment, but on measuring inelastic scattering rather than elastic scattering of
X rays. Our goal was to get rid of the constraint to find a suitable reflection with a Bragg
angle near 45◦: since RIXS photons are emitted in the whole solid angle, the direction of
the analysis could be kept fixed—for example, at 90◦ from the wavevector of the incident
X-ray wavevector. For this experiment, we used the high-resolution fluorescence analyzer
sketched in Figure 17.2a. The geometrical arrangement of the zincite crystal was basically
the same as in the previous experiment: the c axis was set perpendicular to the plane
of incidence whereas the angle of incidence was now strictly 45◦. Emission along the
vertical axis could now be analyzed both in energy and polarization using a spherically
bent Si(440) crystal analyzer since the Bragg angles were respectively 48.37◦ and 48.55◦

for the Kα1 and Kα2 fluorescence lines of zinc.
High-resolution XANES spectra that were recorded at the Zn K-edge with the ana-

lyzer tuned to the energy of the Zn Kα1 line are reproduced in Figure 17.8b. In contrast,
the sensitivity of the XCID experiment was rather frustrating: We found a weak signal
peaking at strictly the same energies (marked with arrows) as in the previous experiment
and that could be assigned to the expected polar OA, but the signal-to-noise ratio was
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the XCID spectra recorded for ψ = ±π/2, but it is unfortunately burried in a large statistical noise.

dramatically poor. This failure could have been anticipated: Whereas the intensity of the
Zn Kα1 fluorescence line nicely reproduces the XANES, it cannot reproduce the vector
part of OA which does not contribute to any absorption. The weak signal that reproduces
the vector part of OA should be due to a resonant Raman scattering (RRS) process that
is very weak at the energy of the Kα1 line. In this energy range, we are essentially
analyzing fluorescence photons that do not carry any signal but contribute to the huge
statistical noise seen by the detector. It is our guess that the result would have been more
convincing if the analyzer had been operated in the energy range of the Kβ lines of zinc.

On the other hand, fluorescence emissions and RIXS processes are both sensitive to
the pseudo-deviator part of OA. This is illustrated in Figure 17.9 with an early experi-
ment performed with the single crystal of α-lithium iodate which we used to reveal the
existence of a strong XNCD signal at the L1-edge of iodine [4]. The emission spectra
were analyzed near the Lβ3 fluorescence line of iodine peaking at 4313.4 eV: In the
corresponding process, electrons from the M shell are filling the core hole created by the
photoionization process in the L shell. We used a Si (620) crystal analyzer to catch the
Si(311) asymmetric reflection with a large Bragg angle of 61.36◦. To maximize the solid
angle covered by the analyzer, the optic axis of the crystal was tilted by ∼20◦ with respect
to the wavevector of the incident, circularly polarized, X-ray beam. As illustrated with
Figure 17.9a, only a three-dimensional plot can give a full picture of the RIXS intensity
as a function of both the excitation and emission energies of the X-ray photons [80]. The
excitation energy was scanned over the whole range of the iodine L1 XANES spectrum
which exhibits a strong white line assigned to 2s → 5p transitions. On the high-energy
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side of the Lβ3 fluorescence line, there is clearly an energy dispersive satellite which
looks typical of a RIXS process.

The emission spectum reproduced in Figure 17.9b was recorded at a discrete exci-
tation energy (5207 eV) that did correspond to the maximum of the XNCD signal
as measured in absorption process [4]. The XCID emission spectrum reproduced in
Figure 17.9b exhibits a strong gyrotropic signal not only at the emission energy of the
Lβ3 fluorescence line, but over the whole range of the RIXS satellite as well. To the
best of our knowledge, this is the first example of a gyrotropic effect measured in X-ray
emission spectra [81]. Since the dispersive satellite is usually regarded as a typical sig-
nature of multielectron excitation processes, this experiment suggests that multielectron
processes could enhance both E1M 1 and E1E2 transition probabilities.

Unfortunately, with a Bragg angle of 61.36◦, the crystal analyzer could not be used
as a perfect linear polarimeter, and a reliable polarization analysis of the X-ray emission
would have been difficult in this configuration. Nevertheless, we pointed out elsewhere
[25] that a careful analysis of the linear polarization of emission spectra combined with
the inversion of the Stokes component S ′

2 would give us access to the dispersive terms
of the gyration and OA tensors that cause optical rotation. Even more important, RRS
spectra could open a new way to measure the OA properties of light elements (C,N,O)
without the UHV constraints and surface sensitivity of soft X rays.

17.3.3. X-Ray Magnetochiral Dichroism

In this section, we are concerned with systems in which parity (I ) and time-reversal (�)

symmetries are broken while the structure remains invariant in the combined action of
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the product I �. This condition is implicitly satisfied in molecular magnets made of fully
resolved chiral building blocks [82]. More generally, it was recognized by Dzyaloshinski
that this condition precisely characterized linear ME systems [83]. This stimulated us to
try to detect the X-ray magnetochiral dichroism (XMχD) of a single crystal of chromium
sesquioxide (Cr2O3) cooled down to its antiferromagnetic (AFM) phase [84–86]: this is
the generic example used by Dzyaloshinski to predict the existence of a ME susceptibility
that was sucessfully measured by Astrov [87]. It was recognized by several authors that
such a ME susceptibility was another consequence of spatial dispersion and should give
rise to OA effects explicitly related to E1E2 interference terms [88–91].

A prerequisite to the detection of an XMχD signal in Cr2O3 was the creation of
ME single domains within the crystal: this turned out to be possible after a proper
ME annealing or poling procedure [92] which consisted of cooling slowly the crystal
below the Néel temperature (TN = 307 K) while applying parallel or antiparallel electric
and magnetic fields oriented along the crystal c axis set itself parallel to the X-ray
wavevector (E ‖ H ‖ k). Keeping in mind that the magnetochiral dichroism is a property
of unpolarized light, we tried to generate artificially an unpolarized X-ray beam by the
incoherent superposition of fluorescence detected spectra recorded consecutively with
right- and left-circularly polarized incident photons: F0 = F (I RCP

0 ) + F (I LCP
0 ).

The Cr K-edge XMχD spectra displayed in Figure 17.10a were obtained from the
difference of such polarization averaged XANES spectra recorded for 180◦ domains
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with powdered samples cooled down below the Curie temperature (Tc = 16 K).
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grown under the condition of time-reversality after proper ME poling. All spectra were
measured at 50 K. For the sake of comparison, in Figure 17.10a we included XANES
spectra recorded at the same temperature for an equidomain crystal: Whereas the first
trace corresponds to the raw experimental data, we also show on the same plot a numer-
ically deconvoluted XANES spectrum that has an artificially enhanced energy resolution
because the broadening effects due to the core–hole lifetime were partly compensated.
Given that rotational isotropy of space is broken when single domains are grown under
the conditions of time-reversality after ME poling, we suspected that XMχD spectra
could be recorded with powdered samples. This is confirmed by Figure 17.10a: The
XMχD spectrum of a powdered pellet of Cr2O3 looks very similar to the XMχD spec-
trum of the single crystal, except that the dichroism intensity was reduced by a factor
close to 6 in the powder, in perfect agreement with theoretical predictions [58].

It is well documented that there are 58 magnetic groups for which ME effects are
allowed. However, only 31 out them are compatible with the existence of a magnetochiral
dichroism [58]: they all have in common the specific property that the ME susceptibility
tensor should have nonzero off-diagonal terms [92, 93]. Much of our difficulties started
when we realized that the magnetic group 3

′
m ′ quoted in texbooks for the ME phase of

Cr2O3 was not such a group compatible with XMχD. Having carefully checked the full
reliability of our XMχD spectra, which turned out to be perfectly reproducible under
various experimental conditions, we found that the only magnetic group that would rec-
oncile all experimental observations would be 3

′
. Its lower symmetry would reflect the

existence at the chromium sites of unquenched orbital angular moments—for example,
due to a weak magnetic polarization of the oxygen atoms. Such a small magnetic pertur-
bation would be too small to be seen by neutron scattering; in contrast, it can easily be
detected by Cr K-edge X-ray dichroism measurements that do not probe the spin mag-
netization but only the orbital magnetization. This may not be an isolated example of
discrepancy between neutron scattering and other methods regarding the assignment of
the true ME group [94]. Within our interpretation, the ME susceptibility tensor of Cr2O3

would keep unchanged diagonal terms reflecting the antiferromagnetic arrangement of the
spin postulated by Dzyaloshinski, plus weak off-diagonal terms characterizing spin–orbit
interactions and a second-order orbital ME susceptibility.

XMχD spectra were also measured at the Photon Factory on GaFeO3 by Tokura
and his colleagues [95–97], who introduced a different terminology (X-ray directional
dichroism) for their measurements at the Fe K-edge. Since this system is weakly fer-
rimagnetic, there was no need for ME annealing. Interestingly, the magnetic group of
GaFeO3 (m ′2′m below Tc � 205 K) belongs to the 31 ME groups that are compatible
with XMχD but also with the existence of ferrotoroidic spin order.

Recently, we revisited a series of prospective test experiments performed in 2002 on
chiral molecular magnets—that is, molecular systems in which, according to Barron [98],
“chirality and magnetism shake hands .” We concentrated our efforts on the 2-D bimetal-
lic oxalate polymeric networks 4 = {[NiII CrIII (C2O4)3][Fc CH2NBu3]}n with chemically
resolved (�) or (�) absolute configurations of the chiral [Cr(C2O4)3]3− anions. Let us
emphasize that all experiments reported below were carried out on powdered samples.
Below the Curie temperature (Tc � 16 K), three dichroisms were tentatively extracted at
the chromium K-edge:

�FXMCD = [F (I LCP
0 , H ↑) − F (I RCP

0 , H ↑)]/2

+[F (I RCP
0 , H ↓) − F (I LCP

0 , H ↓)]/2,
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�FXNCD = [F (I LCP
0 , H ↑) − F (I RCP

0 , H ↑)]

+[F (I LCP
0 , H ↓) − F (I RCP

0 , H ↓)],

�FXM χD = [F (I LCP
0 , H ↑) + F (I RCP

0 , H ↑)]

−[F (I LCP
0 , H ↓) + F (I RCP

0 , H ↓)].

We have reproduced in Figure 17.10b these dichroisms properly normalized with
respect to the edge jump [99]. We easily measured a rather weak XMCD signal (0.4%)
that shows up mainly in the edge; as expected, this dichroism did remain strictly identical
for both enantiomers. Although the sample was a powdered pellet, we observed a well-
structured, enantioselective XNCD signal (0.2%) in the pre-edge; this was not totally
unexpected since the magnetization of the sample breaks down the isotropy of space
and makes it now possible to detect E1E2 interference terms. We finally succeeded in
extracting a very weak, enantioselective magnetochiral dichroism (0.075%) that again
did show up in the edge as the XMCD signal. Strong baseline distortions, most probably
caused by severe radiation damages over long data acquisition times, did hamper the
preliminary data analyses [99]. The intensity of the XMχD signal measured in a powdered
sample does not look considerably less intense than the “strong” magnetochiral signal
measured at optical wavelengths with single crystals [100].

17.4. UNIFYING THEORIES, FIRST PRINCIPLES SIMULATIONS

17.4.1. General Remarks

At the microscopic level, the X-ray absorption cross section including electric dipole and
quadrupole transitions is [28]

σ(�ω) = 4π2α0�ω
∑

f

∣∣∣∣〈f |e · r + i

2
(e · r)(k · r)|g〉

∣∣∣∣
2

× δ(Ef − Eg − �ω) (17.15)

where α0 is the fine structure constant, |g〉 the ground state, |f 〉 the final states, Eg and
Ef their energies, and �ω the photon energy. The electric dipole–quadrupole crossed
term is

σE1E2 = 2π2α0�ωi
∑

f

[〈f |e · r|g〉∗〈f |e · rk · r|g〉 − c.c.]

× δ(Ef − Eg − �ω),

where c.c. stands for complex conjugate. The time-reversal operator � satisfies
〈�φ|�ψ〉 = 〈φ|ψ〉∗. Therefore,

〈f |e · r|g〉∗ = 〈�f |�e · r|g〉 = 〈�f |e∗ · r|�g〉,

where we used �e · r = e∗ · r�. Magnetic energies are negligible with respect to the
experimental resolution of X-ray spectra. Therefore, we can consider that |f 〉 is time-
reversal invariant and we only have to consider the time-reversal symmetry of the ground
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state. We write |g〉 = |g+〉 + |g−〉, where |g±〉 is even and odd with respect to time-
reversal. Thus,

T = i [〈f |e∗ · r|�g〉〈f |e · rk · r|g〉 − c.c.]

becomes the sum of three terms T = T ++ + T +− + T −−, where

T ++ = i [〈f |e∗ · r|g+〉〈f |e · rk · r|g+〉 − c.c.],

which is time-reversal invariant, corresponds to XNCD.

T +− = i [〈f |e∗ · r|g+〉〈f |e · rk · r|g−〉
− 〈f |e∗ · r|g−〉〈f |e · rk · r|g+〉 + (e ↔ e∗)],

which is time-reversal odd, gives rise to nonreciprocal linear dichroism and magnetochiral
dichroism. The term T − − is also time-reversal even, but it is generally much smaller
than T ++. A similar analysis was carried out by van der Laan [101]. The term describing
XNCD can be written as the scalar product of Y2(k) with a second-rank spherical tensor
obtained by coupling 〈g |Y1(r)|f 〉 and 〈f |Y2(r)|g〉 [51]. This rank-2 tensor is parity-
odd because it is the product of an odd electric dipole transition with an even electric
quadrupole transition. This is in full agreement with Table 17.1. A similar discussion
could be extended to E1M 1 terms.

17.4.2. Sum-Rules and Effective XDOA Operators

There may be a chance to get a deeper insight into the physical origin of XDOA if
one succeeds in relating the transition probability ∝ E1E2 to some ground state (|g〉)
observable—that is, to some effective operator. This is precisely the aim of the edge-
selective spectroscopic sum rules. In 1998, Natoli et al. were the first to question about
the physical content of the XNCD integral [51, 102] :

�E1E2 =
∫

�E

σE1E2(E )

E 2
dE ∝ 〈g |N(2)(�, �′)|g〉, (17.16)

where σE1E2 denotes the X-ray absorption cross section of the E1E2 interference terms
in a finite energy range �E that should include, whenever this is relevant, the two
partners (j+, j−) of a spin–orbit split edge. On the right-hand side, � refers to the final
angular momentum of the electric dipole (E1) transition, whereas �′ refers to that of the
quadrupole transition (E2). The monoelectronic selection rules imply that � and �′ have
opposite parities so that the rank-2 operator N(2)(� �′) probes the mixing of orbitals of
different parity in final states. Indeed, there is the perennial problem of XAS that, due
to the core hole perturbation, |g〉 cannot be a true ground state [58, 103]: for brevity,
we shall forget about this problem here and we shall concentrate on the physical nature
of the operator N. Actually, it can be shown that Eq. (17.16) includes all dichroisms
introduced in Section 17.1.3 if one rewrites the right-hand side in a tensor form [58]:

�E1E2 =
3∑

b=1

b∑
β=−b

∑
θ=±1

(−1)βT(b,β)
β N(b,θ)

−β . (17.17)
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Here N(b,θ)
−β are rank-b spherical tensors that describe OA in parity nonconserving sys-

tems, whereas T(b,θ)
β are spherical tensors of same rank that characterize the polarization

states of the incident X-ray photons. All spherical tensors were systematically split into
their time-reversal even (θ = 1) and time-reversal odd (θ = −1) parts.

Carra et al. [104, 105] were the first to realize and prove that all operators N(b,θ)
−β

could be built from a triad of mutually orthogonal vector operators that had a clear
physical meaning:

1. n = r/r is a time-reversal even , polar vector associated with an electric dipole
moment.

2. L is the time-reversal odd axial vector of the orbital angular momentum.

3. � = [(n × L) − (L × n)]/2 is a toroidal vector that is odd with respect to both
inversion I and time-reversal �.

Interestingly, � was identified with the orbital anapole moment [106–108]. Recall that
the concept of anapole was introduced in 1958 by Zel’dovich [109] to describe parity-
violating interactions.

The next step concerned the identification of the effective operators of natural OA.
This turned out to be possible simply on looking at the irreducible spherical tensors of
rank n contributing to N:

• At order n = 0, N(0,1) = L · � ≡ 0. The scalar term thus vanishes as anticipated
for E1E2 cross sections.

• At order n = 1, N(1,1) = L × � ∝ r. The polar vector part of natural OA is
associated with an electric dipole, a result that is fully consistent with the existence
of pyroelectic or even ferroelectric ordering.

• At order n = 2, N(2,1) = L ⊗ � = [L, �]. This term, written as either a dyad prod-
uct or a commutator, defines a spherical tensor that looks like a charge quadrupole
with odd parity with respect to inversion.

It becomes immediately transparent that, at K-edges, the effective operator of XNCD
is the dyad product of two vectors that are time-reversal odd and are both related to
orbital magnetism. Indeed, a similar exercise makes it possible to identify which are the
effective operators of the X-ray ME dichroisms:

• At order n = 1, N(1,−1) = �. At a K-edge, the magnetochiral (directional) dichro-
isms are proportional to the projection of the orbital anapole moment along the
direction of the X-ray wavevector.

• At order n = 2, N(2,−1) = L ⊗ r = [L, r]. This dyad product which is odd with
respect to inversion and time reversal is the effective operator for all nonreciprocal
linear ME dichroisms [110].

• At order n = 3, N(3,−1) = [[L, L], �]. This rank-3 tensor could be seen as a
small charge octupole with odd parity with respect to I and �; it merely adds a
second-order correction to all nonreciprocal dichroisms.

Another presentation of the sum rules and many details on the multiplet approach
can be found in van der Laan’s review paper [111]. We have developed elsewhere
a detailed discussion of the practical conditions under which such effective operators
could contribute to X-ray dichroism [58]. Clearly, the XMχD sum rule provided us with
a unique opportunity to quantify the expectation value of the orbital anapole moment
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TABLE 17.2. Expectation Values of the Effective XNCD Operators [58]

Compound: [�]-CoPPL [�]-CoPPL KTP [120] KTP [120] LiIO3 TeO2

Absorption edge: Co K-edge Co K-edge Ti K-edge Ti K-edge I L1-edge Te L1-edge
〈Effective operator〉: 〈L ⊗ �〉 〈L ⊗ �〉 〈L ⊗ �〉 〈L ⊗ �〉 〈L ⊗ �〉 〈L ⊗ �〉
Atomic units: +0.424 -0.409 +0.016 -0.011 +0.50 +0.77

in Cr2O3 : 〈�z 〉 ≈ 0.03 a.u. This is a fairly small value in comparison with the values
currently retained for spin anapoles [58]. This result fully supports our remark that it
would be very difficult—if not simply impossible—to access the orbital (off-diagonal)
components of the ME tensor using conventional ME susceptibility measurements. We
summarized as well in Table 17.2 the expectation values of the effective XNCD operators
deduced from selected experiments carried out at the ESRF.

At this stage, one may still ask whether the sum-rules could be extended to the
E1M 1 interference terms. This exercise was ultimately conducted by Marri and Carra
with the prospect of eventual applications at optical wavelengths [112]. It revealed that
the effective operators were basically the same as for the E1E2 interference terms, but
with the major difference that one had to deal with two-electron operators. This was a
key requirement to obtain a nonvanishing pseudoscalar term for natural OA.

17.4.3. Ab Initio Calculations

17.4.3.1. E1E2 Interference Terms. First principle simulations of XNCD spectra
were essential to give credit to our speculation that natural XDOA was dominated by
the E1E2 interference terms, at least in the firm X-ray regime [4, 51, 102]. So far, most
calculations were performed in the framework of the theory of multiple scattered waves
(MSW) as adapted by Natoli et al. to simulate XANES and extended X-ray absorption
fine structure (EXAFS) spectra [113–115]. Starting from an arbitrary partition of space
into local (muffin-tin) atomic potentials immersed in a constant interstitial potential of
spherical symmetry, one is interested in calculating the wavefunction of an excited pho-
toelectron scattered by the potentials of the atoms surrounding the absorbing element, as
well as by the own potential of the absorber. This approach was found to suit remarkably
well the needs of X-ray absorption spectroscopy even though it suffers from serious lim-
itations to describe covalent chemical bonding in such a cluster of atoms. An extended
formulation of the optical theorem led us to rewrite the XNCD cross section at a K- or
L1-edge as

σE1E2 ∝ D1Q2Re[
∑

ν

Y ν∗
2 (k̂)τ 00(�, �′; 2ν)], (17.18)

where D� and Q�′ are the dipole (E1) and quadrupole (E2) radial integrals in the pho-
toionization process of the 1s or 2s core level with the selection rules � = 1 and �′ = 2,
respectively. In Eq. (17.18), Y m

� (û) are spherical harmonics (with the Condon–Shortley
phase convention) evaluated at the angles of the unit vector û. This reminds us that the
angular dependence of the XNCD signal is to be described by rank-2 spherical tensors.

On the other hand, the scattering path operator τ ij is a kind of symbolic supermatrix
describing the scattering process of a photoelectron starting from atom i and ending at
atom j , whereas κ is the photoelectron wavevector. What makes the specificity of the



484 COMPREHENSIVE CHIROPTICAL SPECTROSCOPY, VOLUME 1

EXAFS regime is the possibility to replace τ 00 with the first few terms of a truncated
Born series expansion:

τ 00 = κ[H 00] +
∑
i �=0

κ2[H 0i ][T i ][H i0] +
∑

j �=i �=0

κ3[H0i ][T
i ][H ij ][T j ][H j 0] + · · ·

(17.19)

where [T i ] refers to the scattering matrix of the atomic potential i , whereas the propagator
[H ij ] contains all the information on the stereogeometry of the cluster required to describe
the scattering process from atom i → atom j . The scattering order is to be identified
with the relevant exponent of the wavevector κ . The series expansion (19) was typically
used to analyze the XNCD spectrum of tellurium oxide (TeO2), which was found to
extend into the chiral-EXAFS regime at the Te L1 edge [43]. As emphasized by Natoli
et al. [51, 102], it is the remarkable peculiarity of the chiral-EXAFS regime in XNCD
that the first nonvanishing terms in Eq. (17.19) starts with the scattering order n = 3.
One should also pay attention to the restriction that any path compensated by its mirror
image does not contribute to the XNCD signal.

Several FORTRAN codes now include the calculation of σE1E2 as an option: (i) Con-
tinuum is the original code of Natoli and co-workers; (ii) FEFF8.10 was developed by
Ankudinov and Rehr [116] and proved to be most convenient to calculate the phase shifts
of high-order scattering paths; (iii) FDMNES is a new code written by Joly and which
gained many adepts [117] since it offers useful new options such as the capability to
vary the local charge or the possibility to integrate numerically the Schrödinger equation
over arbitrary (non-muffin-tin) potentials [118]; and (iv) Dich was developed by Brouder
to simulate a variety of linear and circular X-ray dichroisms in solids; its starting point
is the construction of a self-consistent potential using well-established methods of band
structure calculation—for example, the TB-LMTO-ASA code of Andersen and Jepsen
[119] which delivers densities and cross densities of states (DOS) in a crystal [102].
The iodine L1-edge XNCD spectrum of α-LiIO3 was used as a testing bench for these
codes; all of them reproduced correctly the rather strong XNCD signal of this crystal.
The respective advantages and limitations of each code became more perceptible when
Benayoun [120] tried to reproduce the much weaker XNCD signatures observed at the
potassium or titanium edges of KTP. Whereas the weak potassium K-edge signatures
could be reproduced astonishingly well, the results were much less convincing at the
titanium K-edge: The covalent nature of the Ti · · · O bonds certainly added some diffi-
culty, but the main problem was identified as arising from destructive interferences of
XNCD signatures associated with nonequivalent titanium sites [120].

We have reproduced in Figure 17.11a the experimental XNCD spectrum recorded at
the iodine L1-edge with the α-LiIO3 single crystal; we included in the same graph two
simulations performed with Dich . It immediately appears that there is a fair agreement
with the full multiple scattering calculation carried out with a modest cluster of 35 atoms;
the agreement was nearly as good with a direct calculation of the p, d cross densities
of states [102]. Similarly, we have reproduced in Figure 17.11b the XNCD spectrum of
a para-tellurite single crystal recorded at the tellurium L1-edge. This spectrum clearly
exhibits oscillations that extend into the EXAFS regime. Interestingly, the largest dichro-
ism was now found in the strong 2s→5p white line. From simulations carried out with
Dich on small clusters, we concluded that the main source of the chiral-EXAFS signal
was to be assigned to the stereogeometry of the first few shells of oxygen and tellurium
neighbors; we did not observe any further improvement on increasing the size of the
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Figure 17.11. (a) The iodine L1-edge XNCD spectrum of an α−LiIO3 single crystal could be

reproduced reasonably well either from direct p, d cross-DOS calculations or using a full MSW

simulation. To make comparisons easier, the experimental XNCD data were divided by the factor

0.7. Note that the maximum of the XNCD signal was not found in the strong white line of the

XANES spectrum. (b) In contrast, the maximum of Te L1-edge XNCD spectrum of the α-TeO2

crystal coincides with the white line of the XANES spectrum, whereas oscillations extend into the

chiral-EXAFS regime. Chiral-EXAFS oscillations could be reproduced with small clusters restricted

to either 9 oxygen atoms or 9 oxygen +4 tellurium atoms.

cluster up to 89 atoms. This finding seems to be at odd with the recommendations made
by Ankudinov and Rehr [116], who supported the systematic use of large size clusters
(over 100 atoms). We have to admit that none of the various codes reproduced the intense
XNCD signal in the white line; this, most probably, reflects a covalent participation of
Te 4d wavefunctions in the very short Te · · · O bonds (1.879 Å).

We are not aware of any code satisfactorily reproducing the nonreciprocal ME dichro-
isms.

17.4.3.2. E1M1 Rotatory Strengths. Sophisticated methods have developed in
molecular quantum chemistry to describe excited states; such tools look more suitable to
analyze gas-phase experiments at the K-edge of the first row elements. Technical aspects
regarding specifically the calculations of the E1·M 1 pseudoscalar rotatory strengths were
reviewed by Kimberg and Kosugi (K&K) [73], who compared three approaches: (i)
The STEX method (static-exchange approximation) initiated by Hunt and Goddard was
developed and intensively used by Ågren et al. [65, 122, 123] in the context of the build-
ing block picture commonly retained to interpret NEXAFS spectra [3]; (ii) the second
approach, called “HF excited state,” was mostly developed by Kosugi [124, 125] and
implemented in his code GSCF3; and (iii) the RPA approach (random phase approxi-
mation) of Altick and Glassgold [126] used by Alagna et al. is most easily accessible
through the DALTON package [127].

One major difficulty is to describe properly how the core hole is screened by the
excited photoelectron. In this respect, Ågren and co-workers recently formulated a new
concept of complex polarization propagator (CPP) including the imaginary part of the
molecular polarizability and combined this approach with self-interaction correction (SIC)
[128]. This concept was experimented by Jiemchooroj and Norman to simulate the carbon
K-edge XNCD spectra of chiral fullerenes [129]. In their review, K&K also compared
various models for screening ranging from unrelaxed to fully relaxed core states and
investigated the dependence of the calculated rotatory strength on the corresponding
basis set. It was found that the RPA approach provided the most consistent and less
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time-consuming results in a context where, for the time being, neither experimental
nor theoretical methods for soft XNCD were yet accurate and robust enough to really
discriminate different models. At this stage, it remains far from obvious to us whether
or not these methods would allow one to reproduce the E1M 1 spectra recorded in the
firm X-ray range (e.g., at the Ni K-edge) where relativistic effects get more important
for high-Z elements. Further work in this direction is clearly desirable.

We regard as very exciting the simulated carbon K-edge XNCD spectra reported
by Villaume and Norman for neurotransmitter biomolecules such as noradrenaline and
L-DOPA, in which the XNCD response of the chiral center was found to be much stronger
than for the carbon atoms of the dihydroxyphenyl ring referred to as the chromophore
unit [130]. The next step would be to check how far this prediction can be confirmed
experimentally; this looks like a formidable challenge, given that such XNCD measure-
ments would simultaneously require a high spectral resolution and a fairly high sensitivity
without radiation damage.

17.5. CONCLUDING REMARKS

XDOA encompasses a whole variety of polarization-dependent measurements in X-ray
absorption, excitation, or resonant scattering modes over a broad energy range extending
from soft to firm X rays. XDOA was shown to offer an unique opportunity to disentangle
the respective contributions of the E1E2 and E1M 1 interference terms. All methods
considered in this chapter benefit from the common advantage to be element- and edge-
selective. This was nicely illustrated in the case of KTP where the effects of crystal
asymmetry could be probed at several K-edges (e.g., K, Ti, P, etc.). Element selectivity
also makes XDOA methods considerably less sensitive to impurities which may spoil
other chiroptical methods, especially at optical wavelengths. Unfortunately, XDOA also
suffers from major handicaps, such as (a) the need to access to synchrotron radiation
sources, (b) long data acquisition times enhancing the risks of severe radiation damages
especially for organometallic complexes, and (c) the burden of UHV environment in the
soft X-ray range. There is also a lack for site selectivity with, perhaps, a few exceptions
including DANES or, possibly, XEOL experiments.

It seems premature to predict as yet what will be the true impact (in the long term)
of soft XNCD measurements on biomelecules. Anyhow, one may reasonably expect
growing applications of XDOA in advanced material sciences: XMχD could develop
as a unique tool to probe the existence of a (still poorly known) ferrotoroidal order in
selected ME systems; in the related field of multiferroics, new information could also
be gained from a combination of natural and nonreciprocal dichroism measurements. In
semiconductor physics, systematic measurements of the polar (vector) part of OA could
be helpful in refining the electronic and magnetic properties of III–V semiconductors
(e.g., GaAs, GaN) which are of major technological importance.

Even more important, edge-selective sum rules make it now possible to access to
the effective operators responsible for OA. An important implication of the K-edge sum
rules is that natural OA results from the scalar, vector, or direct product of two vector
operators that are time-reversal odd and refer to orbital magnetism—that is, the orbital
angular momentum and the orbital anapole. This bridges the gap between chirality and
orbital magnetism in a way that Pasteur could not anticipate while he tried hard (for
many years) to unravel the link existing between these two fields of physical chemistry
[131, 132].
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121. W. J. Hunt, W. A. Goddard III, Chem. Phys. Lett ., 1969, 3 , 414–418.
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LINEAR DICHROISM
Alison Rodger

18.1. INTRODUCTION

Linear dichroism (LD) is the difference in absorption of light linearly polarized parallel
and perpendicular to an orientation axis:

LD = A// − A⊥. (18.1)

LD is related to the main subject of this book, namely circular dichroism (CD), in that
both require the difference between the absorbances of different polarized light beams
to be measured and CD spectropolarimeters can be adapted to produce the required
alternating beams of polarized light for LD. The main practical differences between CD
and LD (apart from the polarizations of light used) are that LD signals tend to be orders of
magnitude larger than CD signals, so the data are easier to collect, and LD measurements
are performed on systems that are either intrinsically oriented or are oriented during the
experiment, so the samples are harder to prepare. Since oriented molecular systems are
intrinsic features of the world in which we live, being key components of biological cells
as well as leading to macroscopic effects such as crystals, liquid crystals, membranes, and
muscles, LD is a useful structural probe. It is particularly useful for determining relative
orientations of components of molecular systems. A selection of general references may
be found in references 1–10.

In this chapter we shall first outline the principles of LD and then illustrate its
application by covering a range of examples, first under steady-state conditions (Section

Comprehensive Chiroptical Spectroscopy, Volume 1: Instrumentation, Methodologies, and Theoretical
Simulations, First Edition. Edited by N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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18.2), then for kinetic processes (Section 18.3), and finally to probe bending, stiffening,
and relaxation of polymers (Section 18.4). Issues relating to the collection of data are
covered in Sections 18.5 and 18.6. The chapter concludes with derivations of the two key
LD equations. The particular focus is on electronic spectroscopy of biomacromolecules,
including DNAs, fibrous proteins, and membrane proteins, because it is for such samples
that LD provides data not available from other techniques. Our emphasis will also be on
samples that can be flow-oriented since, again, LD provides structural data on solution
phase systems not obtainable from other techniques. However, applications are not limited
to these.

18.1.1. A Small-Molecule Stretched-Film Example of LD Spectroscopy

A simple example of an oriented sample is a stretched sheet of polyethylene into which
some substance, such as the linear molecule tetracene (Figure 18.1), has been allowed to
solubilize. Let us assume that the tetracene molecules are perfectly oriented with their
long axis along the stretch direction of the film. If we take “parallel” to be the direction
of stretch of the film, then transitions whose polarization (direction of transient elec-
tron displacement) is along the stretch direction will have a positive LD signal since
their A⊥ is zero (we are assuming perfect orientation) and their A// is nonzero. Con-
versely, transitions polarized perpendicular to the stretch direction will have a negative
LD. Inspection of Figure 18.1 would thus lead us to conclude (correctly) that the 278-nm
band of tetracene is long-axis polarized and the 475-nm region is short-axis polarized.
The positive LD signal near 400 nm reflects the significant extent of mixing of long-axis
character from the intense 278-nm band into the short-wavelength region of the 450 nm
short-axis polarized transition.

z
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Figure 18.1. LD (solid lines) for the approximately uniaxial rodlike molecule tetracene oriented

in a stretched polyethylene film (10 × stretched pipette tip bag, solvent 5% CH2Cl2 in methylhex-

ane) with absorbance (dashed lines) in methyl cyclohexane:diethyl ether (20:1). (Redrawn from

reference 1.)
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The tetracene film LD data of Figure 18.1 are comparatively easy to interpret since
the molecule shows a high degree of orientation and its transitions must be either along
its long axis or perpendicular to this. More commonly, particularly when we orient
biomacromolecules using shear flow (see below), the degree of orientation is low and
the transitions can be at any angle with respect to the orientation axis. In such cases it
is convenient to express the reduced LD, namely LDr, in terms of the equation

LDr = LD

Aiso
= 3

2
S (3 cos2 α − 1), (18.2)

where S is referred to as the orientation parameter (S = 1 for a perfectly oriented sample
and S = 0 for an unoriented one) and α is the angle between the molecular orientation
axis and the transition moment polarization (Figure 18.2). The molecular orientation axis,
z , is the most oriented direction of the molecule. z = Z , the parallel direction, when S =
1. Strictly, Eq. (18.2) holds only for uniaxial orientation, but in practice most molecules
and orientation methods approximate to this case. α = 0◦ for a transition oriented parallel
to the orientation direction, so LD>0 for such a transition as observed for tetracene; α =
90◦ for a transition oriented perpendicular to the orientation direction, so LD<0 for such
a transition; and LD = 0 when α = 54.7◦, the so-called magic angle. Equation (18.2) is
derived in Section 18.5.

In some situations it is relatively straightforward to determine S . In others it is the
biggest challenge to extracting the information we want from the LD spectrum. In the
case of tetracene (Figure 18.1), let us first assume that the strong positive peak at 278 nm
is of pure z polarization, where z is the long axis of the molecule. Thus α = 0. From
Eq. (18.2), since the film absorbance at 278 nm is 0.13 and the LD is 0.174, we deduce

S = LD

Aiso3
≈ 0.174

3 × 0.13
= 0.45. (18.3)

Thus the orientation process for this long molecule is very efficient.
Equation (18.2) is only valid for samples where the long axis of the molecule is

the molecular orientation axis. A number of samples have the molecular orientation
axis perpendicular to the long axis of the sample. These include carbon nanotubes, flow
distorted liposomes (Figure 18.3), and peptidoglycan sacculi. In these cases [8, 11]

LDr = LD

Aiso
= 3S

4
(1 − 3 cos2 β), (18.4)

where β is the angle between the normal to the surface of the liposome (or other structure)
and the transition moment polarization as illustrated in Figure 18.3. The derivation of
Eq. (18.4) is given in Section 18.5.
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Figure 18.2. The orientation of an electric dipole transition

moment, μ, (whose length/magnitude is μ). The magnitude

of the projection of μ onto the z axis is μ cos α and onto the

x/y plane is μ sin α. The y component of this projection is

μ sin α sin γ . For a perfectly oriented molecular system, Z = z

and S = 1.
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z

Figure 18.3. Schematic diagram of the geometric parameters relevant for liposomes distorted

in shear flow.

18.2. FLOW LINEAR DICHROISM FOR STRUCTURE ANALYSIS

18.2.1. LD of DNA

Double-helical DNA (or RNA) can be viewed as a more or less vertical spiral staircase
whose steps are made of pairs of purine and pyrimidine nitrogenous bases that are
hydrogen bonded together. The support is the backbone of alternating phosphate groups
and ribose sugars that adopt a helical structure. The UV spectroscopy of DNA that is
accessible to bench-top CD instruments (i.e., down to ∼180 nm) is due almost exclusively
to transitions polarized in the plane of the DNA bases. An indication of the transition
polarizations is given in Figure 18.4 along with the net absorbance spectra of the four
bases that make up DNA.

When DNA is flow-oriented (see Section 18.6.2 for how to do this), the helix axis is
the orientation axis. This means that the base transitions are all polarized approximately
perpendicular to the orientation axis in accord with the negative LD spectra of Figure 18.5.
The shortest piece of DNA that can be flow-oriented is about 250 base pairs. DNAs of
this length, however, give very weak LD signals. To use LD quantitatively, lengths should
be 800 or more base pairs. Naturally occurring DNA samples such as calf thymus DNA
usually end up being tens to hundreds of thousands of base pairs in length, which proves
to be ideal.

Figure 18.5a shows the LD of the same DNA measured down to 180 nm on three
different instruments [12]. Presumably the synchrotron one is the best. The unoptimized
bench-top instrument spectrum provides a warning: at low wavelengths it is particularly
important to check that the signals are proportional to concentration and pathlength, in
accordance with the Beer–Lambert law (cf. Chapter 2) so that the measured signal is
true. In this case there was sufficient stray light hitting the photomultiplier tube that the
high-tension voltage trace provided no warning of a problem.

Figure 18.5b shows the absorbance, LD, and LDr spectra of calf thymus DNA in
a Couette flow cell. The transitions are all in the plane of the DNA bases, so they
are approximately perpendicular to the helix axis. The LD is therefore approximately a
negative version of the absorbance spectrum. The fact that the B-DNA LD spectrum is
similar to, but not the same as, the negative of the absorbance results in the LDr spectrum
being fairly constant across the 260-nm band, but not completely so. This tells us that, in
solution, the bases are not rigidly perpendicular to the helix axis. From a careful analysis
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(a)

(b)

Figure 18.4. (a) Probable transition polarizations

for UV transitions of adenine, guanine, cytosine,

and thymine from crystal data [64–68] and LD

measurements on monomeric nucleobases in

stretched films [53]. (b) UV spectra of the DNA

nucleotides deoxyadenosine 5′-monophosphate

(A), deoxyguanosine 5′-monophosphate (G),

deoxycytidine 5′-monophosphate (C), and

thymidine 5′-monophosphate (T) (that of uracil is

very similar). (Redrawn from reference 1.)

of solution LD studies, it has become apparent that the bases of B-DNA in solution lie at
an average angle of ∼80◦ (or even less) from the helix axis [13] (though by convention
we assume 86◦ in a calculation [14]). By way of contrast, almost perfectly perpendicular
orientation seems to apply to DNA in stretched films [15]. The data in Figure 18.5b show
LDr ∼ −0.15. Using this value and α = 86◦ in Eq. (18.2) leads to S ∼ 0.10, which is
a typical value for DNA experiments.

The theoretical limiting value of LDr for a transition polarized perpendicular to an
orientation axis is −1.5 [Eq. (18.2)]. This value is never reached with DNA in solution.
In principle, at least, S may be calculated from first principles [14]. In practice, for
macromolecular systems, S is usually determined more or less reliably by empirical
means either by using known maximum LDr values (perhaps from a parallel experiment
assuming the DNA orientation does not change) or by calibrating with a probe dye whose
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Figure 18.5. (a) LD of DNA from M. luteus (200 μM

base) in water measured on three spectrometers: a

nonoptimized bench-top instrument; an optimized

bench-top instrument; and the ASTRID UV1

synchrotron beamline [12]. (b) Absorbance, LD, and

reduced LD, LDr = LD/A, spectra of calf thymus DNA

(100 μM). Absorbance was measured in a

1-cm-pathlength cuvette, LD measured in a

1-mm-pathlength Couette flow cell. The pathlength

difference has been accounted for in determining LDr.

(Redrawn from reference 1.)

binding geometry is known and whose spectroscopy is in a different place from that of
the DNA and any other ligand of interest [16, 17].

18.2.2. LD of DNA-Bound Ligands

Once the orientation of DNA itself is understood, a next step is to use LD to probe the
binding and orientation on DNA of small (or large) ligand molecules. A key feature of
such LD studies is that if there is no specific binding, then there will be no LD of the
ligand transitions. Conversely, the presence of an LD signal from an absorption band
of the putative ligand immediately indicates that it is bound. It should be noted that the
same is not true of absorbance: in most situations some ligands are bound and some free,
so the isotropic absorbance will be a mixture of that due to bound and free ligands. Thus
care must be taken in calculating LDr to use only the absorbance of bound ligands.
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Although LD cannot tell us where a ligand binds to DNA, it can be used to determine
the orientation of the ligand (if the ligand’s transition moments have been assigned). This
may provide enough information to enable the binding mode to be deduced. Broadly
speaking, a ligand may bind to DNA:

1. Externally bound to the phosphate backbone: this is usually orientationally fairly
nonspecific and the induced LD is correspondingly small.

2. Intercalated between DNA bases: this mode requires planar aromatic molecules
(or parts of molecules; see, e.g., Figure 18.6a) that insert between DNA base
pairs, causing the DNA to unwind and open up a slot between adjacent base
pairs so the ligand may be sandwiched between them. The LD of the intercalated
part is then negative, because the transitions we probe are in-plane polarized
π → π∗ transitions. The LDr of a typical intercalator is shown in Figure 18.7a.
The intercalator signal (at ∼500 nm) is slightly more negative than that of DNA
because the intercalator locally stiffens the DNA, giving it a slightly larger LD
intensity. The wavelength of an intercalated ligand’s absorbance is usually red-
shifted relative to that of unbound ligand.

3. In the minor groove: this mode is frequently adopted by aromatic molecules
containing inter-ring bonds with some rotational freedom. For example, long
crescent-shaped molecules, such as Hoechst 33258 illustrated in Figure 18.6b, fit

Figure 18.6. DNA binding ligands: (a) ethidium and (b) Hoechst 33258.

Figure 18.7. (a) Absorbance and LDr spectra of the

intercalator ethidium bromide in 5 mM phosphate

buffer, pH = 6.9, bound to calf thymus DNA (200 μM).

DNA base:ligand ratio is 20:1 [69]. (Redrawn from

reference 1.)
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neatly into the minor groove with the molecule following the curvature of the
groove. The long axis of such molecules is oriented at about 45◦ to the helix
axis making the LD of the long-axis polarized transition positive. The short-
axis polarized transition of minor groove binding molecules are perpendicular
to the helix axis, so approximately parallel to the base transitions resulting in
negative LD signals [18]. Minor groove binders tend to be selective for A–T–rich
sequences that have a deeper electrostatic potential than G–C–rich sequences.
Also, G sterically hinders minor groove binding as it has an amine group in the
groove.

4. In the major groove: this type of binding is found for several regulatory proteins
and there is enough space to accommodate most smaller ligands, including fairly
bulky metal complexes, in a variety of orientations.

The absorption spectra and LD of [Ru(tpyanth)2]2+ (Figure 18.8) in the absence and
presence of DNA illustrates both intercalative and groove binding behavior. First, note

(b) (b)

LD

–

–

z

Figure 18.8. (a) [Ru(tpyanth)2]Cl2, z indicates the approximate orientation of the metal complex

long axis; a second anthrylterpyridine ligand is oriented perpendicular to the one illustrated

making an approximately octahedral coordination geometry. (b) UV–visible absorption spectrum

in water of [Ru(tpyanth)2]2+ (10 μM); [Ru(tpyanth)2]2+ (10 μM) plus calf thymus DNA (100 μM);

and calf thymus DNA (100 μM) together with the ‘‘theoretical’’ sum spectrum. (c) LD spectra from

a titration series of [Ru(tpyanth)2]2+ with ct-DNA (100 μM). Metal complex concentrations are

indicated in the figure. (Redrawn from reference 17.)
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that the absorption maxima shift to longer wavelengths and the intensity is lower than the
spectrum made from the sum of the component parts. This is consistent with enhanced
π -stacking upon addition of the DNA which could arise from either (a) intercalation of
part of the ligand—probably the anthryl group—between DNA base pairs or (b) metal
complex stacking mediated by the DNA template. The spectra are consistent with the
anthracene group intercalating: negative LDr for the anthracene short-axis transition from
350 to 400 nm and the two terpyridine groups lying perpendicular to one another and to
the z axis (Figure 18.6), fitting into a groove, with a positive terpy LD signal at 320 nm.

18.2.3. LD of Cytoskeletal Proteins

The cytoskeleton in both prokaryotic and eukaryotic cells is dependent on the rapid and
controlled assembly and disassembly of polymers (fibers) whose monomeric units are
themselves folded proteins which change little, if at all, when they form the fibers. In
some cases a single linear polymer forms, in other cases further assembly into bundles
(thicker fibers) of some kind occurs. Some protein fibers, such as tubulin, assemble
to form more complicated structures directly. Monomeric proteins before polymerization
have no flow LD signal, thus they provide no background signal to interfere with attempts
to follow kinetics of fiber assembly, disassembly and reorganization. The possibilities of
LD spectroscopy can be illustrated by looking at the bacterial homologue of tubulin,
FtsZ, and tubulin itself [10].

FtsZ is a bacterial protein that polymerizes to form the so-called Z-ring which then
contracts and pulls in the cell membrane, eventually forming two daughter cells. In vitro
(and presumably in vivo), FtsZ polymerizes to form linear polymers or protofilaments
on the seconds timescale when GTP (guanine triphosphate) and Mg2+ are present. The
protofilament LD spectrum for E. coli FtsZ is the 0 mM Ca2+ spectrum of Figure 18.9.
Upon addition of Ca2+, the FtsZ protofilaments bundle together [19], tilting the guanines
from horizontal, causing the 260 nm LD to become positive. The protein YgfE performs
the same role as the calcium ions but at more biologically realistic concentrations [19]. LD

0.05 [Ca2+]
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1 mM
3 mM
5 mM
10 mM

increasing calcium

0.04
0.002

0.001

−0.001

0
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240 260 280 300

320
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Figure 18.9. FstZ (11 μM) polymerization in the presence of MgCl2 (10 mM) and varying amounts

of Ca2+ (50 mM MES buffer pH 6.5, 50 mM KCl, 0.1 mM EDTA, and GTP (0.2 mM)). The GTP region

is expanded on the right. (Redrawn from reference 19.)
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is currently the only technique that can follow such a reorganization of the components
of this complicated molecular system in real time.

18.2.4. LD of Membrane Peptides and Liposomes

Membrane proteins make up to 30% of all proteins coded for by most genomes [20],
and they facilitate a wide range of cellular functions and are a means by which the cell
communicates with its environment. There is also an increasing family of antimicrobial
peptides that bind to lipid membranes [21]. The mechanism by which such antimicrobial
peptides act has become a complex issue. It is widely accepted that it is important to
understand how the peptides act in order to exploit fully the use of peptides as antimi-
crobial agents [22]. However, the techniques that have been so successfully applied to
understand structural questions for globular proteins, including crystallography and NMR,
are not as readily applied for the study of membrane proteins. Membrane proteins and
peptides are not easy to crystallize, and they usually require lipid or detergent environ-
ments to remain soluble and folded. Although progress is being made with solution and
solid-state NMR, the size of the membrane protein-detergent complexes usually results
in slow tumbling rates and poor resolution spectra with broad peaks.

LD, although not an atomic-level resolution technique, has been found to be ideally
suited to membrane environments following the discovery by Ardhammar et al. [11]
that liposomes (model membranes, Figure 18.3) become sufficiently distorted in shear
flow to become aligned. Rodger et al. showed that membrane peptides and proteins were
also flow-aligned when bound to liposomes [23, 24] and their orientation could thus be
determined. The expected LD band signs for an α-helical peptide on and in a liposome
membrane are illustrated in Figure 18.10. One can also follow insertion in real time
to give insight into peptide folding and insertion in membranes (see Section 18.3.4)
[25–29]. In solution, LD has the advantage over other biophysical techniques of being
insensitive to off-membrane events: unbound ligands or peptides are invisible because
they do not orient.

LD is the ideal technique for probing insertion/binding (or not) into/onto membranes
in real time: the signal is zero unless the analyte (for example a peptide) binds to the
membrane. Furthermore, an α-helical peptide on the surface has opposite signed LD
signals from when it is inserted, as summarized in Figure 18.10. β-sheet LD spectra are
simpler than α-helical ones because the n –π∗ region (∼220 nm) of the β-sheet spectrum
has canceling contributions of opposite polarization and β strands have no 208-nm band.
Thus the LD of liposome-bound β structures is a single positive signal at 200 nm if the
sheet is lying on the surface and is a negative signal if it is inserted. Examples are given
in Figure 18.11.

(a) (b)

Figure 18.10. Schematic illustration of expected LD signals for an α-helix (a) on the surface of

or (b) inserted in a membrane. The right-hand part of (b) is what is expected in a spectrum, given

the reality of overlap between bands and net cancellation. Similarly, the 208-nm positive band

for (a) may not be apparent.
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LD

LD

Figure 18.11. (a) LD of the α-helical frog peptide

aurein 2.5 with sequence: GLFDIVKKVVGAFGSL-NH2

inserted into a lipid bilayer liposome composed of

50:50 DPPC (dipalmitoylphosphatidylcholine) and

DPPG (dipalmitoylphosphatidylglycerol) at 50◦C (i.e., in

the liquid phase). (Redrawn from reference 70.) (b) LD

of the β-sheet fragment GLRILLLKV (derived from the

T-cell antigen receptor) with liposomes made from

phosphatidyl choline extracted from soya beans,

showing that it sits on the membrane surface.

(Redrawn from reference 71.)

18.2.5. Peptidoglycan Layer of Bacterial Cells

The peptidoglycan layer forms a “net” around a bacterial cell and helps maintain the
structure and shape of the cell [30]. The inhibition of synthesis of this layer is a common
modus operandi of current antibiotics since in the absence of the peptidoglycan layer
the cell autolyzes and dies due to its internal osmotic pressure. As the name implies,
the peptidoglycan layer is a mixed peptide-sugar complex. The peptidoglycan sacculi
from the MC6R41 strain of E. coli (which has a defective FtsI gene that causes it to
divide less often at higher temperatures) are rod-shaped, making them easily oriented and
thus excellent subjects for linear dichroism as illustrated in Figure 18.12. The structure
of the peptidoglycan layer is debated: do the glycan strands run along the long axis of
the cylinder, or along the short axis, or perpendicular to the surface [30]? The LD of
Figure 18.12 is only consistent with the first of these, [Eq. (18.4)], meaning that LD
resolves this long running debate [31].
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(b)

Figure 18.12. (a) A primary structure of peptidoglycan,

with both types of sugar and a tetrapeptide chain extending

from the MurNAc component. The ε-amino group on the

meso-diaminopimelic acid is replaced when the peptide is

cross-linked. GlcNAc denotes N-acetylglucosamine; MurNAc

denotes N-acetylmuramic acid. (b) The LD spectra of two

concentrations of peptidoglycan as indicated in the figure.

Pathlength was 0.5 mm. (Redrawn from reference 1.)

18.2.6. Site-Specific LD Spectroscopy: DNA Binding
of Recombination Enzymes

A class of proteins that has been extensively studied due to their important biological roles
are recombination enzymes, such as RecA (in E. coli ) [32, 33] and Rad51 (in eukaryotes
including human) [34]. While crystals of the pure proteins have been obtained and studied
using X-ray diffraction, their mechanistically more interesting DNA complexes have
largely escaped structural examination because their filamentous characters make them
impossible to crystallize. Such filamentous structures, however, may be easily aligned
in shear flow, providing excellent targets for LD spectroscopy. The technique of site-
specific LD (SSLD) combined with the available protein crystal structures has enabled
structures of some DNA–protein complexes to be determined. SSLD can be implemented
by replacing one of the aromatic residues (say a tryptophan) of a protein with an optically
“invisible” residue and thereafter comparing the LD of this mutant with that of the wild-
type protein. Provided that the orientations and structures of the DNA complexes are
not significantly changed by the residue replacement, the difference LD spectrum will
be that of the replaced residue and may thus provide specific information about its
orientation in the protein. In this way, SSLD can give orientation data for a large number
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of chromophores. It could in principle be used to solve three-dimensional structures in
systems that for some reason are not amenable to X-ray crystallography or NMR study.

Nordén and co-workers used a SSLD approach combined with molecular modeling
to determine the three-dimensional structure of a fibrous protein complex: Rad51 bound
to DNA [34]. In eukaryotes, from yeast to human, Rad51 is involved in homologous
recombination. Rad51 is functional when it assembles into long fibrous structures around
DNA. Thus the “active” form of Rad51 is too large for NMR and too flexible to form
crystals for X-ray diffraction. To assemble the whole structure of the Rad51 filament,
one must know how the monomers are oriented in space in the protein fibril; this is
the key role of the SSLD data. In order to define precisely an object’s orientation in
space, three angles are needed. Two of three angles were determined from minimization
of the misfit functional between experimentally measured angles (SSLD data) and angles
of trial filament structures. The resulting model was then refined to determine the third
angle and the radius of a filament (based on the fact that two monomers have to be
connected to each other). The net result was the three-dimensional structure of human
Rad51 in its active filamentous form.

In this work an indirect SSLD method was used to avoid needing to determine S .
At certain wavelengths (around 200, 215, and 250 nm for Rad51) in the far-UV region,
a tyrosine and (parallel) phenylalanine transition have coinciding absorption coefficients.
Thus if a tyrosine is replaced by a phenylalanine, we expect the LD intensity (after
normalization with respect to the orientation factors S ) of wild-type and modified nucle-
oprotein filaments to be the same at the “magic wavelengths.” So they proceeded by
normalizing the wild-type and modified LD spectra to have the same LD intensity at a
“magic wavelength.”

18.3. LD TO FOLLOW KINETIC PROCESSES

18.3.1. Tubulin Polymerization and Depolymerization

LD is the ideal technique to follow kinetic processes that involve reorientation of chro-
mophores. The eukaryotic protein tubulin is, like FtsZ, a polymer of protein monomers
with a GTP between each monomer unit. As its name implies, tubulin forms tubules:
hollow cylindrical filaments assembled from dimers of α-tubulin and β-tubulin. Tubu-
lin polymers radiate from the centrosome of a cell to attachment sites just under the
cell membrane during cell division. Microtubules also play a role in moving cells and
organelles and interact with motor proteins. They are thus very attractive dynamic drug
targets. LD is the ideal (and perhaps only) technique to follow the kinetics of processes
such as the fiber assembly and disassembly as illustrated in Figure 18.13 [35]. The high
concentrations of tubulin needed to initiate polymerization mean that the data are only
reliable down to about 235 nm because the sample absorbance is too high below this
point. This is just sufficient to probe the assembly of both the backbone (235 nm) and the
aromatic spectral regions (280 nm) and to show the effect of various drugs on tubulin.
Taxol stabilizes the polymers (Figure 18.13a), whereas colchicine (which is used in the
treatment of gout) results in tubulin depolymerizing (Figure 18.13b) by preventing the
monomers from polymerizing.

18.3.2. Self-Assembly of Sup35 Yeast Prion Fragment, GNNQQNY

Amyloid-like fibrils, similar in structure to fibrils that are deposited in a number of protein
misfolding diseases, including Alzheimer’s disease and the transmissible spongiform
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(a) (b)

Figure 18.13. Capillary LD at two absorbance wavelengths of tubulin polymers (28 μM monomer)

at 37◦C. (a) Tubulin before and after addition of taxol (final concentrations 25.5 μM and 18.2

μM, respectively). Dotted lines indicate the rate of depolymerization in the absence of taxol.

(b) Tubulin before and after addition of colchicine (final concentrations 25.5 μM and 18.2 μM,

respectively). (Redrawn from reference 35.)

encephalopathies, can be formed by many different proteins and peptides. LD spectra of
the fibrils formed from a fragment of the yeast prion, Sup35 with sequence GNNQQNY,
have contributed to knowledge regarding side-chain packing of amyloid-forming peptides.
Two crystal structures have been published: both structures have a cross-β steric zipper
arrangement but different packing of the peptide, particularly the tyrosine residue. The
positive strong π -to-π∗ transition at 195 nm (Figure 18.14a) is consistent with the cross-
β structure [10]. The LD spectra measured as a function of time (Figure 18.14b) show a

Figure 18.14. (a) LD spectrum of mature GNNQQNY fiber sample at 0.2 mg/mL. (b) Kinetics of

fiber/crystal formation by GNNQQNY at 2 mg/mL. Spectra were measured at 8-min intervals. The

aromatic region changes sign from negative to positive at early time points. Units are in millivolts,

because the data were collected at the Astrid Synchrotron [27, 72]. (Redrawn from reference 36.)
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reorientation of the tyrosine chromophore (280 nm), suggesting a structural rearrangement
occurs as the crystals form [36].

18.3.3. Kinetics: Dipeptide Hydrogels

Hydrogels are networks of water-insoluble polymers dispersed in water to result in a flex-
ible highly aqueous (typically over 99%) material. Hydrogels made from self-assembling
oligopeptides are being developed. The attraction of these hydrogels is that their for-
mation is reversible since they are held together by noncovalent interactions. Potential
applications include as scaffolds for tissue engineering and for drug release, since the aim
is that the assembly/disassembly process can be controlled by changing a variable such
as temperature or pH. A particularly nice application has been developed by Adams and
co-workers [37], where the assembly is controlled by the controlled increase in pH that
follows from the in situ hydrolysis of glucono-δ-lactone to gluconic acid. Figure 18.15
shows the flow LD of a naphthalene–alanylvaline in aqueous solution as it forms the
fibers that make up the network of the hydrogel. LD is currently the only way to deter-
mine the orientations of the naphthalene chromophores within the fibers. From the CD
band signs [37], we know that the 236-nm LD signal results from the out-of-phase cou-
pling (thus perpendicular to the line between the long axes of the naphthalenes) of the
transition moments [1, 2] and the 218-nm signal from in-phase coupling. If the naph-
thalenes were stacked vertically like steps on a ladder, then both transitions would be
expected to have a negative LD. This is in contrast to what is observed in Figure 18.15.
From Eq. (18.2) we therefore deduce that this means that the naphthalene long axes are
tilted by (significantly) more than 35◦ ( = (90◦ –55◦)) from the perpendicular.

18.3.4. Kinetics of Membrane Peptide Insertion into Liposomes

Melittin is a 26-residue amphiphilic cationic peptide with a proline residue at position
14 that allows it to form kinked helices in nonpolar environments [38]. Its secondary

0.1

0.05

−0.05

−0.1

−0.15

0

Wavelength/nm

0 minute
10 minute
20 minute
30 minute
40 minute
50 minute
60 minute

LD

200 250 300

Figure 18.15. Evolution of LD with time on

addition of a solution of naphthalene–alanylvaline

dipeptide (0.5 wt%) to glucono-δ-lactone

(14.42 mg/mL). Data are shown for 0 min and then

subsequently every 10 min. Signals increase with

time until 50 min, when the magnitude decreases

once again. (Redrawn from reference 37.)
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(a) (b)

–

–

Figure 18.16. (a) CD spectra of melittin (0.1 mg/mL) as a function of environment (lipid:melitin

molecular ratio 100:1) Pathlength = 2 mm. (b) LD of melittin (0.1 mg/mL) when added to DMPC

liposomes (at molar ratio of lipid:peptide of 100:1) at (37◦C) as a function of time. (Redrawn from

reference 40.)

structure changes from random coil in aqueous solutions to helical in membranes, as
shown in Figure 18.16a [39]. As shown in Figure 18.16b [40], at time zero (when the
melittin is already helical as shown by the CD) we have LD ∼ 0. After a few minutes a
positive LD signal is apparent in the regions of 224 nm and 192 nm. The minimum at
210 nm is in fact the negative signal from the long-wavelength component of the π –π∗
transition (Figure 18.16). Given that the α-helical CD signature of melittin tells us that
it is membrane-associated from the beginning of the LD experiment, it is intriguing that
the initial LD is approximately zero. If the melittin α-helix is lying flat on the surface,
then its LD sign pattern should simply be approximately opposite from that observed at
later time as illustrated in Figure 18.16. The only other option for having LD = 0 but
the peptide membrane-associated (which it is, otherwise it would not be folded) is that
the dominant 222-nm and 192-nm bands are oriented with transition moments having
average orientation close to the magic angle of β = 54.7◦ [Eq. (18.4)]. Since melittin
is known to kink at its central proline, the LD therefore suggests that the kink angle is
∼110◦ as illustrated in Figure 18.17. The peptide then tilts and inserts to give the later
time spectra. After ∼5 h the LD decreases as the melittin disrupts the membranes so
they cannot be flow-oriented.

18.4. LD TO DETERMINE DNA BENDING, STIFFENING,
AND RELAXATION

With LD we usually focus on the information it provides about relative orientations
of chromophores. In addition, hidden in the orientation parameter, S , is a wealth of
information about the length, flexibility, and introduction of, for example, kinks into the
structure being oriented. Extracting that information is, however, non-trivial. Here we
limit consideration to illustrating the potential with two examples.
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Figure 18.17. Schematic illustration of

melittin (bold lines) bound on the surface of the

liposome with the backbone lying at the magic

angle to the membrane normal. (Redrawn from

reference 40.)

18.4.1. DNA Bending Upon Ligand Binding

Examples of DNA conformational changes easily detected by LD are those induced
by spermine, [NH3(CH2)3 NH2(CH2)4 NH2(CH2)3 NH3]4+, or [Co(NH3)6]3+, which,
when added to DNA, decrease the LD because the DNA is first bent and then condensed
[41, 42]. Similarly the tetra-cationic di-iron triple helicate of Figure 18.18 bends the
DNA and intramolecularly coils it [43, 44].

18.4.2. Flow Orientation of Brain Microtubules

Tubulin protein monomers assemble into microtubule fibers that are key components of
eukaryotic cytoskeletons and are involved in many cellular processes, including mitosis,
cytokinesis, and vesicular transport. The resulting fibers are very stiff and can be modeled
as a rigid rod. The LD signal outside the absorbance region is due to the anisotropic
turbidity, LDτ , of the sample. If LDτ is measured in a Couette flow cell as a function
of time after the cell stops rotating, it is possible to study the orientational relaxation
of the microtubules. The relaxation becomes slower with increasing concentrations of
tubulin; and at concentrations above 1 mg/mL, some orientation remains at “infinite”
time. Data such as those illustrated in Figure 18.19 may be fitted to a tri-exponential
decay with a rapid time constant of 4 s, an intermediate one of 40 s, a slow one of 400
s, and a fraction of microtubules that remain oriented [45]. The different rates reflect
different reorientation processes in what is an inherently complex system. Conversely,
Couette flow LD can be used to follow the development of orientation when shear flow
is applied [1].

18.5. PRACTICALITIES OF LD SPECTROSCOPY

There are two aspects to measuring LD spectra: the instrument and the orientation of the
sample. There are many ways to orient samples. In this chapter we shall focus on the
commonly used ones of stretched films, flow orientation, and orientation by evaporation
or assembly.

18.5.1. Spectrometers for LD Spectroscopy

The instrument used to collect LD data can be a normal absorbance spectrometer with
polarizers, where either the polarizer or sample is rotated, or it can be a circular dichroism
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Figure 18.18. The LD of a tetracationic di-iron triple helicate [Fe(LL)3]4+(LL = C25H20N4) binding

to calf thymus DNA showing the effect on the DNA LD as the ligand bends the DNA. ct-DNA (500

μM, 20 mM NaCl, 1 mM sodium cacodylate buffer pH = 7); DNA: ligand ratios are shown on the

figure. (Redrawn from reference 43.)

Figure 18.19. Decay of microtubule LD (0.37 mg/mL,

33◦C) as a function of time after the shear rate has been

reduced from G = 100s−1 to 0. (Redrawn from

reference 45.)
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spectropolarimeter (cf. Chapter 2) with the alternating beams of circularly polarized light
converted to alternating beams of linearly polarized light by doubling the voltage across
the photoelastic modulator (cf. Chapter 2). The latter option is now the way most LD
spectra are collected, and most modern instruments can be converted from CD to LD
using the instrument software (if the option has been installed by the manufacturer or
instrument builder). Alternatively, one may add a quarter-waveplate into the CD machine
light beam to achieve the same effect.

18.5.2. Calibration of LD Spectrometers

Calibration of CD machines is well-established, typically using a chemical (chiral) sub-
stance with established molar ellipticity (cf. Chapter 2). Once an instrument is calibrated
for CD, it is reasonable to assume that it is also calibrated for LD, but this should be
checked in some way, at least to ensure that the LD of a sample rotated by 90◦ changes
sign and retains the same magnitude. Most instruments adapted for LD are provided with
a physical device, such as a polarizer or a slab of (isotropic) fused silica tilted 10-45◦

from normal incidence for this purpose. Unfortunately, clear instructions on using such
devices are usually not provided. From knowledge of the refractive index of silica, the
reflection of the tilted plate of silica may be calculated accurately for two orthogonal
light beam polarizations, including the effects of multiple reflections, as described in
reference 46. As computed in reference 46, the LD of a fused silica plate tilted at 45◦

should be as summarized in Table 18.1.
Calibration achieves two things:

1. At low LD amplitudes, calibration provides the accurate numerical correlation
between instrument signal (photomultiplier current ratio <AC>/<DC>) and the
true LD of the sample.

2. At high LD amplitudes (LD > 0.1), calibration provides the correction that needs
to be applied to LD signals when the deflection of <AC>/<DC> as a function of
LD no longer follows a linear relationship (cf. Chapter 2). For a strongly oriented
sample with moderate absorption, LD (in contrast to CD) easily exceeds the 0.1
limit, so for accurate quantitative analysis an appropriate careful calibration is
required.

18.5.3. Instrument Parameters for LD

CD spectropolarimeters give the operator considerable control over the time constant, τ

(time over which the machine averages data or, equivalently, response time, ρ = 2τ );
scan speed, s; and bandwidth, b (the wavelength range of incident light). The choice
of parameters is usually determined by deciding what quality of data is required. The
issues for CD data collection and LD data collection are essentially the same, though
LD is usually easier as signals are larger. If the perfect spectrum for a database is being
collected, then operator and instrument time is not a consideration. However, if, for

TABLE 18.1. LD of a Fused Silica Plate Tilted at 45◦ [46]

λ (nm): 200 250 300 350 400 500 550 600 650 700

LD: 0.0812 0.0740 0.0708 0.0689 0.0678 0.0664 0.0659 0.0656 0.0653 0.0650
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example, a series of 50 spectra is required, then minimizing runtime is attractive. Some
issues are as follows.

1. Signal-to-noise ratio increases approximately as the square root of the number of
scans, the time constant, and the intensity of the light beam.

2. The high-tension voltage must not get too high, which means that concentration
and/or pathlength must be considered as discussed below. A rule of thumb is to
keep it below 600 V on most instruments, though this should be confirmed by
checking that data follow the Beer–Lambert Law (cf. Chapter 2). Unfortunately
stray light can give a false sense of security as the photomultiplier tube does not
distinguish light of the correct wavelength passing through the sample from any
other source of light.

3. τ should be as large as possible subject to τ × s ≤ b/2. If τ is too long for the
chosen s and b, then the maxima of peaks (both positive and negative) will be
cut off and their wavelengths shifted. A control scan using τ ′ = τ/2 (or s ′ =
s/2) should be used to check that spectra are not being distorted by the chosen
parameters.

4. The data interval determines how often a data point is collected. If the instrument
works in a stopped-scan mode (it stops at each point to collect data), then this
parameter determines the scan speed. Some instruments let one deal with scan
speed and data collection time more or less independently, in which case one
needs to ensure that the spectrum is not distorted by scanning too quickly.

18.5.4. Light Beams and Cells

All of the light beam incident upon the cell must pass through the sample and not be
clipped or reflected by the walls or base of the cell or the meniscus of the solution. This
is particularly an issue for micro-volume cells (see below). Sometimes careful masking
and/or focusing are required to avoid this issue. In doing this, one should note that

1. Beam width is dependent on the instrument slit width, which in turn may be
designed to depend on the lamp energy, so may be (much) larger in the UV
region of the spectrum than in the visible region.

2. Chromatic aberration results in focal points from lenses being a function of wave-
length.

18.5.5. Baselines, Wavelength Ranges

The baseline in an LD experiment is rarely flat, because it depends on the intrinsic
birefringence of the spectropolarimeter optics and that of the sample holder. The options
for baselines with LD are more complicated than those for CD (cf. Chapter 2). With flow
LD, if a flow-through system is used, then simply stopping the flow should unorient the
sample so a baseline can be measured. With a Couette flow cell (Section 18.6.2), this is
only an option if the LD signal at all orientations of the rotating quartz components is the
same. Our experience is that this is the case with our microvolume cells but not always
with larger cells. A baseline of the same cell rotating slowly, causing no measurable
orientation of the sample, may be used if the motor is stable at low rotation speeds,
and the scan speed is slow compared with the rotation speed. Alternatively, a spectrum
of only the solvent/buffer with higher rotation speed may be measured as the baseline.
However, if the sample scatters light significantly, then the contribution of scattering to
the spectrum needs to be taken into account.
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With films (Section 18.6.1), the best baselines are either an identical matching film
without analyte or the same film before the analyte has been added (though make sure
solvent has been applied in the same way as the sample will be, since the polymer of
the film often swells upon addition of solvent).

LD spectra often also need to be zeroed, so it is essential that data at least 20 nm
beyond the normal absorption envelope are available. When the baseline spectrum is
subtracted from the sample spectrum, the region outside the absorption envelope should
be flat. If it is not, then light scattering is probably contributing to the spectrum (cf.
Section 18.5.6).

18.5.6. Light Scattering

Many of the molecules for which we wish to measure LD are of comparable size to
the wavelength of light. As a result, they often scatter light significantly. This has two
effects: (i) It contributes LD intensity to the signal as in Figure 18.20a because as well
as differentially absorbing the two incident polarizations of light (the basis of the LD
and CD), the samples may also differentially scatter the light, and (ii) it may cause false
maxima in the spectra as illustrated in Figure 18.20b. The origins of light scattering are
complicated, depending not only on size regime of the particles but also on their shape.
Thus, if at all possible, one should avoid it occurring rather than try to correct for it.
In general, scattering can be reduced either by reducing the size of the particles or by
collecting a high percentage of the scattered photons. However, these options may either
be insufficient or unavailable. Nordh et al. [47] showed that a simple empirical correction
can often be subtracted from the observed LD spectrum to remove the sloping baseline
[48], as illustrated in Figure 18.20a.

LDScattering = aλ−k . (18.5)

Figure 18.20. (a) Light scattering and a method of correction [47] applied to an LD spectrum of

polymerized tubulin: the experimental data (—); the calculated turbidity (or scattering) LD [Eq.

(18.5)], using a k value of 3.5, with a determined by rescaling the curve at 320 nm where there

is no intrinsic absorbance (---); and the corrected data (– – –) [35]. (b) Far-UV LD spectra showing

false maxima in the spectra of strongly light scattering F-actin fibers. F-actin concentrations 93,

74, 62, 53, and 12 μM. The true spectrum is the 12 μM solid line. The high-tension voltage of the

instrument remained below 600 V (usually considered acceptable) throughout the experiment.

(Redrawn from reference 7.)
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TABLE 18.2. Absorbance Flattening Effects for Samples Where the Light Passes Through a
Sample of Which Half Has No Absorbance and Half Has the Indicated Absorbance [1]

A of Clear Part A of Dense Aapparent of A for the Analogous
of the Solution Part of Solution Inhomogeneous Solution Homogeneous Solution Error (%)

0 3 0.30 1.5 80
0 2 0.29 1.0 71
0 1 0.26 0.5 48
0 0.5 0.19 0.25 24

18.5.7. Absorbance Flattening

The phenomenon of absorption flattening is a suppression of the absorbance signal in
regions of high absorbance in nonhomogeneous samples, causing the Beer–Lambert law
to break down [49, 50]. Unfortunately, most LD samples are not homogeneous, being
membranes or fibers suspended in aqueous solution. Table 18.2 illustrates the seriousness
of the problem [1]. For membrane and fiber systems, one somehow has to remove the local
high concentrations. Mao and Wallace have outlined how this may be done by reducing
membrane particle size [51]. Unfortunately, the problem cannot always be avoided, in
which case methods such as those of reference 49 can be used to correct measured data.
In practice it must be confessed that the ostrich approach is usually taken and the issue
is ignored.

18.6. ORIENTATION METHODS OF SAMPLES FOR LD SPECTROSCOPY

LD can be used to give relative orientations of subunits of a system, often in a situation
where no other technique can be used. However, this is only possible if the sample can
be macroscopically oriented in a manner that does not perturb the molecules of interest.
Which orientation method one should use depends on the sample and the question being
asked. Long and relatively rigid polymers, such as double-stranded DNA or RNA, or
molecular assemblies of micrometer dimension, may be oriented in a fluid by shear
flow whereas small molecules require a stronger orienting force. Some molecules, which
cannot themselves be oriented, may be oriented when they bind to another molecule that
is oriented. The sensitivity of bench-top instruments based on CD spectropolarimeters
is of the order of one part in a million, so the orientation method does not have to be
particularly efficient to give a good LD signal. The most widely used orientation methods
are described below.

18.6.1. Stretched Polymers as Matrices in Which to Orientate
Small Molecules

Small molecules can often be absorbed into polymer films. When the film is mechanically
stretched, either before or after the small molecules are added, the included molecules
align their long axes preferentially along the stretch direction. In 1934 A. Jablonski
was the first to propose a method for orienting molecules by adsorption in anisotropic
matrices [52]. In practice, one of two types of films enable one to prepare aligned
samples of most molecules: polyethylene for nonpolar molecules and polyvinyl alcohol
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Figure 18.21. A mechanical film stretcher with oppositely

threaded screws to ensure even stretching of the film. (See

insert for color representation of the figure.)

for polar molecules. Polyvinyl chloride is also valuable in some applications. A typical
film stretcher that gives a uniform stretching force is illustrated in Figure 18.21.

Polyethylene (PE) is microcrystalline; and when it is mechanically stretched along
the manufacturer’s stretch direction, a molecular orienting environment is produced. PE
films for LD are the simplest to prepare, because almost any reasonable quality PE may
be used (e.g., sandwich bags) and the analyte added onto the film dropwise either before
or after stretching. By convention the parallel direction of the polarized light is usually
taken to be horizontal (i.e., parallel to the floor), so the stretch direction of the film should
be aligned horizontally. It is advisable not to stretch too close to the breaking point of
the polymer, since the film has a tendency to become opaque and to rip suddenly. With
a film stretcher (Figure 18.21), a stretch factor of 5–10 is fairly straightforward. One
should always endeavor to collect the sample spectrum on the same part of the film as
the baseline.

Polyvinylalcohol (PVA) is a near-universal host for polar molecules; the film is
transparent in the UV (above 200 nm) and in the visible region of the spectrum, though
it has a strong absorption over large regions of the infrared [53]. Small molecules inserted
in a dry (less than a few percent water) PVA film may be oriented by stretching under
low heat. PVA films are more difficult to prepare than PE films, but the quality of the
resulting data is often better. To prepare a PVA film, one mixes well-hydrolyzed low-
molecular-weight commercial PVA powder in cold water (10% w/v) to make a slurry
which is then heated to near boiling to form a viscous solution. The sample solution
(typically the sample is prepared at a concentration of ∼5 mM in water, but the aim is
to have the final film with a maximum absorbance of between 0.1 and 1) is then added
to half of the PVA solution, and the mixture is cast onto a glass plate and left to dry.
The same volume of water is added to the remainder of the solution which is also cast
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onto a glass plate and left to dry to make a baseline film. Finally the films are stretched
by the same factor (typically 2–5) at an elevated temperature (∼80◦C) by holding the
films in the hot air from a hair dryer as they are being stretched. It is also advisable to
stretch the films a little and then measure the spectra before trying a larger stretch on a
precious sample, because the films are quite brittle.

18.6.2. Flow Orientation of Macromolecules

If a rigid or semiflexible polymer, such as DNA or a protein fiber, is dissolved in a solvent
and then flowed past a stationary surface at 0.1-3 m s−1, then the molecules experience
sufficient shear forces to give a net orientation of the long axis of the polymer along the
flow direction. If light is incident on the sample perpendicular to the flow direction, then
the absorbance parallel to the flow, A//, and the absorbance perpendicular to the flow
direction, A⊥, are different so an LD signal may be measured. If the cell components
are quartz, then data in the visible and UV regions may be collected.

The obvious method for producing the required flow rate is to use a linear flow-
through system such as provided by an HPLC pump or a pair of syringes. However,
such an open system has an inherently large sample requirement and tends not to be
completely stable. Another problem is that any air bubble in the system will multiply as
the sample circulates through the tubing. In 1964, Wada [54, 55] solved these problems
with the invention of a Couette flow cell for LD where the sample is endlessly flowed
between two cylinders, one of which rotates and one of which is stationary. This is
schematically illustrated in Figure 18.22.

Some Couette flow cells are illustrated in Figure 18.23. The most recent develop-
ments include microvolume Couette flow cells, which require 25–60 μL of sample rather
than the milliliters of the previous Couette cells, and Peltier temperature control [56, 57].
These developments have increased both the range of samples and types of experiments
that can be undertaken.

18.6.3. The Effect of Shear Rate, Sample Viscosity and Particle Length
on Flow LD Signals

One of the key experimental parameters for flow LD is how fast the Couette cell spins.
This is directly related to shear rate by

G/s−1 = dvz

dx
= 2πRo�

60(Ro − Ri )
, (18.6)

where the rate of rotation � is revolutions per minute (rpm) for an outer rotating Couette
cell with outer cylinder radius Ro and inner cylinder radius Ri . The dependence of LD on
shear rate for some DNAs is illustrated in Figure 18.24 (note the plots are −LD versus
G2 or G). To a first approximation, most DNAs with which one works have a linear
dependence on G. Stiffer polymers reach saturation at lower G than the semiflexible
DNA. Others (often including DNA) do not reach saturation before the flow becomes
turbulent.

Flow LD magnitudes are also dependent on solution viscosity, η, as illustrated in
Figure 18.25. Viscosity itself is a function of both temperature and shear rate: the viscosity
of water at 60◦ is half that at 20◦ and the viscosity of water at G = 1000 s−1 is one-third
that at 0 s−1 [58]. Thus temperature, G and η dependence of LD cannot be considered
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Sample
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⊥, Y, perpendicular direction

X, propagation of light

ll, Z, orientation direction

Figure 18.22. Schematic diagram of a Couette flow cell showing flow orientation in a coaxial

flow cell with radial incident light. {X,Y,Z} denotes the laboratory-fixed axis system. (Redrawn

from reference 1.)

(a)

(b)

Figure 18.23. (a) Large-volume (2–3 mL)

inner rotating cylinder Couette flow cell

with 500-μm annular gap [6]. (b)

Microvolume (25–60 μL) outer rotating

[56, 57] Couette flow cell showing the

outer quartz capillary (3-mm inner

diameter) and inner quartz rod (2.5-mm

outer diameter) which, when assembled,

results in an annular gap of 250 μm. (See

insert for color representation of the

figure.)

in isolation. Small LD signals can be enhanced by adding, for example, glycerol to the
solution to increase its viscosity [16, 59].

18.6.4. Orientation by Evaporation or Assembly

Many molecules may be oriented simply by evaporating them onto a surface that is
transparent to the radiation. This method works particularly well for planar aromatic
molecules. However, the plate may need to be tilted for LD measurements since the
molecules usually orient preferentially parallel to the surface of the quartz, resulting in
the unique axis being perpendicular to the plate and all in-plane directions having the same
distribution of molecular orientations. Orientation by evaporation has probably been most
extensively used for infrared studies of lipid bilayers and molecules bound to the bilayers
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Figure 18.24. (a) −LD (at 260 nm) versus G2 (G = shear rate) for a 450-base-pair DNA (130 μM,

10 mM NaCl, 23◦C). (b) −LD (at 260 nm) versus G for a linearized plasmid DNA (pC3.1 variant, 6882

base pairs) (100 μM, 0.1 M NaCl, 30◦C) and (c) −LD (at 260 nm) versus G for calf thymus DNA (200

μM base, 10 mM salt, 23◦C). LD cell has Ro = 3.00 mm and Ri = 2.75. (Redrawn from reference 58.)

[60]. It is also used for oriented CD studies of membrane proteins. Monomolecular layers
of surface-assembled dye molecules have been studied in this way [4].

The extent to which the solvent needs to be removed depends on the sample. Most
work with lipids usually proceeds by drying the sample then adding a salt solution, chosen
to give the required humidity, to the atmosphere [61]. The lipids spontaneously orient as
the humidity is reduced, resulting in bilayers of lipid with thin water interstitia separating
the bilayers. Some molecules such as Alzheimer’s fibers are sufficiently large and rigid
that simply pipetting them onto a surface from solution may produce a significant degree
of orientation [36].

18.7. SOME DERIVATIONS

18.7.1. Equation (18.2)

The main equation used in this chapter to interpret LD spectra is Eq. (18.2). Its derivation
proceeds as follows. Let Z be the macroscopic orientation direction (denoted // above)
and let Y be the perpendicular direction. Assume first that the molecule of interest is
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(b)(a)

(c)

Figure 18.25. (a) Viscosity dependence of Couette flow LD (measured on a Jasco J-815 spec-

tropolarimeter) at 260 nm for a solution of DNA (200 μM calf thymus DNA in water). The viscosity

was determined on the same solution as the LD using an Advanced Rheometer AR100. The

viscosity was varied by changing the temperature from 20–60◦C. The shear rate was 1900 s−1.

(b) Temperature dependence of the dynamic viscosity of DNA (200 μM calf thymus DNA in

water). (c) Shear-rate dependence of the dynamic viscosity of DNA (200 μM calf thymus DNA in

water). Viscosities for (b) and (c) were determined using a Cannon–Manning 25 E50 semi-micro

viscometer. (Redrawn from reference 73.)

perfectly oriented so that the molecular orientation axis, z , lies along the macroscopic
parallel direction—that is, z = Z , S = 1. Since absorbance is proportional to the square
of the component of the electric dipole transition moment, μ, which lies along the
direction of the electric field of the light, we may write (using the definitions of α and
γ in Figure 18.2)

AZ = kμ2 cos2 α,

AY = kμ2 sin2 α sin2 γ , (18.7)

where k is a constant. Thus

LD = A// − A⊥ = AZ − AY

= kμ2(cos2 α − sin2 α sin2 γ ). (18.8)
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Similarly, the isotropic absorbance is the average of the absorbance in the X, Y , and Z
directions, so

Aiso = 1

3
(AZ + AY + AX ) = 1

3
(AZ + 2AY )

= 1

3
kμ2(cos2 α + 2 sin2 α sin2 γ ). (18.9)

Since the experiment does not restrict the value of γ , we average over sin2 γ to give

LD = kμ2
(

cos2 α − 1

2
sin2 α

)

= kμ2

2
(2 cos2 α − sin2 α)

= kμ2

2
(3 cos2 α − 1) (18.10)

and

Aiso = kμ2

3
(cos2 α + sin2 α) = kμ2

3
. (18.11)

Equation (18.2) follows upon acknowledging that actually the orientation is not perfect
so, including S , we get

LD = 3

2
AisoS (3 cos2 α − 1). (18.12)

18.7.2. Equation (18.4)

Shear-deformed liposomes, peptidoglycan sacculi, and carbon nanotubes are cylindrical
systems where the analytes are oriented uniformly about the normal to the surface of the
cylinder. The LD under such circumstances is described by Eq. (18.4) because there is
an additional element of rotational averaging required. Let z be along the long axis of
the cylinder and let x be the normal to the surface of the cylinder that goes through the
chromophore whose LD we are measuring. Let β be the angle between x and μ. The
analyte orientation will not be affected by the shear flow (the forces are too small), so
on average any analyte transition moment, μ, will be uniformly distributed about the x
axis. Let ψ be the angle between the projection of μ onto the y/z plane and z . Thus in
the local cylinder coordinate system

μ = μ(cos β, sin β sin ψ , sin β cos ψ){x ,y ,z }, (18.13)

where μ is the magnitude of μ. The reduced linear dichroism is by definition

LDr = S
AZ − AY

Aiso
= 3S

(μ2
Z − μ2

Y )

μ2
. (18.14)
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Now, μz = μZ and μY may be written as the dot product of the transition moment vector
and the vector for the Y axis in the {x,y,z } coordinate system. Thus

μy = μ · y

= μ(cos β, sin β sin ψ , sin β cos ψ){x ,y ,z } · (sin γ , cos γ , 0){x ,y ,z }

= μ(cos β sin γ + sin β sin ψ cos γ ), (18.15)

where γ take values from 0 to 2π . Thus,

LDr = 3S

(
sin2 β cos2 ψ − cos2 β sin2 γ − sin2 β sin2 ψ cos2 γ

−2 cos β sin γ sin β sin ψ cos γ

)
. (18.16)

Both ψ and γ take values from 0 to 2π , so upon averaging over them:

LDr = 3S
2 sin2 β − 2 cos2 β − sin2 β

4

= 3

4
S (1 − 3 cos2 β), (18.17)

which is Eq. (18.4).

18.8. INTERPLAY OF THEORY AND EXPERIMENT

Interpretation of the LD of isolated transitions is straightforward as long as S is known.
Some examples were given above. However, typically with molecules large enough to
give LD spectra, transitions of different polarization are overlaid. The matrix method
that has been developed to calculate CD spectra has also been applied to LD spectra of
fibrous proteins, and work is in progress to use it on membrane-bound peptides [62, 63].
Coupling this approach with molecular dynamics has the potential to enable LD to be
used to determine atomic-resolution structures.
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ELECTRO-OPTICAL ABSORPTION
SPECTROSCOPY

Hans-Georg Kuball and Matthias Stolte

19.1. INTRODUCTION

Chiroptical analysis by chirality measurements like CD and ORD is, aside from X-ray
diffraction, the best-established method for the determination of the absolute configuration
of chiral compounds. For that purpose, sector and helicity rules or methods for quantum
mechanical numerical calculations for correlating the sign of the chirality measurements
[e.g., the Cotton effect (CE) of one or more absorption bands] with the absolute config-
uration of a molecule, or at least for the absolute configuration of a chromophore1 and
its surrounding within a molecule, are required [1, 2]. The “exciton chirality method”
[1] is one of the most important helicity rules, which is based on the quantum mechani-
cal theory of a coupled oscillator [3]. Originally developed as the “dibenzoate chirality
method” [4], the exciton chirality method can be applied to molecules possessing at least
two allowed electric dipole transitions in neighboring spectral regions, located in different
parts of the molecule. In Figure 19.1, the effect of coupling electronic transitions of two
chromophores in a molecule of C2 symmetry is depicted with its two exciton transitions,
|N〉 → |K1〉 and |N〉 → |K2〉. The CD of the α(A → B) transition is negative, and for
the β(A → A) transition it is positive for a dihedral angle ω between about 0 and −90◦

to −110◦, by which a negative (left-hand side of Figure 19.1) couplet is obtained. The

1 There are many different definitions in use for the notion “chromophore.” In this chapter, “chromophore”
means a part of a molecule which is changed by excitation with light of a selected wavelength, leading to an
excited state possessing different properties.

Comprehensive Chiroptical Spectroscopy, Volume 1: Instrumentation, Methodologies, and Theoretical
Simulations, First Edition. Edited by N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody.
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sign of the CD and, thus, the sign of the couplet will be reversed for ω between −90◦ and
−110◦ and between −180◦ and −200◦ in spite of the fact that the absolute configuration
is maintained. Here, the sign change originates at the crossing of the energy levels of
the excited states |K1〉 and |K2〉 as a function of the dihedral angle between −90◦ and
−110◦. The amplitude A of the couplet is zero if the excited states |K1〉 and |K2〉 are
accidentally degenerate (Vij = 0).

The shape, amplitude, and sign of the couplet are determined by the shape and
intensity of the CD bands (Figure 19.2) belonging to the transitions |N〉 → |K1〉 and
|N〉 → |K2〉 of the coupled chromophores, their transition moment directions, and their
energies Eα/β [1]. Often the Davydov splitting (2Vij) of the exciton chromophore leads
only to a broadening of the absorption band or to the creation of a band with a small
shoulder. Even then, the CD spectra possess the shape of a couplet (Figure 19.2) because
the CD bands belonging to the transitions |N〉 → |K1〉 and |N〉 → |K2〉 are large and of
opposite signs. This characteristic bandshape is a prerequisite for the broad applicability
of the exciton chirality method [1].

But there is often a hidden presupposition, namely, the spectroscopic assignment
either to the α or β transition of the exciton bands (Figure 19.1). For many rigid
molecules, this assignment is often made unequivocally due to their molecular geometry
or to an approximate calculation of localized transitions. But there are examples—flexible
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(�, ) as a result of a superposition of the

absorption bands ((•, ), (�, )) of a molecule of

C2 symmetry belonging to the α(A → B) and β

(A → A) exciton transitions. (Redrawn from

reference 7.)
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molecules in solutions—where an unequivocal assignment is impossible. A confor-
mational change caused by increasing the dihedral angle about one axis, as shown in
Figure 19.1, can lead to a crossing of the energy states accompanied by a sign change of
the couplet without a change of the absolute configuration (Figure 19.1). In all these cases,
linear dichroism in any of its possible application techniques allows the determination of
the transition moment direction for a safe assignment of the α and β transitions. So-called
polarized spectroscopy is a well-proven technique for determining transition moment
directions [5, 6]. For a few examples, such measurements were undertaken in order to
prove the applicability of the exciton chirality method [4]. But often the sensitivity of the
polarized spectroscopy is not sufficient for an assignment of differently polarized exciton
transitions. The same problem arises with the anisotropy of circular dichroism (ACD) of
anisotropic phases, which is related to the CD as polarized spectroscopy is to absorption
spectroscopy [7, 8]. In this chapter the highly sensitive electro-optical absorption (EOA)
spectroscopy (electrochromism) will be applied in an analysis of exciton transitions. In
addition to the information obtained from the polarized spectroscopy [5, 6], dielectric
properties like the dipole moment of the ground state, the dipole moment change during
the excitation, and some coordinates of the (hyper)polarizability tensor—important for
nonlinear optical behavior—can be evaluated. For some steroids and mesobilirubin, the
technique of the method will be demonstrated.

19.2. WORKING EQUATIONS FOR POLARIZED SPECTROSCOPY
AND ELECTRO-OPTICAL ABSORPTION SPECTROSCOPY

Polarized spectroscopy [5] as well as EOA spectroscopy (electrodichroism [9–12]) are
based on measurements of the absorbance E (ν̃, ϕ) with linearly polarized light prop-
agating perpendicular to the optical axis of, for example, a uniaxial phase. ϕ is the
azimuth of the linearly polarized light with respect to the applied external electric field
F. With EOA spectroscopy, the very small difference in absorbance E F(ν̃, ϕ) − E (ν̃)

of a dilute solution, in the presence (E F(ν̃)) and in the absence (E (ν̃)) of an exter-
nally applied electric field F, is directly measured as a function of the wavenumber ν̃

[eq. (19.1)].

L(ν̃, ϕ)E (ν̃) = [E F(ν̃, ϕ) − E (ν̃)]
1

F2
. (19.1)

Measurements with two different azimuth angles, ϕ = 0◦ and ϕ = 90◦, are sufficient
for a complete description of the absorption anisotropy of a uniaxial sample. Whereas
E (ν̃) is the absorbance of a solution with isotropically distributed molecules in the
absence of an electric field, E F(ν̃) is the hypothetical absorbance of a solution with
isotropically distributed molecules in the presence of an electric field calculable from the
relation

E F(ν̃) = 1

3
[E F(ν̃, 0◦

) + 2 E F(ν̃, 90)], (19.2)

valid for uniaxial phases, which are different for different experimental conditions. For
F �= 0 or for any other interaction for ordering molecules (stretched polymers, liquid
crystals), one can expect the internal field to be different from the situation of F = 0.
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L(ν̃, ϕ)E (ν̃) is the sum of all contributions to the anisotropy of absorption of all com-
pounds, conformers, or aggregates j in the solution, or for compounds with overlapping
absorption bands (k = 1, 2, . . . ) when the absorbance is given by

E (ν̃) =
∑

j

εjcjd =
∑

j

∑
k

εk
j cjd . (19.3)

Taking into account the electric field dependence of phase properties like density, volume,
chemical equilibria, and so on, the following equation holds:

L(ν̃, ϕ)
E (ν̃)

ν̃
=

∑
i

∑
k

(
Lk

i (ν̃, ϕ)ci + ∂2ci

∂F 2

)
εk

i (ν̃)

ν̃
d . (19.4)

The contribution of the kth absorption band of a compound/conformer j to the elec-
trochromism of the solution is given by

Lk
j (ν̃, ϕ) = Ak

j (ν̃, ϕ) + 1

15
Bk

j (ν̃, ϕ)tk
j (ν̃) + 1

15
C k

j (ν̃, ϕ)uk
j (ν̃). (19.5)

Ak
j (ϕ), Bk

j (ϕ), and C k
j (ϕ) are the electro-optical coefficients of the kth transition of the

species j. They depend on the orientational distribution of the molecules in solution due
to their ground-state dipole moment μg, their polarizability and hyperpolarizability, the
shift of the kth absorption band proportional to the difference 
μ = μk

e − μg between
the ground-state dipole moment and the corresponding excited-state dipole moment μk

e ,
and the electric field dependence of the electric transition dipole moment μk

eg of the
kth transition. The functions tk

j (ν̃) and uk
j (ν̃) are proportional to the first und second

derivatives of the bandshape function εk
j (ν̃) (see Appendix). Via the second term of

Eq. (19.4), the electrostriction and also the electric field dependence of conformational
equilibria (for example), can be taken into account.

For solutions built up by different species, only the derivatives of E (ν̃) [Eq. (19.3)]
and not those of the absorption bands of the different compounds/conformers εk

j are
available:

t(ν̃) = 1

hc

(
E (ν̃)

ν̃

)−1
∂

∂ν̃

(
E (ν̃)

ν̃

)
, u(ν̃) = 1

2h2c2

(
E (ν̃)

ν̃

)−1
∂2

∂ν̃2

(
E (ν̃)

ν̃

)
.

(19.6)

Thus, the multilinear fit with E (ν̃)/ν̃ c0 d as a weighting factor as a function of t(ν̃) and
u(ν̃) yields

L(ν̃, ϕ)
E (ν̃)

ν̃ c0 d
= T1(ν̃, ϕ)

E (ν̃)

ν̃ c0 d
+ T2(ν̃, ϕ)

E (ν̃)

ν̃ c0 d
t(ν̃) + T3(ν̃, ϕ)

E (ν̃)

ν̃ c0 d
u(ν̃), (19.7)

which leads from measurements with ϕ = 0◦ and ϕ = 90◦ to six modified electro-optical
coefficients Ti(ν̃, ϕ), i = 1, 2, and 3 [see Appendix, Eqs. (19.A8) and (19.A9)].

For solutions of aggregates in supramolecular chemistry, or solutions with different
conformers, and so on, the Ti(ν̃, ϕ), i = 1 to 3, are, in principle, wavelength-dependent.
To increase the quantity of independent experimental information, the EOA spectrum
L(ν̃, ϕ) as a function of wavenumbers can be measured. But, in general, experimental
information cannot be increased simply by enlarging the frequency region. The problem
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is that, as with all spectroscopic methods, then the number of unknowns for the descrip-
tion of the molecular basis of the spectra also increases. Neither the variation of the
spectra nor the accuracy of the measured spectra is sufficient to calculate all the molec-
ular parameters that determine the spectra. Truly independent experimental data and
independent quantifiable molecular information are only available in special situations.
This complexity is one of the reasons why EOA spectroscopy has never been applied in
analyzing complex phases with success up to now.

Until now, suitable information could only be obtained from spectral regions in which
a uniformly polarized absorption band contributed to the spectrum or in cases where only
a few differently polarized absorption bands determine the spectra in the spectral region
under consideration. For these conditions to exist, either the coefficients Ti(ν̃, ϕ), i = 1
to 3, have to be wavelength-independent, or only weakly wavelength-dependent. To find
suitable spectral regions for highly polar compounds with j = 1 and k �= 1, Wortmann
[12] analyzed linear combinations of L(ν̃, ϕ) like

Lp = 6[L(ν̃, 0◦
) − 3L(ν̃, 90◦

)] (19.8)

for parallel and

Ls = 6[L(ν̃, 90◦
) − 2L(ν̃, 0◦

)] (19.9)

for perpendicular transitions in which, according to Eq. (19.5), wavelength dependence
based on superposition of different transitions remains in the corresponding spectral
regions. For less polar complex systems, a more sophisticated technique is needed. There
are two possibilities: The spectral regions are determined either where Ltu

p , a linear
combination of the type

Ltu
p = xL(ν̃, 0◦

) − yL(ν̃, 90◦
)

− (xT2(ν̃, 0◦
) − yT2(ν̃, 90◦

))t(ν̃) − (xT3(ν̃, 0◦
) − yT3(ν̃, 90◦

))u(ν̃), (19.10)

is independent of the wavelength or where Lu is a linear function of L(ν̃, 90◦
):

Lu = L(ν̃, 0◦
) − Uu(ν̃) = VL(ν̃, 90◦

) + W (19.11)

with

U = T3(ν̃, 0◦
)T2(ν̃, 90◦

) − T2(ν̃, 0◦
)T3(ν̃, 90◦

)

T2(ν̃, 90◦)
, (19.12)

V = T2(ν̃, 0◦
)

T2(ν̃, 90◦)
, (19.13)

and

W = T1(ν̃, 0◦
)T2(ν̃, 90◦

) − T2(ν̃, 0◦
)T1(ν̃, 90◦

)

T2(ν̃, 90◦)
. (19.14)

For suitably chosen coefficients (x, y), the correction terms as a function of t(ν̃) and u(ν̃)

can be made negligible. With (x, y) = (6,12) or (−12,−6) the correction term is zero
for transitions polarized parallelly or perpendicularly to the static dipole moment of the
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electronic ground state. For absorption bands based on a uniformly polarized transition
or on superposed uniformly polarized transitions possessing absorption bands with the
same spectral functions, it follows that

V = F + 2G

2F − G
= 1 + 2Q

2 − Q
= Q−1 + 2

2Q−1 − 1
. (19.15)

Neglecting the effects of the anisotropy of polarizability (see Appendix) results in (see
Figure 19.3)

Q = G

F
= cos α cos θ

cos ϑ
. (19.16)

Again, we have to point out the conclusion that wavelength independence proves that an
absorption band determined by only one uniformly polarized transition is not unequivo-
cal. Two borderline cases should be discussed, namely whether (a) overlapping absorption
bands possessing the same or approximately the same spectral functions or (b) molecules
possessing spectral regions in which each exciton band can be seen separately are respon-
sible for the wavelength independence. Examples of the first case are compounds with
very small exciton splitting or simply compounds possessing different conformers with
only weakly coupled chromophores.

19.3. EXPERIMENTALS

19.3.1. The Electro-Optical Absorption Spectrometer
and EOA Measurements

In principle, the EOA spectrometer (Figure 19.4) is a classical spectrometer for polarized
spectroscopy, with a few special features. Light is needed that is polarized parallel and
perpendicular with respect to the applied electric field. In order to obtain two polarized
light beams of approximately the same intensity, a depolarizer (DP) and a polarizer (PO)
unit is positioned before the sample cell. The cell possesses two flat electrodes at a
distance of about 3 mm. Any reflection from the surface of these electrodes must be
carefully avoided. The superposition of a DC and an AC high voltage does, however,
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Figure 19.4. Electro-optical absorption spectrometer (data control = —; data transfer = ;

light beam = · · ·; XL = Osram 450-W Xenon lamp; WF = water filter; DM = double monochromator;

S1, S2 = slits; L1, L2 = lenses; DP = Hanle depolarizer; PO = Glan polarizer; MC = measuring

cell (distance between the electrodes is about 3 mm); TK = PT100, unit for temperature control;

SH = shutter; PM = photomultiplier; PA = pre-amplifier; BP = band pass; LI = lock-in amplifier;

PC = measuring and control equipment; AC and DC = high-voltage supply for AC and DC voltage

each up to 10 kV) [9, 11].

provide us with two phenomena: an ordering of the molecules (orientational distribution
function different from 1) and modulation of the absorption signal because of the variation
of the distribution function and, thus, the alteration of the ordering of the molecules with
the frequency of the electric field. The application of the high DC and AC electric field
creates an important difference as compared to polarized spectroscopy, where molecules
are oriented in stretched sheets or in liquid crystals. Here the Stark effect influences the
energy of the molecules via their dipole moments and their anisotropy of polarizability.

The absorption of the solution is modulated proportional to the square of the applied
electric field F. The superposition of the AC and DC electric field then leads to the signal

M(FDC + FAC cos ωt)2 = M0 + M1 cos ωt + M2 cos 2ωt + · · · . (19.17)

Either the ω- or 2ω-modulated signal can be measured. In general, the ω-modulated
signal is more sensitive [11, 13]. For L(ν̃, ϕ), for ϕ = 0◦ and ϕ = 90◦, together with the
UV-vis spectrum and its derivations t(ν̃) and u(ν̃), six modified electro-optic coefficients
Ti(ν̃, ϕ), i = 1, 2, and 3, can be obtained in a multilinear fit as a function of ν̃ according
to Eq. (19.7).

19.3.2. UV-vis and EOA Spectra

Three examples have been chosen to demonstrate the applicability and the borderline
cases of the EOA spectroscopy for analyzing exciton transitions in connection with the
assignment for the “Exciton Chirality Method.” All three chiral compounds 2, 4 and 5
possess dipole moments of the ground state of medium or even small size. For each
achiral basis chromophore [i.e., dipyrrinone (1) and ethyl p-dimethylaminobenzoate (3);
see Chart 19.1] the EOA spectra should also be analyzed. All five compounds possess
a structureless long-wavelength absorption band (Figures 19.5 to 19.8). The interaction
between the two monomeric units “1” leads in 2 to a red shift of about 36 nm, whereas for
4 and 5 almost no shift was observed. The absorption coefficients (ε(ν̃)) of 2, 4 and 5 are
approximately twice those of the monomers 1 and 3, respectively (Table 19.1). Therefore,
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Figure 19.5. UV–vis spectra (1: , 2: ---), the

experimental EOA spectra (ϕ = 0◦: open symbols;

ϕ = 90◦: filled symbols), and the multilinear fit

(solid line) of the EOA spectra of 1 (♦, �) and

2(o, •), measured in 1,4-dioxane at T = 298 K.

the factor
√

2 holds true for the transition moments, μeg. In order to attain properties of
the two exciton transitions of 2, 4, and 5, spectral regions have to be found in which
L(ν̃, ϕ) is determined by only one or at most by two transitions. In these spectral regions,
according to the standard technique introduced by Wortmann [12], the linear combination
Lp for parallel- and Ls for perpendicular-polarized light must be wavelength-independent
[Eqs. (19.8) and (19.9)]. An improvement of this technique is the application of Eq.
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TABLE 19.1. Characteristic Data of the Long-Wavelength Absorption Bands in 1,4-Dioxane at
T = 298 K

Parameter 1 2 3 4 5

λeg (nm) 395.4 431.2 306.7 306.2 305.9
ν̃ (cm−1) 25291 23191 32605 32658 32690
ε (m2mol−1) 2946.1 5604.5 2581.9 5769.4 5160.3
μeg (10−30Cm) 22.2 31.3 18.0 27.3 26.1

(19.10), which has been shown to be superior. Whereas for 2, two different spectral
regions exist in which Ltu

p is wavelength-independent but different in size, for 4 and 5,
again, Ltu

p is constant throughout the spectral region of their absorption (Figures 19.6
and 19.8).

According to this result, Lu for 4 and 5 is a linear function of L(ν̃, 90◦
) through

the long-wavelength absorption band (Figure 19.9). Here again, the situation is different
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multilinear fit (—) of the EOA spectra of 3 (o, •), 4

(♦, �) and 5 (
,�), measured in 1,4-dioxane at

T = 298 K.
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and 5 (
), measured in 1,4-dioxane at T = 298 K.

for 2 where in two regions linear functions Lu(L(ν̃, 90◦
)) with different slopes exist

(Figure 19.10). Thus, whereas for 2, two exciton transitions can be proven which do
not have parallel polarization, for 4 and 5 an exciton splitting cannot be identified. This
finding can be correlated to the fact that neither the positions nor the spectral functions
of the absorption bands of the three benzoate chromophores 3, 4, and 5 are influenced
by the intermolecular interaction between the benzoate groups (Table 19.1).

Finally, we should point out that the shoulder of the UV–vis band of 2 (Figures 19.5
and 19.6) is not based on the exciton splitting. On the one hand, this shoulder does not
coincide with the spectral regions in which the functions Eqs 19.10 and 19.11 are linear
and possess different slopes; on the other hand, this shoulder exists in the long-wavelength
absorption band of the “monomeric” unit 1.

19.4. QUANTITATIVE ANALYSIS

The long-wavelength absorption bands of 1 and 3 are, as discussed earlier, uniformly
polarized, and the dipole moments of the ground state are large enough to demonstrate
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resembles an enhancement of the long-wavelength

band of 2 from 416 to 348 nm).

TABLE 19.2. Dielectric Properties of 1 and 3 to 5 in 1,4-Dioxane at T = 298 K

Parameter 1 3 4 5

μ
‖
g

a (10−30 Cm) 6.5±0.2 9.4±0.2 8.8±0.3 11.7±0.4
μg (10−30 Cm) 14±2 29±3 22±2 37±4

μ‖a (10−30 Cm) 22.5±0.7 23.7±0.7 22.8±0.9 24.0±1.1

V (1) 3.60±0.04 2.63±0.02 2.19±0.02 2.00±0.01
Q (1) 1.11±0.01 0.92±0.01 0.81±0.01 0.75±0.01
W (10−20 V−2 m2) 214.2±3.5 371.2±2.4 298.5±3.1 506.5±3.2
α (◦) 46 51b 48 51
ϑ (◦) 53 35 14 c

θ (◦) 16 0 0 c

a The abbreviations μ
‖
g = μg

√
(3 cos2 α−1)

2 and 
μ‖ = 1
2 
μ(cos ϑ + cos α cos θ) present the quantities obtained

directly from the electro-optical coefficients; 
μ itself cannot be calculated. The estimates of the angles are
not sufficiently good.
bα is 29◦ by using the dipole moment μg = 37 × 10−30 Cm (μg = 11.1D) determined with Hedestrand’s
method [14] in cyclohexane (1 Debye = 3.33562 × 10−30 Cm).
cThe accuracy of the experimental data is not sufficient to calculate these quantities.

the standard technique of the analysis of the EOA spectra [9–13]. From the multilinear
fit of the EOA spectra, six electro-optical constants Ti(ν̃, ϕ) (i = 1,2, and 3; ϕ = 0◦

and 90◦) are obtained from which dielectric properties (Table 19.2) can be calculated if
polarizability effects are neglected. The angles given in Table 19.2 are rough estimates.
For α of 3, an angle between 30 and 50◦ should be considered realistic. The large
errors of 10% to 20% in the dipole moment μg are a consequence of the assumptions
needed for their evaluation. Thus, the difference between the solvent-corrected moments
μg = 37 × 10−30 Cm of the classical Hedestrand method [14] and μg = 29 × 10−30

Cm of the EOA spectrum is acceptable—also because the values are measured in very
different solvents, namely cyclohexane and 1,4-dioxane. The dipole moments for 4 and
5, given in Table 19.2, are lower bounds because they are evaluated under the assumption
that only one of the exciton transition contributes to L(ν̃, ϕ).
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Taking both contributions of the exciton bands into account, it follows that [Eqs.
(19.A8) and (19.A9)]

μg(corrected) � μg

(
2(3 cos2 α − 1)

3 cos2 α1(1 + cos ρ) + 3 cos2 α2(1 − cos ρ) − 2

) 1
2

, (19.18)

where α1 and α2 are the angles between the dipole moment and the transition moments
of the α and β transitions possessing the intensity ratio {(1 + cos ρ)/(1 − cos ρ)}. In Eq.
(19.18), α is an average value over correction terms. Thus, it follows that μg(corrected) ≥
μg (Table 19.2) for 4 or 5.

The EOA spectrum of 2 is smaller than that of 1 (Figure 19.5). A rough estimate
yields 1 × 10−30 Cm or less for the static or induced dipole moment. According to the
theory developed by Liptay et al. [9, 10], the ordering of 2 is either due to the interaction
of its static dipole moment or due to the dipole moment induced by the interaction of
the anisotropy of its polarizability with the external field. Because of the smallness of
the EOA spectrum of 2, data like those given in Table 19.2 for 1, 3, 4, and 5 cannot be
evaluated.

19.5. DISCUSSION

In addition to the determination of the transition moment directions, information about the
polarity and the variation of charge distribution can be obtained from the EOA spectra.
For the 4-dimethyl-aminobenzoate steroids, the shift of charge induced by the excitation
is, on average, parallel to the direction of the transition moment and approximately
parallel to the dipole moment change 
μ = μk

e − μg(θ � 0). For the application to 3 of
the exciton chirality method, it is also important to know that the dipole moment of the
ground state and the transition moment enclose an angle of about 40◦ (Table 19.2). The
exciton splitting for 4 and 5 cannot be proven by establishing the different polarization
directions of the two transitions. This fact can only be understood by assuming either
that the angle between the two transition moments is small or that the bandshape and
the position of both exciton bands are approximately the same. The large EOA spectrum
(Figure 19.7) allows the conclusion that the positive contribution of the β band dominates
the spectrum. In spite of that, there is no means of deciding whether the α or β band
lies on the long- or short-wavelength side of the long-wavelength band of the spectrum.

The dielectric molecular quantities such as μg, 
μ, and so on, for mesobilirubin
2 could not be calculated because the experimentally measured EOA spectrum was
too small. Nevertheless, an assignment of the exciton transitions is possible. The
electrochromism is positive for the long-wavelength transition (band I) and negative
for band II, as depicted in Figure 19.11. The difference L(ν̃, 0◦

) − L(ν̃, 90◦
) for the

first peak of the EOA spectrum of band I is positive, whereas in the first peak of
band II the difference L(ν̃, 0◦

) − L(ν̃, 90◦
) is negative. Thus, the long-wavelength

side of the spectrum (band I) is polarized parallel to the orientation axis x∗
3 and

polarized perpendicular to the C2 axis. The orientation axis is approximately the long
axis of the molecule [7, 8]. Therefore, it follows that the α transition determines the
long-wavelength side of the absorption band. Band II belongs to the β transition at
higher energy. This assignment confirms the results obtained for mesobilirubin 2 from
polarized spectroscopy in a liquid crystal phase [15, 16].
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19.6. SUMMARY

EOA spectroscopy allows the determination and characterization of exciton transitions
in order to confirm a symmetric or antisymmetric exciton coupling, as shown for meso-
bilirubin 2. Even when the exciton splitting is not large enough to be identified by the
EOA spectrum, as happens with the steroids 4 and 5, the determination of dielectric
properties such as the dipole moment of the ground state yields additional structural
information. For this, the dipole moment of the monomeric form should be measured as
shown in the example of p-dimethylaminobenzoate 3. Important pieces of information
other than those obtained by polarized spectroscopy can then be analyzed. Therefore,
the additional information about dielectric properties obtained via the Stark effect is
an advantage of EOA spectroscopy as compared to polarized spectroscopy. Another
experimental advantage is the fact that all measurements can be done in solution—
preferably in solvent 1,4-dioxane—with concentrations similar to those used in UV–vis
and CD spectroscopy. That only sufficiently polar compounds can be analyzed is a disad-
vantage. A large anisotropy of polarizability, like in the case of the analyzed mesobilirubin
2, allows an analysis only when the exciton splitting is sufficiently large.
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APPENDIX

Basic equations for EOA spectroscopy (electrochromism), according to Liptay et al. [9,
10, 12], for a compound j possessing an isolated absorption band k. In this section the
standard symbols for the six electro-optical constants of a molecule D, E, F, G, H , and
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I are maintained. E (ν) is the absorbance and F is the electric field vector. Equations
(A1) and (A2) are only correct if the absorption anisotropy is measured with the linear
polarized eigenstates of light for the solution in an electric field (polarized parallel and
perpendicular to the applied electric field):

L(ν̃, ϕ) = Dr(ϕ) + 1

6
E s(ϕ) + [F r(ϕ) + G s(ϕ)]t(ν̃)

+ [H r(ϕ) + Is(ϕ)] u(ν̃), (A1)

r(ϕ) = 1

5
(2 − cos2 ϕ), s(ϕ) = 1

5
(3 cos2 ϕ − 1), (A2)

t(ν̃) = 1

hc

( ε

ν̃

)−1 ∂

∂ν̃

( ε

ν̃

)
, (A3)

u(ν̃) = 1

2h2c2

( ε

ν̃

)−1 ∂2

∂ν̃2

( ε

ν̃

)
,

u(ν̃) = 1

2h2c2

[(
∂

∂ν̃
ln

( ε

ν̃

))2

+ ∂2

∂ν̃2
ln

( ε

ν̃

)]
, (A4)

L(ν̃, 0◦
) = 1

5

{
D + 1

3
E + [F + 2G]t(ν̃) + [H + 2I ]u(ν̃)

}
, (A5)

L(ν̃, 90◦
) = 1

5

{
2D − 1

6
E + [2F − G]t(ν̃) + [2H − I ]u(ν̃)

}
. (A6)

The electro-optical coefficients according to Liptay et al. [9–12] for a solution of a
compound j and an isolated absorption band k are (the tilde indicates a transposed vector
(bold symbol) or tensor (underlined bold symbol))

E =
(

f

kBT

)2

[3(m̃μg)
2 − μ̃gμg] +

(
f 2

kBT

)
[3(m̃αm) − Tr(α)] +

(
3f 2

kBT

)
[R̃

(2)
μg],

(A7a)

D = f 2

kBT
R̃

(1)
μg, (A7b)

G =
(

f 2

kBT

)
[(m̃μg)(m̃
μ)] + 1

2
f 2m̃
αm + 1

2
f 2R̃(2)
μ, (A7c)

F =
(

f 2

kBT

)
μ̃g
μ + 1

2
f 2Tr(α) + f 2R̃(1)
μ, (A7d)


μ = μe − μg,

I = f 2(m̃
μ)2, (A7e)

H = f 2
μ̃
μ, (A7f)

R(1) = 2|μeg|−2αegμeg, R(2) = 2|μeg|−2[αegμeg + Tr(αeg)μeg], (A7g)

2R(1) � R(2).
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The electro-optical coefficients for a solution with j compounds and k supposed absorption
bands are

T1(ν̃, 0◦
) =

∑
j

∑
k

{
1

5

(
Dk

j + 1

3
E k

j

)
εk

j (ν̃)cjd

E (ν̃)

}
, (A8a)

T2(ν̃, 0◦
) =

∑
j

∑
k

{
1

5
(F k

j + 2Gk
j )

εk
j (ν̃)cjd

E (ν̃)

tk
j (ν̃)

t(ν̃)

}
, (A8b)

T3(ν̃, 0◦
) =

∑
j

∑
k

{
1

5
(H k

j + 2I k
j )

εk
j (ν̃)cjd

E (ν̃)

uk
j (ν̃)

u(ν̃)

}
, (A8c)

and

T1(ν̃, 90◦
) =

∑
j

∑
k

{
1

5

(
2Dk

j − 1

6
E k

j

)
εk

j (ν̃)cjd

E (ν̃)

}
, (A9a)

T2(ν̃, 90◦
) =

∑
j

∑
k

{
1

5
(2F k

j − Gk
j )

εk
j (ν̃)cjd

E (ν̃)

tk
j (ν̃)

t(ν̃)

}
, (A9b)

T3(ν̃, 90◦
) =

∑
j

∑
k

{
1

5
(2H k

j − I k
j )

εk
j (ν̃)cjd

E (ν̃)

uk
j (ν̃)

u(ν̃)

}
. (A9c)

T is the temperature in K, kB is Boltzmann’s constant, α is the static polarizability tensor,
and αeg the transition polarizability tensors of second rank. Higher order contributions of
the direct field dependence of the electric transition dipole moments and the electric field
fluctuation in solution are neglected here. The factor f stands for the solvent correction
within the Onsager continuum theory. In most cases for nonpolar or only weakly polar
solvents—for example, for 1,4-dioxane—the following approximations

f = ε(2εm + 1)(n2 + 2)

(2εm + n2)(2ε + 1)
(A10)

can be taken. εm and ε are the microscopic and the relative permittivity, respectively.
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INDEPENDENT SYSTEMS

THEORY FOR PREDICTING ELECTRONIC
CIRCULAR DICHROISM

Gerhard Raabe, Joerg Fleischhauer, and Robert W. Woody

20.1. INTRODUCTION

The use of ab initio methods to predict the electronic circular dichroism of molecules
has made great advances in recent years, as described in Chapters 21–23 of this vol-
ume. However, such high-level methods are limited to relatively small molecules, and
biological macromolecules are beyond their reach. For such systems, an approach that
focuses upon the individual chromophores and their interactions is the method of choice.
The independent systems theory was introduced by Kirkwood [1] and was elaborated
by Tinoco [2] and by Schellman and co-workers [3]. As described in the next section,
the macromolecule is divided into groups that are independent in the sense that they are
assumed to not exchange electrons, but they are coupled through Coulombic interactions.
A classical version of this approach was developed by DeVoe [4, 5], framed in terms of
polarizabilities and linear oscillators. This model has been developed further by Appleq-
uist [6], providing the atom dipole interaction model. These methods have been reviewed
previously [7–11]. Although the independent systems theory is most commonly applied
to macromolecules, it also has been used for small molecules (reviewed by Sandstrom
[12]), for which its lower accuracy vis-á-vis ab initio methods may be offset by greater
transparency of interpretation.

Our aim is to calculate the rotational strength for the electronic transition of a
macromolecule (polypeptide, protein, or nucleic acid) from the ground state 0 to the
excited state A:

R0A = Im〈0|μ̂|A〉 • 〈A|m̂|0〉. (20.1)

Comprehensive Chiroptical Spectroscopy, Volume 1: Instrumentation, Methodologies, and Theoretical
Simulations, First Edition. Edited by N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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In this expression, which is also called the dipole length formula , μ̂ is the electric dipole
moment operator,

μ̂ = −e
nel∑

i=1

r̂i , (20.2)

and m̂ is the magnetic dipole moment operator,

m̂ = − e

2mc

nel∑
i=1

(r̂i × p̂i ) = γ

nel∑
i=1

(r̂i × p̂i ). (20.3)

r̂i and p̂i = h
2π i ∇̂i are the position and the linear momentum operator of electron i ,

respectively. m and −e are the mass and the charge of an electron, and c is the velocity
of light in vacuo.

To our knowledge, the most appropriate quantum mechanical methods to get at
least qualitatively the electric and magnetic transition moments of these macromolecules
is the theory of Tinoco [2] and the so-called matrix method [3, 13], which is based on
Tinoco’s method.

20.2. THE TINOCO THEORY

Within the framework of Tinoco’s theory [2] and also in the matrix method [3, 13], the
molecule is divided into n groups for which the Schrödinger equation can be solved, at
least approximately. The groups, or chromophores, are usually π -electron systems that are
bonded to α carbons in a polypeptide chain or to glycosidic carbons in a polynucleotide
chain. Conceptually, these bonds can be broken, and the bonds to carbon or nitrogen
can be replaced by bonds to hydrogen atoms. For polynucleotides, the chromophores
are separated by many single bonds, so there is no problem with overlapping of the
charge densities of the chromophores. For polypeptides, if one breaks all bonds of the
CONH group to the α carbons, the model chromophore is formamide, which is not a
good model for the peptide group. Alternatively, one could leave the bond between the
CONH group and one Cα intact, converting that Cα to a methyl group. If the Cα –C′ bond
is retained, the model chromophore is acetamide, whereas retention of the Cα –N bond
gives N -methylformamide as the model. These are both better models for the peptide
than formamide, but the best and most widely used model is N -methyl acetamide. This
involves converting both the Cα atoms flanking the CONH to methyl groups, leading to
overlap of the chromophores at each Cα . In practice, the potential difficulty posed by
this overlap is avoided because the transition densities for the transitions of interest and
the monopoles (vide infra) that describe them are centered on the CONH atoms.

The Hamiltonian for the total system consisting of these n groups is

Ĥ =
n∑

i=1

Ĥ 0i +
n−1∑
i=1

n∑
j > i

V̂ ij , (20.4)

where V̂ ij is the classical electric potential energy of the charges belonging to groups i
and j . For the ground state of group i we have the Schrödinger equation,

Ĥ 0i ϕi0 = Ei0ϕi0, (20.5)
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while we have the following for an excited state a of the same group:

Ĥ 0i ϕia = Eiaϕia. (20.6)

To solve the equation
Ĥ �K = EK �K , (20.7)

Tinoco applied perturbation theory up to the first order. Besides the unperturbed ground-
state function

ψ0 =
n∏

k=1

ϕk0, (20.8)

he used functions for singly excited states1

ψia = ϕia

n∏
k �=i

ϕk0 (20.9)

and doubly excited states

ψia ,jb = ϕiaϕjb

n∏
k �=i ,j

ϕk0, (20.10)

which are eigenfunctions of the unperturbed Hamiltonian Ĥ 0 = ∑n
i=1 Ĥ 0i .

One obtains the following for the first-order perturbed ground state:

�1
0 = ψ0 −

n∑
i=1

∑
a

Via ,0

hva
ψia −

n−1∑
i=1

∑
a

n∑
j > i

∑
b

Via ,jb;0
h(va + vb)

ψia ,jb . (20.11)

If N groups are identical—and this is normally the case for macromolecules—one
has N -fold degeneracy and, therefore, the correct zeroth-order perturbed excited-state
wavefunctions have to be determined first:

�0
AK =

N∑
i=1

CiaKψia . (20.12)

To get these functions one has to form the N × N Hamiltonian matrix between the N
functions ψia(i = 1, . . . , N ) and to diagonalize it. With the N eigenfunctions (�0

AK, K =
1, . . . , N ) thus obtained, the function ψ0, and the other singly excited functions ψjb

(b �= a), one finally obtains the following for the first-order perturbed excited state:

�1
AK = �0

AK +
∫
(ψ0)

∗V̂ �0
AK dτ

hνa
ψ0 +

n∑
j=1

∑
b �=a

∫
(ψjb)

∗V̂ �0
AK dτ

h(νa − νb)
ψjb

=
N∑

i=1

CiaK

⎧⎨
⎩ψia +

∫
(ψ0)

∗V̂ ψia dτ

hνa
ψ0 +

n∑
j=1

∑
b �=a

∫
(ψjb)

∗V̂ ψia dτ

h(νa − νb)
ψjb

⎫⎬
⎭

=
N∑

i=1

CiaK

⎧⎨
⎩ψia +

n∑
j �=i

Vi0a ,j 00

hνa
ψ0 +

n∑
j �=i

∑
b �=a

Vj 0b,i0a

h(νa − νb)
ψjb

+
n∑

j �=i

∑
b �=a

Viab,j 00

h(νa − νb)
ψib

⎫⎬
⎭ . (20.13)

1 To calculate the excited states, Tinoco only considered singly excited states of the chromophores.
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The denominators in the above equations are, according to perturbation theory, the dif-
ferences of the zeroth-order energies of the interacting states. The meaning of the matrix
elements of the perturbation operator, for example Vi0a ,j 0b , can be found in Appendix A.
With these functions we can now calculate the electric dipole transition moment:

μ0AK =
∫

(�1
0 )∗μ̂�1

AK dτ. (20.14a)

Taking into account that μiab = μiba for real functions, we get

μ0AK =
N∑

i=1

CiaK

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

μi0a + μi00 − μiaa

hνa
Via ,0 −

n∑
j �=i

∑
b �=a

Vi0a ,j 0b

h(ν2
b − ν2

a)
2νbμj 0b

− ∑
b �=a

Viab,0

h(νb − νa)
μi0b −

∑
b �=a

Vi0b,0

hνb
μiba −

N∑
j �=i

Vi0a ,j 0a

2hνa
μja0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

≡
N∑

i=1

CiaK(μia) (20.14b)

for an excitation of the molecule from the ground state �1
0 to the excited state �1

AK. With
miab = −miba for real functions, we get for the magnetic dipole transition moment

mAK0 =
∫

(�1
AK)∗m̂�1

0 dτ , (20.15a)

mAK0 =
N∑

i=1

C∗
iaK

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
mia0 + iπ

c
Ri × μi0aνa

]

−
n∑

j �=i

∑
b �=a

Vi0a ,j 0b2νa

h(ν2
b − ν2

a)

[
mjb0 + iπ

c
Rj × μj 0bνb

]

− ∑
b �=a

Viab,0

h(νb − νa)

[
mib0 + iπ

c
Ri × μi0bνb

]

− ∑
b �=a

Vi0b,0

hνb

[
miab − iπ

c
Ri × μiba(νb − νa)

]

−
N∑

j �=i

Vi0a ,j 0a

2hνa

[
mj 0a − iπ

c
Rj × μja0νa

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

≡
N∑

i=1

C∗
iaK[mia ]. (20.15b)
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Employing Eq. (20.1), we then obtain the following for the rotational strength in the
dipole length form:

R0A =
N∑

K=1

R0 AK = Im
N∑

K=1

μ0aK •maK 0 =
N∑

K=1

N∑
i=1

CiaK (μia)•
N∑

l=1

C ∗
laK [mla ]

=
N∑

i=1

N∑
l=1

δil (μia)•[mla ]

=
N∑

i=1

(μia)•[mia ] (20.16a)

or, in more detail:

R0A = Im
N∑

i=1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μi0a •mia0

− 2
n∑

j �=i

∑
b �=a

Vi0a ,j 0b

h(ν2
b − ν2

a)
(μia0•mjb0νa + μjb0•mia0νb)

−
∑
b �=a

Viab,0

h(νb − νa)
(μi0a •mib0 + μi0b •mia0)

−
∑
b �=a

Vi0b,0

hνb
(μi0a •miab + μiba •mia0)

−
N∑

j �=i

Vi0a ,j 0a

2hνa
(μi0a •mj 0a + μja0•mia0)

+

N∑
j �=i

Vi0a ,j 00

hνa
(μi00 − μiaa) · mia0

− 2iπ

c

n∑
j �=i

∑
b �=a

Vi0a ,j 0b

h(ν2
b − ν2

a)
νaνb(Rj − Ri)•μj 0b × μi0a

+
iπ

N∑
j �=i

Vi0a ,j 00

ch
(μi00 − μiaa) · Ri × μi0a

+ iπ

c

∑
b �=a

Viab,0

h
Ri •μi0a × μi0b

+ iπ

c

∑
b �=a

Vi0b,0

h
Ri •μiba × μi0a

− iπ

c

N∑
j �=i

Vi0a ,j 0a

2h
(Rj + Ri )•μi0a × μja0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(20.16b1)

(20.16b2)

(20.16b3)

(20.16b4)

(20.16b5)

(20.16b6)

(20.16b7)

(20.16b8)

(20.16b9)

(20.16b10)

(20.16b11)
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The contributions (20.16b1) to (20.16b11) obtained here are identical with those of
Eqs. 20.44a–20.44i of Sears and Beychok [8], only the analogues of (20.16b11) and
(20.16b5) are missing in their paper since they did not take degeneracy into account. Our
results are also identical with those of Tinoco [2], except that all the origin-dependent
terms [(20.16b8) to (20.16b11)] and also 16b5, which stems from degeneracy, are missing
in Tinoco’s Eq. (IIIb-22). Terms (20.16b6) and (20.16b8), sometimes called charge-
transfer terms, were erroneously omitted in two previous reviews [9, 10] through a
spurious analogy with the dipole-velocity approximation (vide infra).

Another expression for the rotational strength, the so-called dipole velocity form , can
be obtained by replacing the electric dipole transition moment in (20.1) by its relation to
the so-called nabla integral [14] 〈0|∇̂|A〉:

〈0|μ̂|A〉 = eh2

4π2m[EA − E0]
〈0|∇̂|A〉, (20.17)

which is valid only for exact wavefunctions. The resulting expression for the rotational
strength

R0A = eh2

4π2m
Im

〈0|∇̂|A〉•〈A|m̂|0〉
EA − E0

(20.18)

is origin-independent also for approximate wavefunctions, whereas (20.1), which is called
the dipole length formula, is not origin-independent for approximate wave functions.
For exact wave functions and energies, both expressions give the same result. For the
rotational strengths in the dipole velocity form , one obtains the following from (20.18)
by introducing the functions �1

0 and �1
AK :

R0A =− e2
�

2

4πm2cνa

N∑
i=1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇i0a•(r × ∇)ia0

−2
n∑

j �=i

∑
b �=a

Vi0a ,j 0b

h(ν2
b − ν2

a)
νa(∇i0a •(r × ∇)jb0+∇j 0b •(r×∇)ia0)

− ∑
b �=a

Viab,0

h(νb − νa)
(∇i0a •(r × ∇)ib0 + ∇i0b •(r × ∇)ia0)

− ∑
b �=a

Vi0b,0

hνb
(∇iba •(r × ∇)ia0 + ∇i0a •(r × ∇)iab)

−2
n∑

j �=i

∑
b �=a

Vi0a ,j 0b

h(ν2
b − ν2

a)
νa(Rj − Ri )•∇jb0 × ∇i0a

−
N∑

j �=i

Vi0a ,j 0a

2hνa
(∇i0a •(r × ∇)j 0a + ∇ja0•(r × ∇)ia0)

−
N∑

j �=i

Vi0a ,j 0a

2hνa
(Rj − Ri )•∇i0a × ∇j 0a

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(20.19)

A detailed derivation of this formula for the nondegenerate case can be found in the
supplement at the end of this chapter, following the reference section. The matrix elements
of the nabla operator required in this expression can be calculated from the electric dipole
transition moments using Eq. (20.17) or from the wavefunctions.

The theory of Tinoco has been used to predict the CD of many biopolymers, as
shown in Table 20.1 and in greater detail in Table S1 of the supplement at the end of
this chapter.
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TABLE 20.1. Applications of Tinoco Theory

System References

α helix 18, 39, 77, 78
310 helix 18
poly(Pro) helices 38
Unordered polypeptides 79–81
β sheet 36, 39
Heme proteins 82–89
Flavoproteins 86
Rhodopsin 90
Ribonuclease 21, 91
Insulin 92, 93
Avian pancreatic polypeptide 94
Mononucleos(t)ides 95–98
Dinucleotides 37, 99

20.3. THE MATRIX METHOD

The matrix method was introduced by Bayley, Nielsen, and Schellman [3, 13] and is
an all-order version of Tinoco’s perturbation theory [2]. In the matrix method as gen-
erally applied, one considers only mixing of singly excited states—that is, the basis
set in Eq. (20.9), which are solutions of the unperturbed first term of the Hamiltonian
in Eq. (20.4). The off-diagonal matrix elements of the perturbation term in Eq. (20.4)
are calculated by methods described below. The diagonal elements are the excitation
energies, corrected for the change in electrostatic energy upon excitation: 〈ia|Ĥ |ia〉 =
(Eia − E0) + ∑n

j �=i (Viaa;j 00 − Vi00;j 00). In many cases, this correction is neglected, but
it can be significant, particularly with polar chromophores. After solving the eigenvalue
problem HC = CE, one obtains the eigenvectors (columns of C) and energies (diagonal
elements of E). The excited states will then be

�K =
n∑

i=1

ni∑
a=1

CiaK ψia , (20.20)

where CiaK is the component of eigenvector K corresponding to excited state a in residue
i and ψia is the wavefunction corresponding to this chromophoric excited state, as in
Eq. (20.9). The second summation is over all ni excited states of group i . Mixing of
singly excited configurations with the ground configuration is generally neglected for two
reasons. First, inclusion of such mixing without including doubly excited configurations
would lead to blue shifts in the absorption and CD spectra. Second, consideration of such
mixing would necessitate inclusion of electric and magnetic dipole transition moments
connecting excited states. A perturbation calculation has shown that mixing with the
doubly excited configurations makes a negligible contribution to the CD for polypeptides
[15]. Thus, the ground state is unaffected by mixing in the usual matrix method and is
therefore

�0 =
n∏

i=1

ϕi0 (20.21)
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as in Eq. (20.8). The electric dipole transition moment for the transition 0 → K is
given by

〈0|μ̂|K 〉 =
n∑

i=1

ni∑
a=1

CiaK μi0a = (C −1μ0)K , (20.22)

where C−1 is the inverse of C and contains the eigenvectors as rows; μ0 is an Ne × 3
matrix in which the rows contain the three components of the transition moments for the
individual chromophores; Ne = ∑n

i=1 ni is the number of excited states; and the subscript
K on the matrix denotes the K th row of the matrix. We can write the magnetic dipole
transition moment in the same way:

〈0|m̂|K 〉 =
n∑

i=1

ni∑
a=1

CiaK[mi0a + (iπ νi0a/c)(Ri × μi0a)] = (C−1m0)K . (20.23)

The rotational strength is then given by

R0K = Im{μ0K •mK 0} = Im{(C−1μ0)K •(C−1m0)+K } = Im{(C−1μ0)K •(m0+C)K },
(20.24)

where the superscript + denotes transposition. We have used the unitary properties of
the eigenvector matrix and have assumed that the eigenvectors are real.

Because the original matrix method [3] used the dipole length formulation, the results
show an origin dependence. This problem was not significant for the small molecules
that were initially studied, but becomes serious for large molecules (e.g., proteins). Goux
and Hooker [16] introduced an origin-independent formulation using the dipole velocity
form in their calculations on ribonuclease. They defined a chiral strength, the chiroptical
analogue of the oscillator strength in absorption:

c0K = (α/3)Re{p0K •LK 0}, (20.25)

where α = 2πe2/hc is the fine-structure constant and p0K and LK 0 are, respectively,
the linear and angular momentum matrix elements between the ground state and excited
state K . The chiral strength is related to the rotational strength by

c0K = (8π2mc/3he2λ0K )R0K , (20.26)

where λ0K is the wavelength of the 0 → K transition. Alternatively, one can use the rota-
tional strength in the dipole velocity form [Eq. (20.18)]. By analogy to Eqs. 20.22–20.24,
the dipole velocity form of the rotational strength is given by

R0K = −[eh2/4π2(EK − E0)](C−1∇0)K •(m0+C)K ,

where ∇0 is an Ne × 3 matrix, the rows of which contain the three components of the
nabla matrix elements for the individual chromophores, which can be obtained from
the electric dipole transition moments by Eq. (20.17) or calculated from the wavefunc-
tions. All recent calculations of protein CD have used one of these origin-independent
formulations.
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The most important problem—which is also the case when using the Tinoco
method—is to calculate the matrix elements of the perturbation operator (see Appendix
A). The simplest method, which can be applied if the distance between the two
interacting groups is sufficiently large, uses the transition dipole moments μi0b and the
ground-state dipole moments μi00 of all groups and calculates the energy of interaction
using the point–dipole interaction. For distances that are not large compared to the
size of the interacting groups, it is important to use the monopole or distributed dipole
approximation [2]. The interaction of the transition charge densities for transition 0 → a
in group i and that for 0 → b in group j , for example, is approximated by

Vi0a ,j 0b =
∑

s

∑
t

qis0aqjt0b/|Rjt0b − Ris0a |, (20.27)

where qis0a is the charge of monopole s for the transition 0 → a in group i and Ris0a

is its position, and correspondingly for monopole t of transition 0 → b in group j . The
monopole charges and positions are chosen so that they reproduce the electric dipole
transition moment or the permanent dipole moment of the charge density:

μi0a =
∑

s

qis0aRis0a . (20.28)

If the chromophore is di- or triatomic or has high symmetry, monopole charges
positioned at the atomic centers can be calculated to fit the observed electric dipole
transition moment, as Moffitt [17] did for the amide ππ* transition. Monopoles can
also be calculated from wavefunctions by the method of Tinoco [2], as described in
several studies [18, 19]. A very clear method to calculate the charges and the positions
of the monopoles was given by Kramer [20] and is also described in the appendix of
reference 21. Besley and Hirst [22] performed high-level ab initio calculations to obtain
wavefunctions for different groups and generated from these the potential for static and
transition charge densities. They then fit monopole charges to these potentials, using
fixed positions near the atomic centers. Rogers and Hirst [23] used the same approach
to generate monopoles for aromatic side-chain transitions.

Recently, several more exact methods have been developed for calculating the cou-
pling of transitions densities, which is a critical parameter for Förster resonance energy
transfer (FRET) as well as for CD theory. The gold standard is provided by numerical
integration of Eq. (A6) using ab initio wavefunctions, as described by Krueger et al. [24].
Their method is called the transition density cube (TDC) method because the (nonover-
lapping) volume of each transition density is divided into a large number of small cubes.
(Krueger et al. used cubes of ∼0.3 Å on a side and found that decreasing the cube size
had no significant effect on the results.) The charge on each cube is proportional to the
product of the ground- and excited-state wavefunctions for the group evaluated at the
center of the cube. Thus, this method makes the monopole approximation essentially
exact by placing monopoles at a grid of closely spaced points in each of the two groups,
rather than at or near atomic centers only.

The TDC method is very demanding computationally. A less demanding algorithm,
the transition-density-fragment interaction (TDFI) method, has been developed by Fuji-
moto and Hayashi [25] for FRET and by Fujimoto [26] for matrix method calculations
of CD. In TDFI, the coupling energy is calculated using single-electron density matri-
ces for the excited states in the two groups and the two-electron repulsion integrals
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over the molecular orbitals in the two groups. For further details, the original papers
[24, 25] should be consulted. For a specific example of the exciton interaction between
two all-trans polyene aldehyde Schiff base chromophores [26], the TDC method gave
741 cm−1 for the coupling matrix element, whereas TDFI gave 703 cm−1and atom-
centered monopoles with charges fit to the electrostatic potential of the transition charge
density gave 646 cm−1. By contrast, the point-dipole approximation gave 1332 cm−1.
Thus, the TDFI method gave an appreciably better approximation to the integral than
potential-fitted monopoles, and the point-dipole value deviated by about a factor of two.

Extension of CD measurements into the vacuum ultraviolet, especially with syn-
chrotron light sources, has revealed transitions in polypeptides that are believed to result
from inter-amide charge-transfer (CT) transitions—for example, the 175- and 160-nm CD
bands of the α-helix [27–29]. Two methods for extending the matrix method to include
CT transitions have been reported. Woody [19] adopted the approach of Longuett-Higgins
and Murrell [30], retaining the Hamiltonian of Eq. (20.4), but allowing the locally excited
configurations treated in the original matrix method to mix with CT configurations, such
as ni → π∗

i±1, in which an electron from the nonbonding orbital of group i is excited to
the antibonding π∗ orbital of group i + 1 or i − 1. He considered only CT across the
hydrogen bonds and found a negligible CD contribution, but CT along the chain promises
to be more significant [31, 32]. Hirst and co-workers [33–35] have adopted a different
approach. Without specifying a Hamiltonian, they have expanded the matrix to include
CT configurations. They treat locally excited configurations using wave functions for a
monoamide and CT configurations using wave functions for a diamide [35].

Calculations of polypeptide and nucleic acid CD using Tinoco’s method initially [18,
36–39] included mixing of discrete transitions at low energies with the large number of
transitions deep in the ultraviolet, approximated by polarizability tensors [1, 2]. How-
ever, data on bond polarizability anisotropies were sparse and of questionable quality. In
addition, the CD spectra of the α helix and β sheet (Chapters 14 and 15 in volume 2)
showed little net rotational strength down to ∼180 nm; that is, the spectra were conser-
vative [37], indicating that there is little net mixing of the nπ∗ and NV1ππ∗ transitions
with high-energy transitions. This led later workers to neglect the effects of high-energy
transitions, despite the distinctly nonconservative CD spectrum of the poly(Pro) II (PII)
conformation (Chapters 14 and 15 in volume 2) and of the 260-nm region of A-form
polynucleotides (Chapter 17 in Volume 2).

Johnson and Tinoco [40] first incorporated high-energy transitions in the matrix
method. They considered the mixing of each polymer transition with the high-energy
transitions, described by polarizability tensors. The rotational strength of each polymer
transition was multiplied by a bandshape function, and the sum over all polymer levels
of the resulting CD contributions was expanded in a Taylor’s series about ν, the aver-
age frequency. Only the first two terms were retained: The first had a shape determined
by the bandshape function, and the shape of the second was that of the first derivative
of the function. These two terms represented the nonconservative and the conservative
CD spectra, respectively. The method is attractive because summation over all polymer
levels makes it unnecessary to explicitly diagonalize the Hamiltonian matrix. However,
because of the truncation of the Taylor’s series, the transitions considered must be pseu-
dodegenerate. The method is suitable for the 260-nm region of nucleic acids to which it
was applied in calculations on DNA and RNA [40] and dinucleotides [41, 42]. The nπ∗

and NV1 transitions of polypeptides are also pseudodegenerate, but the method neglects
electrostatic mixing of excited states and is therefore unsuitable for polypeptide systems.
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To provide a satisfactory treatment of the CD of the PII polypeptide conformation,
Woody [15] extended the matrix method to include the effects of mixing of each polymer
transition 0 → K with the high-energy transitions, modeled by polarizability tensors, αl .
Zubkov and Vol’kenshtein [39] had previously applied a similar approach to calculations
on the α helix and β sheet. Utilizing Woody’s more compact formulation, the electric-
dipole-allowed components have a rotational strength contribution from this mixing given
by the matrix equation:

Rμ = γμ

∑
l

C+GαFC. (20.29)

The matrix Rμ has dimensions Ne × Ne , where Ne is the number of discrete transitions
included in the matrix method. The diagonal element (Rμ)KK is the contribution of the
polarizable groups to the rotational strength of polymer transition 0 → K through mixing
with the electric dipole transition moments of the discrete transitions. The parameter γμ =
πν2

0/[λK (ν2
0 − ν2

K )], where ν0 is the average frequency of the high-energy transitions,
usually taken to be 105 cm−1, νK is the frequency of the polymer transition 0 → K , and
λK is its wavelength. C and C+ are the eigenvector matrices from the diagonalization of
the Hamiltonian matrix. G is a matrix with the general element

Gj =
∑

t

qjbt Rjbt ,l

|Rjbt ,l |3 , (20.30)

where qjbt is the charge of monopole t for the transition 0 → b in group j and Rjbt ,l =
Rl − Rjbt . The polarizability matrix, αl , is a 3Nα × 3Nα matrix, where Nα is the number
of polarizable groups of type l , and the nonzero elements of the matrix are 3 × 3 sub-
matrices along the diagonal, one for each of the groups of type l . F is a matrix with the
general element:

Fia = μi0a × Ri, (20.31)

where Ril = Rl − Ri is the vector from the center of transition i to the polarizable
group l .

The contributions to the rotational strength of the polymer transition 0 → K from
magnetically allowed transitions mixing with the high-energy transitions are given by the
matrix equation:

Rm = γm

∑
l

C+Gαl m+C, (20.32)

where Rm is an Ne × Ne matrix, of which the diagonal elements, (Rm)KK , are the con-
tributions of the polarizable groups to the rotational strength for the polymer transition
0 → K through mixing with magnetically allowed discrete transitions. The parameter γm

equals ν0
2/(ν0

2 − νK
2); and m+ is a 3Nα × Ne matrix, the i th column of which consists

of Nα repetitions of the components of mi
∗, the complex conjugate of the magnetic

dipole transition moment vector for transition 0 → a in group i .
Woody [15] utilized polarizability tensors for individual bonds and lone pairs that

were calculated for N -methylacetamide using the method of Garmer and Stevens [43].
These tensors are obtained by applying finite-field perturbations to localized ab initio
wave functions. The use of bond and lone-pair polarizabilities is much to be preferred
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TABLE 20.2. Applications of the Matrix Method

System References

Linear dipeptides 3, 100–102
Cyclic dipeptides 103–106
Linear oligopeptides 107, 108
α helix 13, 109–116
310 helix 113
Poly(Pro) helices 13, 15, 109, 113, 117
β sheet 13, 109, 118–121
β turns 122
Ribonuclease 16, 21, 72, 123
Lysozyme 124
Adenylate kinase 125
Pancreatic trypsin inhibitor 126, 127
Gene 5 protein 71, 128
β-lactamase 62
Villin headpiece 129
Calmodulin fragment 130
Palmitoyl transferase (PagP) 131
Ubiquitin 132
p62 UBA domain 133
Multiple proteins 22, 23, 33, 35, 61, 63–65, 134–136
Dinucleotides 40, 42
Polynucleotides 40, 138–149
Retinal Schiff base dimer 26

relative to using the polarizability of the whole amide group. It is not possible to obtain a
unique decomposition of the experimental molecular polarizabilities into individual bond
contributions [44].

Woody [15] showed that this method satisfactorily reproduces the strongly noncon-
servative CD spectrum of polypeptides such as poly(Glu) and poly(Lys) in the PII con-
formation. Poly(Pro)II itself, however, still presents theoretical challenges. This method
does not reproduce the poly(Pro)II CD spectrum, perhaps because of conformational het-
erogeneity or because the polarizability parameters are not suitable for the pyrrolidine
ring of the Pro side chain. Woody also found that although the net contributions of high-
energy transitions to α-helix CD are small, there are significant contributions to individual
polymer transitions of opposing sign that modify the shape of the CD spectrum.

The matrix method has been applied to the prediction of the CD spectrum of many
polypeptide and polynucleotide systems, as shown in Table 20.2 and in greater detail in
Table S2 of the supplement at the end of this chapter, following the reference section.

20.4. CLASSICAL POLARIZABILITY (DeVoe) THEORY

Optical activity is not an inherently quantum mechanical phenomenon and thus can be
described by classical theory. DeVoe [4, 5] developed such a theory, in which linear
oscillators play the role of electric dipole transition moments and their moments about
an arbitrary origin correspond to magnetic dipole transition moments. Each electronic
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transition within a group is represented by a polarizability tensor, αi , which is frequency-
dependent and is represented in dyadic form by

αi (ν) = αi (ν)ei ei , (20.33)

where αi is the scalar polarizability and ei is a unit vector in the direction of polarization
of the oscillator. The molecule is considered to consist of a collection of Ne such oscil-
lators. The electric field of an incident light wave induces an electric dipole moment,
μind

i = μind
i ei , in each oscillator:

μind
i = αi •Eeff

i , (20.34)

where αi is the polarizability tensor of oscillator i and Eeff
i is the electric field at oscillator

i . This field consists of the applied field at the oscillator, Eext
i , and the field generated

by all of the other induced moments:

μind
i = μind

i ei = αi ei ei •(Eext
i −

∑
j �=i

Tij •μind
j ) = αi (ei •Eext

i −
∑
j �=i

Gij μ
ind
j )ei , (20.35)

where Gij = ei •Tij •ej is the point dipole interaction energy between dipoles μind
i and

μind
j . Thus the scalar-induced moments are given by a set of Ne equations of the form

α−1
i μind

i +
∑
j �=i

Gij μ
ind
j = ei •Eext

i (20.36)

that can be written in matrix form:

Bμ = Eext , (20.37)

where a representative element of the B matrix is given by

Bij = (δij /αi ) + Gij . (20.38)

Here, δij is the Kronecker delta and Gij is zero if oscillators i and j are on the same
group. The induced dipole moments are obtained by inverting the B matrix, giving

μ = B−1Eext = AEext . (20.39)

Thus the matrix A = B−1 is the polarizability tensor for the collection of oscillators. This
matrix provides the information required to calculate the absorption and CD spectra of
the molecule.

ε(ν) = −(8π2N0/6909λ)
∑

i

∑
j

Im(Aij )ei •ei , (20.40)

�ε(ν) = (16π3N0/6909λ2)
∑

i

∑
j

Im(Aij )[Rij •ei × ej − 4bj ei •e′
j ]. (20.41)

The second term in Eq. (20.41) arises from coupling of the magnetic dipole transition
moment j and the electric dipole transition moment i . Here, bj = c Im|mj |/(2πνj |μj |),
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where c is the velocity of light in vacuo, νj is the frequency of oscillator j , and |mj |
and |μj | are, respectively, the magnitudes of the magnetic and electric dipole transition
moments of oscillator j . The vector e′

j is the unit vector in the direction of the magnetic
dipole transition moment. This term has rarely been used, limiting the DeVoe method to
ππ∗ transitions.

The A matrix is complex because the oscillator polarizabilities are generally complex.
We obtain these polarizabilities from the absorption spectrum of the individual isolated
groups—for example, the peptide group and aromatic amino acids for proteins, and the
pyrimidines and purines for nucleic acids. The scalar polarizability of oscillator i is
given by

αi (ν) = α′
i (ν) + iα′′

i (ν). (20.42)

The imaginary part of the polarizability, α′′
i (ν), is proportional to the molar extinction

coefficient:

α′′
i (ν) = −(6909c/8π2νN0)εi (ν). (20.43)

The real part of the polarizability is obtained from the imaginary part by the Kronig–
Kramers [45, 46] transform:

α′(ν) = −(2/π)℘

∞∫
0

ν ′α′′
i (ν

′)dν ′

(ν
′2 − ν2)

, (20.44)

where ℘ denotes the Cauchy principal value of the integral—that is, integration that
avoids the singularity.

The dipole–dipole interaction, Gij , has been defined in the point-dipole approxima-
tion, but this approximation is unsatisfactory at short distances, when the separation is
comparable to or less than the extent of the dipoles. It is therefore preferable to define
Gij as

Gij = Vij /|μi ||μj |, (20.45)

where Vij is the interaction between transition charge densities calculated in the monopole
approximation [2] [Eq. (20.27)] and |μi |, |μj | are the magnitudes of transition moments
i and j , respectively.

Levin and Tinoco [47] extended the DeVoe theory to the case of infinite helical
polymers, using periodic boundary conditions. The use of helical symmetry permits
calculation of the CD and absorption by inversion of three matrices (one for the axial
direction and two for the directions perpendicular to the axis) of dimension η × η for
each electronic transition, where η is the number of transitions in the repeating unit.

In contrast to the matrix method [3], the bandshape of the transition enters the
DeVoe calculation from the beginning in defining the frequency dependence of the group
polarizabilities, rather than being introduced at the end of the calculation as an arbitrary
bandshape function associated with each transition. This is an advantage of the DeVoe
method.

Another advantage of the DeVoe method is that it is a weak-coupling [48] method,
meaning that it assumes that the electronic coupling among chromophores is small com-
pared to the vibronic band widths. The matrix method [3] implicitly assumes the opposite
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case—that is, strong coupling. In proteins and nucleic acids as well as in most small
molecule systems, the coupling is at best intermediate, with the electronic coupling com-
parable to the vibronic band widths. Therefore, weak coupling is a better approximation
than strong coupling. In practice, however, the predictions of the DeVoe method are quite
similar to those of the matrix method, consistent with the demonstration by Tinoco [2]
that the perturbation theory expressions for predicting dipole and rotational strengths are
equivalent for strong and weak coupling.

The CD and absorption spectra are calculated at each wavelength of interest, requir-
ing the inversion of the B matrix at each wavelength. This is a disadvantage computa-
tionally relative to the matrix method, which requires a single matrix diagonalization. In
addition to the substantially greater number of matrix operations in the DeVoe method,
matrix inversion is more computer intensive than matrix diagonalization.

Another drawback of the DeVoe method is that it is limited to electrically allowed
transitions and is not suited to treating the peptide nπ∗ transition, for example. Inclusion
of the magnetic moments in the DeVoe method permits treatment of the coupling between
electric and magnetic dipole transition moments in different groups (Schellman’s μ–m
term [49]), but does not include the important one-electron contribution [2, 50] of static-
field mixing within individual groups.

The DeVoe method has been used extensively in stereochemical studies of organic
molecules. These applications have been reviewed [51, 52], and references to selected
systems are given in Table 20.3. The DeVoe method is a useful adjunct to the exciton
chirality method (Chapter 4 in Volume 2) in systems with two coupled transitions, and it
is indispensable when more than two transitions are involved. A valuable feature of the
recent review of Superchi et al. [52] is the illustration of the application of the DeVoe
model to 1,1′-binaphthyl. Applications of the DeVoe method to biologically important
molecules are also referenced in Table 20.3.

Applequist et al. have developed a method that is closely related to the DeVoe model,
called the Atom Dipole Interaction model [53]. The method was first applied to the
prediction of molecular polarizabilities. Atoms were assigned isotropic polarizabilities,
and the moments induced in the atoms by an applied field were allowed to interact via

TABLE 20.3. Applications of DeVoe Theory

System Modela References

Biaryls D 150–152
Paracyclophanes D 153, 154
Aryl sulfoxides D 155, 156
Pseudoisocyanine I 157
Porphyrins D 158–160
Nucleosides D 147, 161, 162
DNA and RNA D,I 148, 163–169
α helix A,I 56, 58, 76
Poly(Pro) I and II A 68, 170
Collagen A 171
β sheet A,I 56, 58, 172
β turns A,I 58, 173, 174
Cyclic peptides A,I 174–178
Poly(β-amino acids) A 179–181
Proteins A 60, 182

a D, DeVoe; A, Applequist; I, Ito.
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the point dipole interaction, giving rise to the molecular polarizability as in Eq. (20.39).
It was found that a small set of parameters (e.g., three polarizabilities for carbon in
aliphatic, carbonyl, and nitrile environments) could account satisfactorily for the average
polarizability of a wide range of molecules and, less well, for the anisotropy. The model
was also applied to prediction of optical rotation, depolarization factors, Kerr constants,
and Raman mean polarizabilities and anisotropies [6] with generally satisfactory results.

Applequist [54] extended his model to treat the amide group as a single unit
with a frequency-dependent polarizability tensor (dispersive) and all other atoms as
frequency-independent, isotropic polarizabilities (nondispersive). The parameters for the
amide polarizability were optimized [54, 55] to give the best fit to mean polarizability,
anisotropy, and Kerr constant data for eight primary, secondary, and tertiary amides.

Ito et al. [56–58] have developed a formalism based upon the DeVoe method and
have applied it to various systems. Ito [57] has summarized this work and related it to
other theoretical methods.

The classical models of DeVoe, Applequist, and Ito have been applied to many
systems, as shown in Table 20.3 and in greater detail in Table S3 of the supplement at
the end of this chapter, following the reference section.

20.5. APPLICATIONS

Independent systems theory has been applied to many systems for predicting CD and
absorption spectra. The range of systems studied can be judged from the entries in
Tables 20.1–20.3, which list applications of Tinoco’s theory, the matrix method, and
DeVoe theory, respectively, together with references. More complete annotated tables
may be found at the end of this chapter. In this chapter, we will limit the discussion
of applications of these methods to the prediction of CD spectra for proteins, an area
in which there has been much recent activity. Appendix B is a compilation of data and
references for the principal chromophoric groups in both proteins and nucleic acids.

The prediction of protein CD spectra from X-ray or NMR structures has been
reviewed previously [11, 59]. Three different models have been used: the atom dipole
interaction model [60]; the matrix method using semiempirical parameters [21, 61, 62];
and the matrix method using ab initio parameters [22, 63–65].

Hirst et al. [64] compared the performances of these methods, measured by the
Spearman rank correlation coefficient for three characteristic wavelengths: 190, 208, and
220 nm. This comparison is reproduced in part in Table 20.4. Overall, the ab initio-
based matrix method gives the best results, although the semiempirical matrix method
performs equally well at 220 nm, and the dipole interaction model performs slightly better
at 190 nm, although the sample of proteins was smaller. The ab initio model works better
because it represents the static and transition charge densities by a set of point charges
that best fits the ab initio electrostatic potentials. An earlier ab initio model [63] used
point charges to fit only the ab initio dipole and quadrupole moments, and this did not
perform as well as the semiempirical model [61]. The slightly superior performance of
the dipole interaction model at 190 nm may reflect the value of including mixing of
the ππ∗ transition with very-high-energy transitions, which are missing in the standard
matrix method, but have been incorporated in an extended version of the matrix method
[15]. The dipole interaction model is not expected to work well at 220 nm because it
does not include the nπ∗ transition.

All three methods work best for α-helix-rich proteins and give poorer results for
β-rich proteins. The two matrix methods do very poorly with β-II proteins [66], such
as the serine proteases, predicting a positive ππ∗ couplet in contrast to the observed
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TABLE 20.4. Comparison of Performance of Three Models for Predicting Protein Far-UV CDa

Correlation Coefficientb

Model Proteins 190 nm 208 nm 220 nm

Dipole interactionc 15 0.89 0.75 0.74
Matrix, semiempiricald 47 0.68 0.67 0.93
Matrix, ab initioe 47 0.86 0.80 0.94

a Based upon Hirst et al. [64]
b Spearman rank correlation coefficient, comparing calculated and experimental CD at three wavelengths.
cHirst et al. [64] calculated correlation coefficients from data of Bode and Applequist [60].
d Calculated by Hirst et al. [64], using parameters of Woody and Sreerama [61], but considering only the nπ*
and NV1ππ∗ transitions.
eCalculated using the parameters of Besley and Hirst [22].

negative band near 200 nm. This is probably related to the poor performance [15] of
the matrix method for the PII conformation, which dominates the CD spectrum of β-II
proteins [67]. (Bode and Applequist [60] did not include any β-II proteins in their set of
proteins. This would have been interesting because the dipole interaction model handles
the poly(Pro)II helix well [68], in contrast to the matrix method.)

Although the correlation coefficients for the ab initio model are superior to those
for the semiempirical model, the latter generally gives better band shapes, especially for
α-helix-rich proteins. The ab initio model uses a fixed band width of 15 nm for all transi-
tions, and this does not permit the resolution of the 222- and 208-nm bands of the α helix.
Hirst et al. [64] explored various combinations of constant band widths, effective dielec-
tric constants, and inclusion of two higher-energy transitions. They found combinations
that gave resolution of the long-wavelength α-helix bands, but at the expense of increased
mean absolute error. By contrast, the semiempirical model uses different band widths for
different transitions, using an empirical relationship between band width and absorption
maximum [69]. With this model, the 222- and 208-nm band of the α helix are resolved.

Near-UV CD spectra of proteins have been calculated by the matrix method using
both semiempirical [61, 70–72] and ab initio [23] parameters. Rogers and Hirst [23] com-
pared results from their ab initio model with those from a hybrid using their ab initio
peptide backbone parameters with the Woody and Sreerama [61] side-chain parameters,
applying these two models to 30 proteins and to 20 mutant proteins. Quantitative com-
parisons used mean absolute errors, presumably using [θ ]max and �[θ ]max, respectively.
The mean absolute errors in the far and near UV are shown in Table 20.5. In the far UV,
inclusion of side-chain contributions increases the mean absolute error, as was noted by
Hirst [63] and by Woody and Sreerama [61]. The ab initio parameters produce only a
minor increment, however. In the near UV, the ab initio parameters lead to significantly
better predictions for wild-type and mutant CD spectra.

Bulheller and Hirst [73] have created a website called DichroCalc that uses ab
initio parameters and the matrix method to calculate the CD and linear dichroism (see
Chapter 18 of this volume) spectra of a protein. The user submits a Protein Data Bank
(PDB) [74] file for the protein of interest, or a series of files if multiple conformers
(e.g., from an NMR structure or molecular dynamics trajectory) are to be considered.
The output spectrum is returned by email.

Hirst and co-workers [34, 35] have extended the matrix method to include charge-
transfer transitions between neighboring amide groups—for example, an ni → π∗

i±1
transition in which a nonbonded electron on peptide group i is excited to the π∗ orbital
of peptide group i ± 1. Parameters for including these transitions, which are believed
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TABLE 20.5. Comparison of Mean Absolute Errora for Side-Chain Models for Predicting
Protein CDb

Far-UV Near UV

Model 30 Proteins 30 Proteins 20 Mutants 20 Diff. Spectra

Ab initio backbone 6100
Ab initio backbone+ab initio side

chain
6300 110 170 54

Ab initio backbone+semiempirical
side chain

7300 240 200 98

a Mean residue ellipticity in deg cm2 dmol−1.
b Data of Rogers and Hirst [23].

to be responsible for the bands at ∼175 and 160 nm in the α-helix CD spectrum (see
reference 29 for a review), were generated by ab initio calculations on a dipeptide in
various conformations. In a survey of 71 proteins, inclusion of CT transitions had little
effect on the Spearman rank correlation coefficients at 190 or 222 nm, but markedly
improved the correlation coefficient at 175 nm, from 0.46 to 0.79.

Jiang et al. [65] have recently reported combined molecular dynamics/ab initio matrix
method simulations of the CD spectra of three α-helix-rich and two β-rich proteins. For
each sampled structure along the MD trajectory, the transition energies (the diagonal
elements of the Hamiltonian matrix) were calculated from the in vacuo energy corrected
by the difference in energy between the excited- and ground-state charge densities in the
electrostatic field generated by the remainder of the molecule and the solvent. The disper-
sion in transition energies thus generated, combined with the structural variations along
the trajectory, led to a broad distribution of transition energies, especially for the ππ∗
transition, with energy shifts from −8000 to +6000 cm−1, relative to the unperturbed
transition. The matrix method was applied to each sampled structure along the trajectory,
and the resulting CD and absorption spectra were averaged over the trajectory. In gen-
erating the CD spectrum for a given conformer, a relatively small band width (7.5 nm)
was used, but the spread of transition energies, exciton splitting, and conformational
fluctuations led to realistic bandshapes, and reasonable agreement with experiment was
obtained for both hemoglobin (α-helix-rich) and a lectin (β-rich). Agreement was poorer
for leptin, another α-helix-rich protein, in the long-wavelength region, and for monellin,
a β-rich protein, in the 190-nm region, but was still semiquantitatively satisfactory.

In another recent development, Abramavicius et al. [75] have used the methods
described by Jiang et al. [65] to simulate two-dimensional absorption and CD spectra in
the far UV. Experimental measurements of such 2D spectra have yet to be reported but
should significantly augment conventional 1D spectra.

20.6. SOFTWARE AVAILABLE

One of the authors of this chapter (JF) developed software to perform calculations for pro-
teins employing either Tinoco’s theory or the matrix method, and another author (RWW)
has written software to perform matrix method calculations for proteins. Fortran source
codes of the programs MATMAC (JF) and PROTEIN (RWW), including sample input
and output files, are available from the authors. Bulheller and Hirst [73] have established
a website (DichroCalc, http://comp.chem.nottingham.ac.uk/dichrocalc/) to
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which investigators can submit protein structures in the form of Protein Data Bank (PDB)
[74] files for calculation of CD and linear dichroism spectra using the matrix method and
the ab initio parameters of Hirst and co-workers [22, 23]. A program package for calcu-
lating peptide and protein CD by the method of Applequist [55, 60, 76] may be down-
loaded from the website http://www.public.iastate.edu/∼jba/homepage.html

by clicking on the entry “CaPPS program package.”

APPENDIX A

H 0
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∫
(ψ0

0 )∗
n∑
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Ĥ0lψ0 dτ =
n∑
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E 0
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H 0
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∫
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n∑
l=1

Ĥ0lψia dτ = E 0 + E 0
ia − E 0

i0, (A2)

and

H 0
ka ,lb;ka ,lb =

∫
(ψka ,lb)

∗
n∑

i=1
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APPENDIX B

TABLE B1. Model Chromophores

Chromophore Model Transition λmax (nm) |μ| (D) Polarization

Peptide [183] N -AcGly nπ∗ 213 0 ⊥a

NV1 187 3.0 −55(5)
◦

NV2 139 1.7 +10 or +61(10)◦

(continued)
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TABLE B1. (Continued )

Chromophore Model Transition λmax (nm) |μ| (D) Polarization

Phe [184] Toluene Lb 260 0.3 ⊥b

La 205 2.1 ||
Bb 185 4.3 ⊥
Ba 185 4.3 ||

Tyr [110] Phenol Lb 277 1.1 ⊥b

La 227 2.5 ||
Bb 192.5 4.7 ⊥
Ba 192.5 4.7 ||

Trp [185, 186] Indole Lb 287 1.7 42(5)◦c

La 265 2.6 −46(5)◦

Bb 220 5.3 0(15)◦

Ba ∼200 4.6 >±30
Asn, Gln[183] Propanamide nπ∗ 208 0 ⊥a

NV1 181 2.6 −35(3)
◦

NV2 127 1.6 +46(8)
◦

Asp, Glu[187] Ala n1π∗ 196 0 ⊥d

n2π∗ 196 0 ⊥
ππ∗ 166 3.2 O-O

His [188] Imidazolium ππ∗1 207 3.0 ||e
ππ∗2 178 1.6f ⊥

Arg Guanidinium ππ∗1 180g 3.4g ||h
ππ∗2 180g 3.4g ⊥

Disulfide H2S2 n1σ∗ 220–370 0.4–0.7 ||i ,j
n2σ∗ 250–325 0.0–0.7 ⊥

Adenosine [189] Adeninek ππ∗1 275 2.4 83(8)
◦l

ππ∗2 270 3.4 25(5)◦

ππ∗3 213 3.4 −45(5)
◦

ππ∗4 204 2.2 15(5)◦

Guanosine [190] 9-Ethylguanine nπ∗(?) 300 weak ⊥
ππ∗1 278 3.1 −4(3)

◦l

ππ∗2 254 3.7 −75(3)
◦

M 227 ∼1.0
ππ∗3 204 4.2 −75(5)

◦

ππ∗4 189 4.4 −9(4)
◦

Thymidine [191] Thymine ππ∗1 278 3.4 −12 or 70◦m

ππ∗2 213 3.5 −31 or 91◦

Cytidine [192] Cytosine ππ∗1 267 2.8 6(2)◦m

ππ∗2 233 1.2 −35(30)
◦

ππ∗3 221 2.5 76(3)◦

ππ∗4 200 3.9 −26 or 86(3)◦

ππ∗5 161 2.3 ∼0 or ∼60◦

ππ∗6 154 2.6 ∼0 or ∼60◦

a⊥ relative to the amide plane. Numerical values refer to in-plane polarization, measured relative to the carbonyl
bond (C → O) with the positive sense toward the N atom of the amide group. Experimental values are (−55◦,
+10◦ or 61◦) for NV1, NV2 of secondary amide (peptide), and (−35◦, +46◦) for primary amide (Asn, Gln).
b Relative to the Cγ -Cη direction, i.e., to “long axis”.
cRelative to the long axis which is directed from the midpoint of the C5 –C6 bond through C2 (see below).
d ⊥ relative to the carboxylate plane. O–O is the line connecting the carboxylate oxygens. Two nπ∗ transitions
result from in-phase and out-of-phase combinations of lone-pair orbitals on the two oxygens. CNDO/S gives
a splitting of less than 1 nm for the two nπ∗ excited states.
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TABLE B1. (Continued )

eRelative to the twofold axis of imidazolium cation.
f Theoretical value from CASPT2 [193]. Grebow and Hooker [188] did not report the intensity of the second
ππ∗ transition.
g Estimated from data of Sussman and Gratzer, quoted as a private communication by Wetlaufer [194].
h Relative to one of the three equivalent C–N bonds.
i Wavelengths and intensities depend on dihedral angle. Wavelength ranges quoted here are derived from
experiment, whereas the intensities are obtained from CNDO/UV.
j Relative to the twofold axis that is perpendicular to the disulfide bond and bisects it.
k Model spectrum derived from the polarized absorption spectra of 9-methyladenine and 6-(methylamino)purine.
l The angle is positive going toward C6 from the C4 –C5 bond (see below).
m The angle is positive going toward N3 from the N1 –C4 axis (see structures below).
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SUPPLEMENT TO CHAPTER 20: DERIVATION OF TINOCO’S EQUATION
IN DIPOLE VELOCITY FORM

We consider the case of nondegenerate excited states. Degenerate and pseudodegener-
ate cases are best treated by the matrix method. To first order in the perturbation, our
wavefunctions are [see Eqs. (20.11) and (20.13)]

�1
0 = ψ0 −

∑
k

∑
l �=k

∑
c

Vk0c;l00

hνc
ψkc −

∑
k

∑
l �=k

∑
c

∑
d

Vk0c;l0d

2h(νc + νd )
ψkc,ld , (S1)

�1
A = ψia +

∑
j �=i

Vi0a;j 00

hνa
ψ0 −

∑
j �=i

∑
b �=a

Vi0a;j 0b

h(νb − νa)
ψjb −

∑
j �=i

∑
b �=a

Viab;j 00

h(νb − νa)
ψib . (S2)

The gradient matrix element is

(�1
0 |∇̂|�1

A) =∇0A

=
⎛
⎝ψ0 −

∑
k

∑
l �=k

∑
c

Vk0c;l00

hνc
ψkc −

∑
k

∑
l �=k

∑
c

∑
d

Vk0c;l0d

2h(νc + νd )
ψkc,ld |∇̂|ψia

+
∑
j �=i

Vi0a;j 00

hνa
ψ0 −

∑
j �=i

∑
b �=a

Vi0a;j 0b

h(νb − νa)
ψjb −

∑
j �=i

∑
b �=a

Viab;j 00

h(νb − νa)
ψib

⎞
⎠ . (S3)

Retaining only first-order terms, we obtain

∇0A = ∇i0a +
∑
j �=i

Vi0a;j 00

hνa
∇i00 −

∑
j �=i

∑
b �=a

Vi0a;j 0b

h(νb − νa)
∇j 0b −

∑
j �=i

∑
b �=a

Viab;j 00

h(νb − νa)
∇i0b

−
∑

k

∑
l �=k

∑
c

Vk0c;l00

hνc
∇kc;ia −

∑
k

∑
l �=k

∑
c

∑
d

Vk0c;l0d

2h(νc + νd )
∇kc,ld;ia . (S4)

The second term on the right-hand side (rhs) of Eq. (S4) is zero because of the anti-
Hermitian character of the gradient operator. The fifth term on the rhs vanishes unless
i = k . If c = a , then the gradient matrix element becomes ∇iaa, which is zero because it
is a diagonal element of an anti-Hermitian operator. If c �= a , the fifth term reduces to

∑
l �=i

∑
c �=a

Vi0c;l00

hνc
∇ica =

∑
j �=i

∑
b �=a

Vi0b;j 00

hνb
∇iba , (S5)

where we have changed the summation indices to our conventional j and b.
The sixth term on the rhs of Eq. (S4) vanishes unless k = i or l = i . In the former

case, the term vanishes unless c = a and the gradient matrix element becomes ∇ld0. In
the latter case, the term vanishes unless d = a and the gradient matrix element becomes
∇kc0. These two cases give equivalent results and occur with equal frequency, so we can
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consider only one of them if we delete the factor of two in the denominator.

−
∑

k

∑
l �=k

∑
c

∑
d

Vk0c;l0d

2h(νc + νd )
∇kc,ld;ia = −

∑
l �=i

∑
d �=a

Vi0a;l0d

h(νa + νd )
∇ld0

= −
∑
j �=i

∑
b �=a

Vi0a;j 0b

h(νa + νb)
∇jb0, (S6)

where we have again changed the indexing in the last step. Thus the gradient matrix
element becomes

∇0A = ∇i0a −
∑
j �=i

∑
b �=a

Vi0a;j 0b

h(νb − νa)
∇j 0b −

∑
j �=i

∑
b �=a

Viab;j 00

h(νb − νa)
∇i0b

−
∑
j �=i

∑
b �=a

Vi0b;j 00

hνb
∇iba −

∑
j �=i

∑
b �=a

Vi0a;j 0b

h(νa + νb)
∇jb0. (S7)

The second and fifth terms in Eq. (S7) can be combined as follows:

−
∑
j �=i

∑
b �=a

Vi0a;j 0b

h(νb − νa)
∇j 0b −

∑
j �=i

∑
b �=a

Vi0a;j 0b

h(νa + νb)
∇jb0

= −
∑
j �=i

∑
b �=a

Vi0a;j 0b

h(νb − νa)
∇j 0b +

∑
j �=i

∑
b �=a

Vi0a;j 0b

h(νa + νb)
∇j 0b

= −2
∑
j�=i

∑
b �=a

νaVi0a;j0b

h(ν2
b − ν2

a)
∇j 0b . (S8)

Thus, the gradient matrix element is

∇0A = ∇i0a − 2
∑
j �=i

∑
b �=a

νaVi0a;j 0b

h(ν2
b − ν2

a)
∇j 0b −

∑
j �=i

∑
b �=a

Viab;j 00

h(νb − νa)
∇i0b

−
∑
j �=i

∑
b �=a

Vi0b;j 00

hνb
∇iba . (S9)

Compare Eq. (S9) with Tinoco’s Eq. (IIIB-18) for the electric dipole transition moment.
The last two terms in (IIIB-18) have no counterpart. Term (IIIB-18e) is the “charge
transfer” term and is missing because the factors corresponding to μiaa and μi00 are
zero in the dipole velocity approximation. Term (IIIB-18f) is missing because we are
treating the nondegenerate case so there is no excited state a on groups other than i . The
remaining terms agree except for two discrepancies. The last term in Eq. (S9) is ∇iba ,
whereas ∇iab would be expected by analogy to Tinoco’s Eq. (IIIB-18d). However, if one
carries through the derivation for the μ operator, the correct order of subscripts is iba .
It appears that Tinoco reversed the order for appearance’s sake; and, of course, for the
μ operator such a reversal is immaterial. In the second term, the numerator contains a
factor of νa , whereas Tinoco’s term (IIIB-18b) has a factor of νb . Recall that this term
arises from the combination of two terms, one with a denominator of (νb − νa) and the
other with a denominator of (νb + νa). These terms also contain factors of ∇j 0b and
∇jb0, respectively, in the case of the gradient matrix element, and contain factors of μj 0b
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and μjb0, respectively, in the case of the electric dipole transition moment. The effect of
reversing the order of the subscript is different in the two cases: For the gradient operator,
reversal leads to opposite signs for the two terms, whereas for the electric dipole moment,
the two terms are of the same sign. When they are combined, the numerators contain
factors of νa in the first case and of νb in the second case. Note that Tinoco’s Eqs. (IIIB-
20b) and (IIIB-20g) are analogous to the second term of Eq. (S9), involving a matrix
element of an anti-Hermitian operator. They have the factor of νa in the numerator, as
we obtain for the gradient matrix element.

We also need the (r × ∇) matrix element. We can readily obtain this by replacing
the gradient operator in Eq. (S9) with the magnetic moment operator, (r × ∇̂) + R × ∇̂,
where r is the position vector relative to the group origin and R is the position of the group
origin relative to the molecular origin. Note that the order of states in the subscripts must
be reversed in each term because the order of states in the matrix element is reversed.
Thus we have

(r × ∇)A0 = (�1
A|r × ∇̂|�1

0 )

= (r × ∇)ia0 − 2
∑
j �=i

∑
b �=a

νaVi0a;j 0b

h(ν2
b − ν2

a)
(r × ∇)jb0

−
∑
j �=i

∑
b �=a

Viab;j 00

h(νb − νa)
(r × ∇)ib0 −

∑
j �=i

∑
b �=a

Vi0b;j 00

hνb
(r × ∇)iab

+ Ri × ∇ia0 − 2
∑
j �=i

∑
b �=a

νaVi0a;j 0b

h(ν2
b − ν2

a)
Rj × ∇jb0

−
∑
j �=i

∑
b �=a

Viab;j 00

h(νb − νa)
Ri × ∇ib0 −

∑
j �=i

∑
b �=a

Vi0b;j 00

hνb
Ri × ∇iab . (S10)

Comparing this expression with Tinoco’s Eq. (IIIB-20), we find that the first four terms
of Eq. S10 agree in form with (IIIB-20f) through (III B-20i), except for what is clearly
a misprint in Tinoco’s review in (IIIB-20f): mi0a should be mia0. There is a difference
in sign between the fourth term on the rhs of Eq. (S10) and (IIIB-20i) of Tinoco, but
this is accompanied by a reversal in the order of the subscripts. Substitution of μ for
∇ demonstrates that the last four terms of Eq. (S10) are equivalent to Tinoco’s terms
(IIIB-20a)–(IIIB-20d), with the proviso that he disregarded the order of the subscripts
in the electric dipole transition moments because they are immaterial.

We are now ready to develop the expression for the rotational strength in the dipole
velocity formalism:

RA = − e2
�

2

4πm2cνA
∇0A•(r × ∇)A0 = − e2

�
2

4πm2cνA

⎧⎨
⎩∇i0a − 2

∑
j �=i

∑
b �=a

νaVi0a;j 0b

h(ν2
b − ν2

a)
∇j 0b

−
∑
j �=i

∑
b �=a

Viab;j 00

h(νb − νa)
∇i0b −

∑
j �=i

∑
b �=a

Vi0b;j 00

hνb
∇iba

⎫⎬
⎭
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•

⎧⎨
⎩(r × ∇)ia0 − 2

∑
j �=i

∑
b �=a

νaVi0a;j 0b

h(ν2
b − ν2

a)
(r × ∇)jb0

−
∑
j �=i

∑
b �=a

Viab;j 00

h(νb − νa)
(r × ∇)ib0 −

∑
j �=i

∑
b �=a

Vi0b;j 00

hνb
(r × ∇)iab

+ Ri × ∇ia0 − 2
∑
j �=i

∑
b �=a

νaVi0a;j 0b

h(ν2
b − ν2

a)
Rj × ∇jb0

−
∑
j �=i

∑
b �=a

Viab;j 00

h(νb − νa)
Ri × ∇ib0 −

∑
j �=i

∑
b �=a

Vi0b;j 00

hνb
Ri × ∇iab}. (S11)

Retaining only the first-order terms, this reduces to

RA = − e2
�

2

4πm2cνA
{∇i0a • (r × ∇)ia0 (S12a)

− 2
∑
j �=i

∑
b �=a

νaVi0a;j 0b

h(ν2
b − ν2

a)
∇i0a • (r × ∇)jb0 (S12b)

−
∑
j �=i

∑
b �=a

Viab;j 00

h(νb − νa)
∇i0a • (r × ∇)ib0 (S12c)

−
∑
j �=i

∑
b �=a

Vi0b;j 00

hνb
∇i0a • (r × ∇)iab (S12d)

− 2
∑
j �=i

∑
b �=a

νaVi0a;j 0b

h(ν2
b − ν2

a)
∇j 0b • (r × ∇)ia0 (S12e)

−
∑
j �=i

∑
b �=a

Viab;j 00

h(νb − νa)
∇i0b • (r × ∇)ia0 (S12f)

−
∑
j �=i

∑
b �=a

Vi0b;j 00

hνb
∇iba • (r × ∇)ia0 (S12g)

+ ∇i0a • Ri × ∇ia0 (S12h)

− 2
∑
j �=i

∑
b �=a

νaVi0a;j 0b

h(ν2
b − ν2

a)
∇i0a • Rj × ∇jb0 (S12i)

−
∑
j �=i

∑
b �=a

Viab;j 00

h(νb − νa)
∇i0a • Ri × ∇ib0 (S12j)

−
∑
j �=i

∑
b �=a

Vi0b;j 00

hνb
∇i0a • Ri × ∇iab (S12k)

− 2
∑
j �=i

∑
b �=a

νaVi0a;j 0b

h(ν2
b − ν2

a)
∇j 0b • Ri × ∇ia0 (S12l)
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−
∑
j �=i

∑
b �=a

Viab;j 00

h(νb − νa)
∇i0b • Ri × ∇ia0. (S12m)

−
∑
j �=i

∑
b �=a

Vi0b;j 00

hνb
∇iba • Ri × ∇ia0

⎫⎬
⎭ (S12n)

Term (S12a) is the zeroth-order term. Term (S12b) is combined with term 12e:

−2
∑
j �=i

∑
b �=a

νa Vi0a;j 0b

h(ν2
b −ν2

a )
∇i0a • (r × ∇)jb0 − 2

∑
j �=i

∑
b �=a

νa Vi0a;j 0b

h(ν2
b −ν2

a )
∇j 0b • (r × ∇)ia0

= −2
∑
j �=i

∑
b �=a

νa Vi0a;j 0b

h(ν2
b −ν2

a )
{∇i0a • (r × ∇)jb0 + ∇j 0b • (r × ∇)ia0}. (S13)

Term (S12c) is combined with term (S12f):

− ∑
j �=i

∑
b �=a

Viab;j 00

h(νb−νa )
∇i0a • (r × ∇)ib0 − ∑

j �=i

∑
b �=a

Viab;j 00

h(νb−νa )
∇i0b • (r × ∇)ia0

= − ∑
j �=i

∑
b �=a

Viab;j 00

h(νb−νa )
{∇i0a • (r × ∇)ib0 + ∇i0b • (r × ∇)ia0} (S14)

Term (S12d) is combined with term (S12g):

−
∑
j �=i

∑
b �=a

Vi0b;j 00

hνb
∇i0a • (r × ∇)iab −

∑
j �=i

∑
b �=a

Vi0b;j 00

hνb
∇iba • (r × ∇)ia0

= −
∑
j �=i

∑
b �=a

Vi0b;j 00

hνb
{∇i0a • (r × ∇)iab+∇iba • (r × ∇)ia0}. (S15)

Term (S12h) is zero because two factors in the scalar triple product are antiparallel.
Term (S12i) is combined with term (S12l):

− 2
∑
j �=i

∑
b �=a

νaVi0a;j 0b

h(ν2
b − ν2

a)
∇i0a • Rj × ∇jb0 − 2

∑
j �=i

∑
b �=a

νaVi0a;j 0b

h(ν2
b − ν2

a)
∇j 0b • Ri × ∇ia0

= −2
∑
j �=i

∑
b �=a

νaVi0a;j 0b

h(ν2
b − ν2

a)
∇j 0b • (Rj − Ri ) × ∇ia0

= −2
∑
j �=i

∑
b �=a

νaVi0a;j 0b

h(ν2
b − ν2

a)
Rij • ∇jb0 × ∇i0a . (S16)

Term (S12j) is combined with term (S12m):

−
∑
j �=i

∑
b �=a

Viab;j 00

h(νb − νa)
∇i0a • Ri × ∇ib0 −

∑
j �=i

∑
b �=a

Viab;j 00

h(νb − νa)
∇i0b • Ri × ∇ia0

= −
∑
j �=i

∑
b �=a

Viab;j 00

h(νb − νa)
{∇i0a • Ri × ∇ib0+∇i0b • Ri × ∇ia0}

= −
∑
j �=i

∑
b �=a

Viab;j 00

h(νb − νa)
{∇i0a • Ri × ∇ib0−∇i0a • Ri × ∇ib0} = 0. (S17)
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Term (S12k) is combined with term (S12n):

−
∑
j �=i

∑
b �=a

Vi0b;j 00

hνb
∇i0a • Ri × ∇iab −

∑
j �=i

∑
b �=a

Vi0b;j 00

hνb
∇iba • Ri × ∇ia0

= −
∑
j �=i

∑
b �=a

Vi0b;j 00

hνb
{∇i0a • Ri × ∇iab + ∇iba • Ri × ∇ia0}

= −
∑
j �=i

∑
b �=a

Vi0b;j 00

hνb
{∇i0a • Ri × ∇iab−∇i0a • Ri × ∇iab} = 0. (S18)

Thus, the rotational strength is

RA = − e2
�

2

4πm2cνA
{∇i0a • (r × ∇)ia0 (S19a)

− 2
∑
j �=i

∑
b �=a

νaVi0a;j 0b

h(ν2
b − ν2

a)
{∇i0a • (r × ∇)jb0 + ∇j 0b • (r × ∇)ia0} (S19b)

−
∑
j �=i

∑
b �=a

Viab;j 00

h(νb − νa)
{∇i0a • (r × ∇)ib0+∇i0b • (r × ∇)ia0} (S19c)

−
∑
j �=i

∑
b �=a

Vi0b;j 00

hνb
{∇i0a • (r × ∇)iab + ∇iba • (r × ∇)ia0} (S19d)

− 2
∑
j �=i

∑
b �=a

νaVi0a;j 0b

h(ν2
b − ν2

a)
Rij • ∇jb0 × ∇i0a

⎫⎬
⎭ . (S19e)

Note that Eq. (S19) agrees in form with that of Tinoco’s (IIIB-22) with two excep-
tions. The analog of (IIIB-22e), the “charge-transfer” term, is absent. Term (S19e) has
the factor ∇jb0 in contrast to μj 0b in Tinoco’s Eq. (IIIB-22f), but use of the relation-
ship between μ and ∇ demonstrates that the two expressions are equivalent. Unlike the
dipole-length form [Eq. (20.16)], this form is origin-independent, as should be the case.



TA
B

LE
S1

.
Ca

lc
ul

at
io

ns
w

ith
th

e
Ti

no
co

M
et

ho
d

Y
ea

r
R

ef
er

en
ce

Su
bj

ec
t

St
ud

ie
d

St
at

es
In

cl
ud

ed
a

C
om

m
en

ts

19
62

1
C

ot
to

n
ef

fe
ct

of
α

he
lix

at
22

5
nm

n
π

∗ ,
N

V
1
,N

V
2

C
ot

to
n

ef
fe

ct
at

22
5

nm
is

th
e

re
su

lt
of

m
ix

in
g

of
n
π

∗
an

d
π

π
∗

st
at

es
.

19
66

2
n
π

∗
an

d
π

π
∗

ro
ta

tio
na

l
st

re
ng

th
s

of
pa

ra
lle

l
an

d
an

tip
ar

al
le

l
β

-p
le

at
ed

sh
ee

ts
of

po
ly

-l
-l

ys
in

e

n
π

∗ ,
π

π
∗

C
on

tr
ib

ut
io

ns
of

ex
ci

to
n

in
te

ra
ct

io
ns

ar
e

sm
al

l
fo

r
β

st
ru

ct
ur

e
in

co
nt

ra
st

to
α

he
lix

.

19
67

3
N

on
co

ns
er

va
tiv

e
ch

ar
ac

te
r

of
th

e
C

D
sp

ec
tr

a
of

di
nu

cl
eo

si
de

ph
os

ph
at

es

π
π

∗
of

ne
ar

U
V

,
po

la
ri

za
bi

lit
y

ap
pr

ox
im

at
io

n
fo

r
fa

r
U

V
Fa

r-
U

V
tr

an
si

tio
ns

ca
us

e
sp

ec
tr

a
si

m
ila

r
to

th
os

e
ob

se
rv

ed
.

19
67

4
α

he
lix

an
d

3 1
0

he
lix

of
po

ly
-l

-a
la

ni
ne

n
π

∗ ,
n

′ π
∗ ,

n
σ

∗ ,
N

V
1
,

N
V

2
;

po
la

ri
za

bi
lit

y
ap

pr
ox

im
at

io
n

fo
r

hi
gh

er
st

at
es

T
hr

ee
C

D
ba

nd
s

pr
ed

ic
te

d
ab

ov
e

19
0

nm
.

19
67

5
Po

ly
-l

-p
ro

lin
e

I
an

d
II

,
co

lla
ge

n
tr

ip
le

he
lix

n
π

∗ ,
n

′ π
∗ ,

n
σ

∗ ,
N

V
1
;

po
la

ri
za

bi
lit

y
ap

pr
ox

im
at

io
n

fo
r

hi
gh

er
st

at
es

E
xc

ito
n

co
nt

ri
bu

tio
ns

do
m

in
at

e
fo

r
PP

I;
fo

r
PP

II
,

th
es

e
ar

e
w

ea
ke

r
an

d
no

n-
ex

ci
to

n
co

nt
ri

bu
tio

ns
to

hi
gh

-e
ne

rg
y

ex
ci

to
n

ba
nd

ar
e

do
m

in
an

t.
19

68
6

C
ha

rg
e

tr
an

sf
er

be
tw

ee
n

tw
o

hy
dr

og
en

-b
on

de
d

pe
pt

id
e

gr
ou

ps

L
n
π

∗ ,
L
π

π
∗ ,

C
T

n
π

∗ ,
C

T
π

π
∗a

M
ix

in
g

of
th

e
n
π

∗ s
ta

te
w

ith
in

te
rg

ro
up

ch
ar

ge
tr

an
sf

er
do

es
no

t
co

nt
ri

bu
te

si
gn

ifi
ca

nt
ly

to
th

e
n
π

∗
ro

ta
tio

na
l

st
re

ng
th

of
an

α
he

lix
.

19
69

7
R

an
do

m
co

il
po

ly
-l

-a
la

ni
ne

n
π

∗
n

′ π
∗ ,

N
V

1
,

N
V

2
;

po
la

ri
za

bi
lit

y
ap

pr
ox

im
at

io
n

fo
r

hi
gh

er
st

at
es

Pa
ra

m
et

er
s

ei
th

er
fr

om
re

fe
re

nc
e

4
or

fr
om

an
ab

in
it

io
st

ud
y

[8
].

19
69

9
H

em
e

ro
ta

tio
na

l
st

re
ng

th
s

of
m

yo
gl

ob
in

H
em

e
π

π
∗

tr
an

si
tio

ns
;

Ph
e,

Ty
r,

T
rp

,
H

is
π

π
∗

tr
an

si
tio

ns
;

pe
pt

id
e

n
π

∗ ,
π

π
∗ ;

σ
σ

∗
of

al
ky

l
si

de
ch

ai
ns

,

C
ou

pl
in

g
of

he
m

e
w

ith
ar

om
at

ic
si

de
ch

ai
ns

is
la

rg
el

y
re

sp
on

si
bl

e
fo

r
he

m
e

C
D

ba
nd

s.

19
70

10
A

pA
,

po
ly

(r
A

),
po

ly
(d

A
)

fo
ur

n
π

∗ ,
tw

o
π

π
∗

n
π

∗
tr

an
si

tio
n

w
ill

gi
ve

ri
se

to
sm

al
l

C
D

ba
nd

s.
19

71
11

H
em

e
ro

ta
tio

na
l

st
re

ng
th

of
sp

er
m

w
ha

le
m

yo
gl

ob
in

an
d

ho
rs

e
ox

yh
em

og
lo

bi
n

H
em

e
π

π
∗

tr
an

si
tio

ns
;

n
π

∗ ,
π

π
∗

of
pe

pt
id

e;
E

1u
of

ph
en

yl
;

B
2
,A

1
,B

′ 2
,A

′ 1
of

ph
en

ol
;

I–
IV

of
im

id
az

ol
e

an
d

in
do

le
;

σ
σ

∗ o
f

al
ky

l
si

de
ch

ai
ns

C
ou

pl
in

g
of

he
m

e
tr

an
si

tio
ns

w
ith

π
π

∗
tr

an
si

tio
ns

in
ar

om
at

ic
s

ac
co

un
ts

fo
r

C
D

of
al

l
fo

ur
he

m
e

tr
an

si
tio

ns
in

bo
th

m
yo

gl
ob

in
an

d
he

m
og

lo
bi

n.

19
72

12
H

em
og

lo
bi

n
fr

om
C

hi
ro

no
m

us
th

um
m

i
th

um
m

i
So

re
t

st
at

e,
π

π
∗

of
ar

om
at

ic
s

an
d

H
is

C
ou

pl
in

g
of

th
e

So
re

t
st

at
e

w
ith

th
e

π
π

∗
st

at
es

of
th

e
ar

om
at

ic
s

re
pr

od
uc

es
th

e
ne

ga
tiv

e
si

gn
of

th
e

So
re

t
C

ot
to

n
ef

fe
ct

.
19

72
13

N
ea

r-
U

V
C

D
of

ri
bo

nu
cl

ea
se

S
an

d
A

N
V

1
,

N
V

2
of

pe
pt

id
es

;
N

V
1

of
G

ln
,

A
sn

,
G

lu
,

A
sp

;
L

b
,L

a,
B

b
,B

a
of

ph
en

ol
;

B
b
,

B
a

of
ph

en
yl

;
4

st
at

es
of

im
id

az
ol

yl
;

2
st

at
es

of
gu

an
id

in
o

of
A

rg

A
bo

ut
70

%
of

th
e

C
D

at
27

5
nm

is
du

e
to

co
up

lin
g

of
th

e
1
L

b
ty

ro
sy

l
ba

nd
w

ith
π

π
∗

tr
an

si
tio

ns
of

ot
he

r
gr

ou
ps

.

(c
on

ti
nu

ed
)

575



TA
B

LE
S1

.
(C

on
ti

nu
ed

)

Y
ea

r
R

ef
er

en
ce

Su
bj

ec
t

St
ud

ie
d

St
at

es
In

cl
ud

ed
a

C
om

m
en

ts

19
73

14
V

ac
uu

m
U

V
C

D
of

al
ky

l
am

in
o

ac
id

s
Se

e
or

ig
in

al
pa

pe
r

fo
r

de
ta

ils
Si

gn
s

of
n
π

∗
an

d
π

π
∗

re
pr

od
uc

ed
by

ca
lc

ul
at

io
ns

bu
t

m
ag

ni
tu

de
s

un
ce

rt
ai

n;
ca

n
de

fin
e

co
nf

or
m

at
io

n
of

ca
rb

ox
yl

at
e

gr
ou

p.
19

76
15

Ty
ro

sy
l

C
D

of
m

on
om

er
s,

di
m

er
s,

an
d

he
xa

m
er

s
of

pi
g

in
su

lin

Se
e

en
tr

y
fo

r
re

fe
re

nc
e

13
C

D
at

27
5

nm
st

ro
ng

ly
in

cr
ea

se
s

up
on

fo
rm

at
io

n
of

di
m

er
s

an
d

he
xa

m
er

s,
ab

ou
t

40
%

of
th

e
ty

ro
sy

l
C

D
of

th
e

he
xa

m
er

co
m

es
fr

om
th

e
in

te
ra

ct
io

n
of

A
14

-t
yr

os
in

e
an

d
B

1-
ph

en
yl

al
an

in
e.

19
77

16
Ty

ro
sy

l
C

D
of

m
on

om
er

s,
di

m
er

s,
an

d
he

xa
m

er
s

of
de

s-
B

1-
Ph

e-
in

su
lin

Se
e

en
tr

y
fo

r
re

fe
re

nc
e

13
Pr

ob
ab

ly
du

e
to

th
e

dy
na

m
ic

s
of

si
de

ch
ai

ns
,

B
1-

ph
en

yl
al

an
in

e
do

es
no

t
co

nt
ri

bu
te

si
gn

ifi
ca

nt
ly

to
th

e
A

14
-t

yr
os

in
e

C
D

.
19

78
17

H
em

og
lo

bi
n

fr
om

C
hi

ro
no

m
us

th
um

m
i

th
um

m
i

So
re

t,
π

π
∗

of
ar

om
at

ic
s,

st
at

es
of

th
e

pe
pt

id
e

ba
ck

bo
ne

;
se

e
al

so
re

fe
re

nc
e

11
an

d
13

C
al

cu
la

te
d

ro
ta

tio
na

l
st

re
ng

th
in

re
as

on
ab

le
ag

re
em

en
t

w
ith

ex
pe

ri
m

en
ta

l
va

lu
e,

ro
le

of
ar

om
at

ic
si

de
-c

ha
in

pr
ob

ab
ly

ov
er

es
tim

at
ed

in
re

fe
re

nc
e

12
.

19
83

18
C

D
of

cy
cl

ic
di

m
er

s
of

am
in

o
ac

id
s

n
π

∗ ,
N

V
1
,

N
V

2
,

n
σ

∗ ,
π

σ
∗ ,

σ
σ

∗ ,
po

la
ri

za
bi

lit
y

ap
pr

ox
im

at
io

n
fo

r
hi

gh
er

st
at

es

In
te

ns
e

ba
nd

s
be

lo
w

18
0

nm
ar

e
pr

ob
ab

ly
du

e
to

σ
σ

∗
tr

an
si

tio
ns

of
th

e
ba

ck
bo

ne
.

19
93

19
O

pt
ic

al
ac

tiv
ity

of
he

m
op

ro
te

in
s

in
th

e
So

re
t

re
gi

on
So

re
t;

n
π

∗ ,
π

π
∗

fo
r

pe
pt

id
es

;
π

π
∗

fo
r

im
id

az
ol

e;
hi

gh
er

st
at

es
of

pe
pt

id
es

an
d

th
io

et
he

rs
by

th
e

po
la

ri
za

bi
lit

y
ap

pr
ox

im
at

io
n.

In
tr

in
si

c
ch

ir
al

ity
du

e
to

de
vi

at
io

ns
of

th
e

he
m

e
fr

om
pl

an
ar

ity
co

nt
ri

bu
te

s
si

gn
ifi

ca
nt

ly
to

th
e

So
re

t
C

D
;

as
to

po
ss

ib
le

or
ig

in
s

of
su

ch
di

st
or

tio
ns

se
e

re
fe

re
nc

es
20

an
d

21
.

20
02

22
In

tr
in

si
c

op
tic

al
ac

tiv
ity

of
he

m
op

ro
te

in
s

in
th

e
So

re
t

re
gi

on

So
re

t;
n
π

∗ ,
π

π
∗

fo
r

pe
pt

id
es

;
π

π
∗

fo
r

ar
om

at
ic

s;
hi

gh
-e

ne
rg

y
st

at
es

of
pe

pt
id

e
an

d
M

et
su

lf
ur

M
D

si
m

ul
at

io
ns

pe
rf

or
m

ed
;

in
tr

in
si

c
ro

ta
tio

na
l

st
re

ng
th

co
nt

ri
bu

te
s

si
gn

ifi
ca

nt
ly

,
co

rr
el

at
in

g
w

ith
he

m
e

ru
ffl

in
g.

20
08

23
Sc

hi
ff

ba
se

re
tP

SB
ch

ro
m

op
ho

re
of

rh
od

op
si

n
n
π

∗ ,
π

π
∗

fo
r

pe
pt

id
es

;
π

π
∗

fo
r

ar
om

at
ic

s;
st

at
es

of
re

tP
SB

ca
lc

ul
at

ed
by

T
D

D
FT

an
d

Z
IN

D
O

C
D

ba
nd

s
in

th
e

V
is

an
d

ne
ar

U
V

ar
e

la
rg

el
y

de
te

rm
in

ed
by

th
e

in
tr

in
si

c
ch

ir
al

ity
of

th
e

re
tin

al
.

1
J.

A
.

Sc
he

llm
an

n,
P.

O
ri

el
,

J.
C

he
m

.P
hy

s.
19

62
,

37
,

21
14

–
21

24
.

2
E

.
S.

Py
sh

,
P

ro
c.

N
at

l.
A

ca
d.

Sc
i.

U
SA

,
19

66
,

56
,

82
5

–
32

.
3
C

.
A

.
B

us
h,

J.
B

ra
hm

s,
J.

C
he

m
.P

hy
s.

19
67

,
46

,
79

–
88

.
4
R

.
W

.
W

oo
dy

,
I.

T
in

oc
o

Jr
.,

J.
C

he
m

.P
hy

s.
19

67
,

46
,

49
27

–
49

45
.

5
E

.
S.

Py
sh

,
J.

M
ol

.B
io

l.
19

67
,

23
,

58
7

–
59

9.
6
R

.
W

.
W

oo
dy

,
J.

C
he

m
.P

hy
s.

19
68

,
49

,
47

97
–

48
06

.
7
A

.
E

.
To

ne
lli

,
M

ac
ro

m
ol

ec
ul

es
19

69
,

2
,

63
5

–
63

7.

576



8
H

.
B

as
ch

,
M

.
B

.
R

ob
in

,
N

.
A

.
K

ue
bl

er
,

J.
C

he
m

.P
hy

s.
19

68
,

49
,

50
07

–
50

18
.

9
M

.-
C

.
H

su
,

R
.

W
.

W
oo

dy
,

J.
A

m
.C

he
m

.S
oc

.
19

69
,

91
,

36
79

–
36

81
.

10
C

.
A

.
B

us
h,

J.
C

he
m

.P
hy

s.
19

70
,

53
,

35
22

–
35

30
.

11
M

.-
C

.
H

su
,

R
.

W
.

W
oo

dy
,

J.
A

m
.C

he
m

.S
oc

.
19

71
,

93
,

35
15

–
35

25
.

12
J.

Fl
ei

sc
hh

au
er

,
A

.
W

ol
lm

er
,

Z
.N

at
ur

fo
rs

ch
.

19
72

,
27

b
,

53
0

–
53

2.
13

E
.

H
.

St
ri

ck
la

nd
,

B
io

ch
em

is
tr

y
19

72
,

11
,

34
65

–
34

74
.

14
P.

A
.

Sn
yd

er
,

P.
M

.
V

ip
on

d,
W

.
C

.
Jo

hn
so

n,
Jr

.,
B

io
po

ly
m

er
s

19
73

,
12

,
97

5
–

99
2.

15
E

.
H

.
St

ri
ck

la
nd

,
D

.
M

er
co

la
,

B
io

ch
em

is
tr

y
19

76
,

15
,

38
75

–
38

84
.

16
A

.
W

ol
lm

er
,

J.
Fl

ei
sc

hh
au

er
,

W
.

St
ra

ss
bu

rg
er

,
H

.
T

hi
el

e,
D

.
B

ra
nd

en
bu

rg
,

G
.

D
od

so
n,

D
.

M
er

co
la

,
B

io
ph

ys
.J

.
19

77
,

20
,

23
3

–
24

3.
17

W
.

St
ra

ss
bu

rg
er

,
A

.
W

ol
lm

er
,

H
.

T
hi

el
e,

J.
Fl

ei
sc

hh
au

er
,

W
.

St
ei

ge
m

an
n,

E
.

W
eb

er
,

Z
.N

at
ur

fo
rs

ch
,

19
78

,
33

c,
90

8
–

91
1.

18
R

.
L

.
B

ow
m

an
,

M
.

K
el

le
rm

an
,

W
.

C
.

Jo
hn

so
n,

Jr
.,

B
io

po
ly

m
er

s
19

83
,

22
,

10
45

–
10

70
.

19
G

.
B

la
ue

r,
N

.
Sr

ee
ra

m
a,

R
.

W
.

W
oo

dy
,

B
io

ch
em

is
tr

y
19

93
,

32
,

66
74

–
66

79
.

20
W

.
Je

nt
ze

n,
J.

-G
.

M
a,

J.
A

.
Sh

el
nu

tt,
B

io
ph

ys
.J

.
19

98
,

74
,

75
3

–
76

3.
21

W
.

Je
nt

ze
n,

X
.-

Z
.

So
ng

,
J.

A
.

Sh
el

nu
tt,

J.
P

hy
s.

C
he

m
.B

19
97

,
10

1
,

16
84

–
16

99
.

22
C

.
K

ie
fl,

N
.

Sr
ee

ra
m

a,
R

.
H

ad
da

d,
L

.
Su

n,
W

.
Je

nt
ze

n,
Y

.
Q

iu
,

J.
A

.
Sh

el
nu

tt,
R

.
W

.
W

oo
dy

,
J.

A
m

.C
he

m
.S

oc
.

20
02

,
12

4
,

33
85

–
33

94
.

23
G

.
Pe

sc
ite

lli
,

N
.

Sr
ee

ra
m

a,
P.

Sa
lv

ad
or

i,
K

.
N

ak
an

is
hi

,
N

.
B

er
ov

a,
R

.
W

.
W

oo
dy

,
J.

A
m

.C
he

m
.S

oc
.

20
08

,
13

0
,

61
70

–
61

81
.

a
L

,
L

oc
al

;
C

T
,

ch
ar

ge
tr

an
sf

er
.

577



TA
B

LE
S2

.
Ca

lc
ul

at
io

ns
w

ith
th

e
M

at
rix

M
et

ho
d

Y
ea

r
R

ef
er

en
ce

Su
bj

ec
t

St
ud

ie
d

St
at

es
In

cl
ud

ed
b

C
om

m
en

ts

19
69

1
M

od
el

co
m

po
un

d
w

ith
tw

o
pe

pt
id

e
gr

ou
ps

co
nn

ec
te

d
by

an
α

ca
rb

on
n
π

∗ ,
N

V
1

In
tr

od
uc

tio
n

of
th

e
m

at
ri

x
m

et
ho

d.

19
69

2
n
π

∗
an

d
π

π
∗

ba
nd

s
of

pa
ra

lle
l

an
d

an
tip

ar
al

le
l

β
-s

he
et

s
of

po
ly

-l
-l

ys
in

e
an

d
po

ly
-l

-s
er

in
e

n
π

∗ ,
π

π
∗

M
od

el
β

sh
ee

ts
pr

ob
ab

ly
ex

is
t

in
th

e
an

tip
ar

al
le

l
β

st
ru

ct
ur

e.
19

70
3

α
he

lix
,
β

sh
ee

t,
po

ly
(P

ro
)

he
lic

es
n
π

∗ ,
π

π
∗ ,

n
′ π

∗
G

oo
d

ag
re

em
en

t,
ex

ce
pt

fo
r

po
ly

(P
ro

)I
I

he
lix

.
19

71
4

Po
ly

-l
-t

yr
os

in
e

n
π

∗ ,
lo

w
es

t
π

π
∗

fo
r

pe
pt

id
e,

4
lo

w
es

t
st

at
es

of
ph

en
ol

C
om

po
un

d
pr

ob
ab

ly
fo

rm
s

a
ri

gh
t-

ha
nd

ed
he

lix
in

so
lu

tio
n;

se
e

al
so

re
fe

re
nc

es
5

an
d

6
19

72
7

α
he

lix
,
β

st
ru

ct
ur

es
,

po
ly

pr
ol

in
e

I,
po

ly
pr

ol
in

e
II

,
co

lla
ge

n,
po

ly
-N

-m
et

hy
l

al
an

in
e,

α
,
β

,
an

d
no

np
er

io
di

c
re

gi
on

s
of

of
m

yo
gl

ob
in

,
ly

so
zy

m
e,

ri
bo

nu
cl

ea
se

S,
α

-c
hy

m
ot

ry
ps

in

n
π

∗ ,
N

V
1

A
pp

lie
d

m
et

ho
ds

ad
eq

ua
te

ly
de

sc
ri

be
th

e
op

tic
al

ac
tiv

ity
of

th
e

or
de

re
d

po
ly

pe
pt

id
es

ex
ce

pt
po

ly
pr

ol
in

e
II

an
d

co
lla

ge
n.

19
72

8
Po

ly
-l

-p
he

ny
la

la
ni

ne
an

d
p

-s
ub

st
itu

te
d

de
ri

va
tiv

es
Se

e
or

ig
in

al
pa

pe
r

fo
r

de
ta

ils
a

T
he

se
ar

om
at

ic
po

ly
pe

pt
id

es
pr

ob
ab

ly
fo

rm
ri

gh
t

ha
nd

ed
he

lic
es

.
19

73
9

C
D

of
gl

io
to

xi
n

an
d

re
la

te
d

co
m

po
un

ds
Pe

pt
id

e
n
π

∗ ,
π

π
∗

di
su

lfi
de

n
σ

∗ ,
n S

→
pe

pt
id

e
π

∗
C

T
C

T
tr

an
si

tio
ns

fr
om

su
lf

ur
no

nb
on

di
ng

to
am

id
e

π
∗

or
bi

ta
ls

ac
co

un
t

fo
r

ba
nd

s
ob

se
rv

ed
at

26
0

an
d

31
0

nm
.

19
75

10
C

on
tr

ib
ut

io
n

of
Ty

r
to

op
tic

al
ac

tiv
ity

of
ri

bo
nu

cl
ea

se
S

Se
e

or
ig

in
al

pa
pe

r
fo

r
de

ta
ils

Po
si

tiv
e

el
lip

tic
ity

at
24

0
nm

en
tir

el
y

du
e

to
1
L

a

st
at

e
of

Ty
r.

19
74

11
C

D
co

nt
ri

bu
tio

ns
of

ba
se

in
te

ra
ct

io
ns

w
ith

su
ga

r
an

d
ph

os
ph

at
e

in
D

N
A

an
d

R
N

A
π

π
∗

in
ba

se
s,

hi
gh

-e
ne

rg
y

tr
an

si
tio

ns
in

su
ga

rs
an

d
P

N
eg

lig
ib

le
ef

fe
ct

s.

19
74

12
A

la
an

d
Pr

o
di

ke
to

pi
pe

ra
zi

ne
s

Pe
pt

id
e

n
π

∗ ,
N

V
1

R
ul

e
re

la
tin

g
si

gn
of

π
π

∗
co

up
le

t
to

fo
ld

in
g

of
D

K
P

ri
ng

;
D

K
P

ri
ng

in
cy

cl
o(

A
la

-A
la

)
in

so
lu

tio
n

is
fo

ld
ed

in
op

po
si

te
se

ns
e

to
cr

ys
ta

l
19

74
13

D
N

A
an

d
R

N
A

π
π

∗
in

ba
se

s
T

ilt
in

g
of

ba
se

pa
ir

pl
an

es
an

d
di

st
an

ce
fr

om
he

lix
ax

is
ar

e
im

po
rt

an
t;

ei
th

er
th

eo
ry

or
ge

om
et

ry
ar

e
in

ac
cu

ra
te

.
19

74
14

D
N

A
an

d
R

N
A

n
π

∗
an

d
π

π
∗

in
ba

se
s

R
∼0

.1
D

B
M

fo
r

n
π

∗
in

gu
an

in
e,

ot
he

rs
sm

al
l.

19
74

15
D

N
A

an
d

R
N

A
—

ef
fe

ct
s

of
ch

oi
ce

of
w

av
ef

un
ct

io
ns

n
π

∗
an

d
π

π
∗

in
ba

se
s

L
ar

ge
va

ri
at

io
n,

no
ne

of
th

e
te

st
ed

w
av

e
fu

nc
tio

ns
ga

ve
un

iq
ue

ly
sa

tis
fa

ct
or

y
re

su
lts

.
19

74
16

β
tu

rn
s

Pe
pt

id
e

n
π

∗ ,
N

V
1

C
D

sp
ec

tr
a

va
ri

ed
bu

t
do

m
in

an
t

pa
tte

rn
is

lik
e

th
at

of
β

sh
ee

t,
bu

t
re

d-
sh

if
te

d
∼1

0
nm

.
19

75
17

cy
cl

o(
A

la
-H

is
),

cy
cl

o(
H

is
-H

is
)

pe
pt

id
e

n
π

∗ ,
N

V
1
;

fir
st

π
π

∗
tr

an
s.

of
im

id
az

ol
e

H
is

si
de

-c
ha

in
co

nf
or

m
at

io
n

in
cy

cl
o(

A
la

-H
is

)
de

pe
nd

s
on

pr
ot

on
at

io
n

st
at

e.

578



19
78

18
C

on
tr

ib
ut

io
ns

of
ar

om
at

ic
si

de
ch

ai
ns

in
di

-
an

d
tr

ip
ep

tid
es

n
π

∗ ,
N

V
1
,

N
V

2
fo

r
am

id
e;

L
a,

L
b
,B

a,
B

b

fo
r

ar
om

at
ic

s;
fu

rt
he

r
de

ta
ils

in
re

fe
re

nc
es

4
an

d
8

L
a

ro
ta

tio
na

l
st

re
ng

th
ha

s
a

po
si

tiv
e

si
gn

in
th

e
pr

ef
er

re
d

co
nf

or
m

at
io

ns
.

19
80

19
N

ea
r-

U
V

C
D

of
ri

bo
nu

cl
ea

se
S

n 1
σ

∗ ,
n 4

σ
∗

fo
r

di
su

lfi
de

;
1
L

b
,

1
L

a,
1
B

b
,

1
B

a
fo

r
Ty

r;
π

π
∗ 1

,π
π

∗ 2
fo

r
H

is
In

tr
od

uc
ed

or
ig

in
-i

nd
ep

en
de

nt
ve

rs
io

n
of

m
at

ri
x

m
et

ho
d;

ne
ar

-U
V

C
D

co
nt

ai
ns

si
gn

ifi
ca

nt
co

nt
ri

bu
tio

ns
of

di
su

lfi
de

s
an

d
Ty

r.
19

80
20

N
ea

r-
U

V
C

D
of

ly
so

zy
m

e
Fo

r
de

ta
ils

se
e

or
ig

in
al

pa
pe

r
N

ea
r-

U
V

C
D

of
ly

so
zy

m
e

ca
n

be
ex

pl
ai

ne
d

in
te

rm
s

of
ne

ga
tiv

e
ro

t.
st

re
ng

th
du

e
to

T
rp

1
L

a

an
d

S 2
n
σ

∗
an

d
of

po
si

tiv
e

ro
ta

tio
na

l
st

re
ng

th
du

e
to

T
rp

an
d

Ty
r

1
L

b
ba

nd
s.

19
81

21
A

cA
la

N
H

M
e

an
d

A
cS

er
N

H
M

e
Pe

pt
id

e
n
π

∗ ,
N

V
1

C
on

fo
rm

at
io

na
l

en
er

gy
ca

lc
ul

at
io

ns
gi

ve
re

as
on

ab
le

re
su

lts
fo

r
th

es
e

di
pe

pt
id

es
in

no
np

ol
ar

so
lv

en
ts

,
bu

t
no

t
in

po
la

r
so

lv
en

ts
.

19
81

22
C

on
fo

rm
at

io
na

l
de

pe
nd

en
ce

of
D

N
A

C
D

π
π

∗
in

ba
se

s
27

5-
nm

po
si

tiv
e

ba
nd

co
rr

el
at

es
lin

ea
rl

y
w

ith
he

lix
w

in
di

ng
an

gl
e

an
d

ba
se

-p
ai

r
tw

is
t;

co
rr

el
at

io
n

w
ith

ot
he

r
ge

om
et

ri
c

pa
ra

m
et

er
s

is
w

ea
ke

r.
19

82
23

A
de

ny
la

te
ki

na
se

n
π

∗ ,
N

V
1

fo
r

pe
pt

id
e;

B
b
,

B
a

fo
r

Ph
e;

L
b
,

L
a,

B
a
,

B
b

fo
r

Ty
r

C
om

pu
ta

tio
na

l
re

su
lts

in
re

as
on

ab
le

ag
re

em
en

t
w

ith
ex

pe
ri

m
en

t.
19

84
24

D
N

A
an

d
R

N
A

π
π

∗
in

ba
se

s
M

ix
ed

se
qu

en
ce

D
N

A
in

B
an

d
A

fo
rm

an
d

R
N

A
in

A
fo

rm
re

pr
od

uc
ed

w
el

l,
bu

t
si

m
pl

e-
se

qu
en

ce
D

N
A

an
d

R
N

A
ar

e
no

t,
in

cl
ud

in
g

(d
G

-d
C

) n
in

Z
-f

or
m

.
19

86
25

D
N

A
,

R
N

A
π

π
∗

in
ba

se
s

Si
gn

of
co

up
le

t
be

lo
w

20
0

nm
is

co
rr

el
at

ed
w

ith
he

lix
se

ns
e

of
D

N
A

19
87

27
Pr

ot
ei

ns
w

ith
cl

os
el

y
pa

ck
ed

an
tip

ar
al

le
l
β

sh
ee

ts
lo

w
es

t
n
π

∗ ,
N

V
1

Fi
rs

t
th

eo
re

tic
al

st
ud

y
of

th
e

ef
fe

ct
s

of
th

e
in

te
ra

ct
io

n
of

tw
o

se
co

nd
ar

y
st

ru
ct

ur
es

on
th

e
C

D
of

pr
ot

ei
ns

.
19

87
28

D
N

A
π

π
∗

in
ba

se
s

D
is

ta
nc

e-
de

pe
nd

en
t

di
el

ec
tr

ic
co

ns
ta

nt
an

d
ol

ig
on

uc
le

ot
id

e
cr

ys
ta

l
st

ru
ct

ur
es

ga
ve

go
od

ag
re

em
en

t
fo

r
B

-D
N

A
bu

t
no

t
fo

r
Z

-D
N

A
.

19
88

29
α

he
lic

es
,

tw
is

te
d

β
sh

ee
ts

,
an

d
β

tu
rn

s
n
π

∗ ,
N

V
1

T
he

m
in

im
um

nu
m

be
r

of
tu

rn
s

to
gi

ve
th

e
ch

ar
ac

te
ri

st
ic

sp
ec

tr
um

on
an

α
he

lix
is

tw
o

or
th

re
e;

tw
is

t
st

ro
ng

ly
af

fe
ct

s
C

D
of

β
sh

ee
ts

.

(c
on

ti
nu

ed
)

579



TA
B

LE
S2

.
(C

on
ti

nu
ed

)

Y
ea

r
R

ef
er

en
ce

Su
bj

ec
t

St
ud

ie
d

St
at

es
In

cl
ud

ed
b

C
om

m
en

ts

19
89

30
B

ov
in

e
pa

nc
re

at
ic

tr
yp

si
n

in
hi

bi
to

r
n
π

∗ ,
n

′ π
∗ ,

N
V

1
,

N
V

2
fo

r
pe

pt
id

es
;

L
a,

L
b
,

B
a,

B
b

fo
r

ar
om

at
ic

s
B

ot
h

Ty
r

an
d

Ph
e

si
de

ch
ai

ns
m

us
t

be
in

cl
ud

ed
to

ge
t

go
od

ag
re

em
en

t
w

ith
ex

pe
ri

m
en

ta
l

da
ta

;
al

m
os

t
al

l
ro

ta
tio

na
l

st
re

ng
th

at
27

5
nm

co
m

es
fr

om
th

e
L

b
st

at
e

of
Ty

r.
19

90
31

T
ro

po
m

yo
si

n,
ef

fe
ct

of
co

nf
or

m
at

io
n

on
th

e
C

D
of

in
te

ra
ct

in
g

he
lic

es
n
π

∗ ,
N

V
1
,

fo
r

pe
pt

id
es

,
L

a
,

L
b
,

B
a,

B
b

fo
r

ar
om

at
ic

s
Se

e
or

ig
in

al
pa

pe
r

fo
r

de
ta

ils
.

19
90

32
G

qu
ar

te
ts

π
π

∗
tr

an
si

tio
ns

at
28

0,
25

0,
an

d
20

2
nm

in
G

E
xp

er
im

en
ta

l
sp

ec
tr

um
re

pr
od

uc
ed

w
ith

ge
om

et
ry

fr
om

fib
er

di
ff

ra
ct

io
n.

19
91

33
R

ig
ht

-h
an

de
d

α
,
α

II
,ω

,π
,3

10
he

lic
es

;
po

ly
(P

ro
)

he
lic

es
;

ef
fe

ct
of

hy
br

id
iz

at
io

n
Pe

pt
id

e
n
π

∗ ,
n

′ π
∗ ,

N
V

1
,

N
V

2
In

cl
us

io
n

of
N

V
2

si
gn

ifi
ca

nt
ly

im
pr

ov
es

th
e

ca
lc

ul
at

ed
C

D
be

tw
ee

n
18

0
an

d
25

0
nm

.
19

93
34

C
D

te
ns

or
el

em
en

ts
of

pa
ra

lle
l

an
d

an
tip

ar
al

le
l
β

sh
ee

ts
Pe

pt
id

e
n
π

∗ ,
N

V
1

C
D

in
al

l
th

re
e

pr
in

ci
pa

l
di

re
ct

io
ns

ar
e

di
ff

er
en

t;
ca

lc
ul

at
ed

C
D

se
ns

iti
ve

to
ch

oi
ce

of
po

si
tio

n
fo

r
N

V
1

tr
an

si
tio

n.
19

94
35

C
yc

lo
(T

yr
-T

yr
)

Pe
pt

id
e

n
π

∗ ,
N

V
1
;

Ty
r

L
b
,

L
a,

B
a,

B
b
,

σ
π

∗ ,
π

σ
∗

C
al

cu
la

te
d

C
D

av
er

ag
ed

ov
er

an
M

D
tr

aj
ec

to
ry

;
so

lv
en

t
ha

s
lit

tle
ef

fe
ct

on
ca

lc
ul

at
ed

C
D

of
a

gi
ve

n
co

nf
or

m
er

bu
t

m
us

t
be

in
cl

ud
ed

in
M

D
to

pr
om

ot
e

co
nf

or
m

at
io

na
l

tr
an

si
tio

ns
.

19
94

36
C

on
tr

ib
ut

io
ns

of
T

rp
to

fa
r

U
V

C
D

of
pr

ot
ei

ns
T

he
si

x
lo

w
es

t
st

at
es

of
in

do
le

;
n
π

∗ ,
N

V
1

fo
r

pe
pt

id
e

T
rp

B
b

st
at

e
ca

n
co

nt
ri

bu
te

si
gn

ifi
ca

nt
ly

to
th

e
C

D
ar

ou
nd

22
5

nm
.

19
97

37
C

D
of

ri
bo

nu
cl

ea
se

A
an

d
S

n
π

∗ ,
N

V
1
,

N
V

2
in

pe
pt

id
es

;
Ty

r
an

d
Ph

e
L

b
,

L
a,

B
a,

B
b
;

n 1
σ

∗
an

d
n 4

σ
∗

fo
r

di
su

lfi
de

;
fo

r
ot

he
r

si
de

-c
ha

in
tr

an
si

tio
ns

,
se

e
or

ig
in

al
pa

pe
r

N
ea

r-
U

V
C

D
la

rg
el

y
du

e
to

Ty
r

73
an

d
11

5;
di

su
lfi

de
la

rg
el

y
re

sp
on

si
bl

e
fo

r
24

0-
nm

ba
nd

;
fa

r-
U

V
C

D
no

t
re

pr
od

uc
ed

w
el

l.

19
98

38
C

D
of

fo
ur

Ty
r
→

Ph
e

m
ut

an
ts

of
th

e
F1

ge
ne

5
si

ng
le

-s
tr

an
de

d
D

N
A

bi
nd

in
g

pr
ot

ei
n

(g
5p

)
n
π

∗ ,
n

′ π
∗ ,

N
V

1
,

N
V

2
,

fo
r

pe
pt

id
e;

L
a,

L
b
,

B
a,

B
b

fo
r

ar
om

at
ic

s
St

ru
ct

ur
e

of
g5

p
in

so
lu

tio
n

pr
ob

ab
ly

di
ff

er
s

fr
om

th
at

st
ab

ili
ze

d
in

th
e

cr
ys

ta
l.

19
98

39
C

om
pa

ri
so

n
of

ab
in

it
io

-d
er

iv
ed

an
d

se
m

ie
m

pi
ri

ca
lly

de
ri

ve
d

el
ec

tr
on

ic
pa

ra
m

et
er

s
n
π

∗ ,
N

V
1

fo
r

pe
pt

id
e

C
D

of
20

pr
ot

ei
ns

ca
lc

ul
at

ed
,

co
rr

el
at

io
n

be
tw

ee
n

ca
lc

ul
at

ed
an

d
m

ea
su

re
d

in
te

ns
iti

es
at

22
0

nm
te

st
ed

.
19

98
40

C
om

pa
ri

so
n

of
ab

in
it

io
an

d
se

m
ie

m
pi

ri
ca

lly
de

ri
ve

d
el

ec
tr

on
ic

pa
ra

m
et

er
s

n
π

∗ ,
N

V
1

fo
r

pe
pt

id
e

C
D

of
23

pr
ot

ei
ns

ca
lc

ul
at

ed
,

co
rr

el
at

io
n

be
tw

ee
n

ca
lc

ul
at

ed
an

d
m

ea
su

re
d

in
te

ns
iti

es
at

19
0

an
d

22
0

nm
te

st
ed

.
19

99
41

C
om

pa
ri

so
n

of
se

m
ie

m
pi

ri
ca

lly
-

an
d

ab
in

it
io

-d
er

iv
ed

el
ec

tr
on

ic
pa

ra
m

et
er

s
n
π

∗ ,
N

V
1
,

N
V

2
fo

r
pe

pt
id

e
U

se
d

ne
w

IN
D

O
/S

pa
ra

m
et

er
s

an
d

C
la

rk
’s

tr
an

si
tio

n
m

om
en

t
di

re
ct

io
n

[4
2]

fo
r

N
V

1
of

N
-a

ce
ty

lg
ly

ci
ne

;
im

pr
ov

em
en

t
ov

er
th

e
re

su
lts

in
re

fe
re

nc
es

39
an

d
40.

580



19
99

43
C

om
pa

ri
so

n
of

ab
in

it
io

-a
nd

se
m

ie
m

pi
ri

ca
lly

de
ri

ve
d

el
ec

tr
on

ic
pa

ra
m

et
er

s
n
π

∗ ,
N

V
1

fo
r

pe
pt

id
e

Se
e

or
ig

in
al

pa
pe

r
fo

r
co

m
m

en
ts

on
re

fe
re

nc
e

41.

19
99

44
Pe

rf
or

m
an

ce
of

so
lu

tio
n

ph
as

e
ab

in
it

io
pa

ra
m

et
er

s
fo

r
C

D
ca

lc
ul

at
io

ns
n
π

∗ ,
N

V
1

fo
r

pe
pt

id
e

C
D

of
29

pr
ot

ei
ns

ca
lc

ul
at

ed
,

co
rr

el
at

io
n

at
19

0,
20

8,
an

d
22

0
nm

te
st

ed
.

19
99

45
Pa

nc
re

at
ic

tr
yp

si
n

in
hi

bi
to

r
n
π

∗ ,
N

V
1
,

n
′ π

∗ ,
N

V
2

fo
r

pe
pt

id
e;

L
b
,

L
a,

B
b
,

B
a

fo
r

ar
om

at
ic

s;
tw

o
lo

w
es

t
n
σ

∗
in

di
su

lfi
de

s

Fa
r-

U
V

C
D

di
ff

er
en

ce
sp

ec
tr

a
of

fo
ur

m
ut

an
ts

in
w

hi
ch

ar
om

at
ic

si
de

ch
ai

ns
ar

e
re

pl
ac

ed
by

L
eu

ar
e

re
pr

od
uc

ed
re

as
on

ab
ly

w
el

l,
tw

o
ar

e
no

t.
20

00
46

In
flu

en
ce

of
hy

dr
og

en
bo

nd
in

g
on

el
ec

tr
on

ic
pa

ra
m

et
er

s
fo

r
C

D
ca

lc
ul

at
io

ns
on

pr
ot

ei
ns

n
π

∗ ,
n

′ π
∗ ,

N
V

1
,

N
V

2
fo

r
pe

pt
id

e
N

o
im

pr
ov

em
en

t
ov

er
th

e
re

su
lts

ob
ta

in
ed

w
ith

a
pa

ra
m

et
er

se
t

ob
ta

in
ed

w
ith

a
co

nt
in

uu
m

so
lv

en
t

m
od

el
,

C
D

of
29

pr
ot

ei
ns

ca
lc

ul
at

ed
.

20
01

47
C

la
ss

A
β

-l
ac

ta
m

as
e

fr
om

E
sc

he
ri

ch
ia

co
li

(T
E

M
-1

)
n
π

∗ ,
N

V
1
,

N
V

2
,

fo
r

pe
pt

id
e;

L
a,

L
b
,

B
a,

B
b

fo
r

in
do

le
;

fo
r

re
st

se
e

re
fe

re
nc

e
37

O
m

is
si

on
of

T
rp

re
su

lts
in

a
re

ve
rs

al
of

th
e

si
gn

of
th

e
C

ot
to

n
ef

fe
ct

at
28

0
nm

.
20

02
48

In
te

ra
ct

io
n

of
Ph

e
an

d
Ty

r
si

de
ch

ai
ns

w
ith

Ly
s

an
d

A
rg

si
de

ch
ai

ns
an

d
he

lic
ity

of
α

-h
el

ic
es

n
π

∗ ,
N

V
1

fo
r

pe
pt

id
e;

L
a,

L
b
,

B
a,

B
b

fo
r

ar
om

at
ic

s
Ty

r-
Ly

s
an

d
Ph

e-
Ly

s
in

te
ra

ct
io

ns
ar

e
si

m
ila

r
an

d
st

ro
ng

ly
de

pe
nd

on
th

e
si

de
-c

ha
in

co
nf

or
m

at
io

n.
20

02
49

Sh
or

t
α

he
lic

es
n
π

∗ ,
N

V
1
,

N
V

2
fo

r
pe

pt
id

e
N

V
1

tr
an

si
tio

n
m

om
en

t
di

re
ct

io
n

ha
s

la
rg

e
ef

fe
ct

on
ca

lc
ul

at
ed

C
D

;
C

la
rk

’s
[4

2]
va

lu
e

gi
ve

s
be

st
re

su
lt;

he
lic

es
as

sh
or

t
as

on
e

tu
rn

ha
ve

qu
al

ita
tiv

el
y

sa
m

e
pa

tte
rn

as
lo

ng
he

lic
es

.
20

03
50

In
di

vi
du

al
Ty

r
si

de
-c

ha
in

co
nt

ri
bu

tio
ns

to
th

e
C

D
of

ri
bo

nu
cl

ea
se

n
π

∗ ,
N

V
1
,

N
V

2
fo

r
pe

pt
id

e;
L

a,
L

′ a,
B

a,
B

b
fo

r
Ph

e;
L

b
,

L
a,

B
a,

B
b

fo
r

Ty
r;

n
σ

∗
fo

r
di

su
lfi

de
s

Si
gn

an
d

ap
pr

ox
im

at
e

m
ag

ni
tu

de
of

L
b

C
D

fo
r

ea
ch

of
si

x
Ty

r
co

rr
ec

tly
pr

ed
ic

te
d.

20
03

51
In

flu
en

ce
of

Ty
r

on
th

e
C

D
of

he
lic

al
pe

pt
id

es
n
π

∗ ,
N

V
1

fo
r

pe
pt

id
e,

L
a,

L
b
,

B
a,

B
b

fo
r

Ty
r

Ty
r

ca
n

co
nt

ri
bu

te
as

m
uc

h
as

±5
00

0
de

g
cm

2

dm
ol

−1
to

m
ea

n
re

si
du

e
el

lip
tic

ity
at

22
0

nm
.

20
03

52
Pe

rf
or

m
an

ce
of

so
lu

tio
n

ph
as

e
ab

in
it

io
pa

ra
m

et
er

s
fo

r
C

D
ca

lc
ul

at
io

ns
n
π

∗ ,
N

V
1

fo
r

pe
pt

id
e

C
D

of
47

pr
ot

ei
ns

in
th

e
fa

r
U

V
ca

lc
ul

at
ed

,
co

rr
el

at
io

n
at

19
0,

20
8,

an
d

22
0

nm
te

st
ed

,
be

st
re

su
lts

fo
r

pr
ot

ei
ns

w
ith

hi
gh

α
-h

el
ic

al
co

nt
en

t.
20

04
53

β
-l

ac
ta

m
as

e,
ba

rn
as

e,
hu

m
an

ca
rb

on
ic

an
hy

dr
as

e
II

n
π

∗ ,
N

V
1

fo
r

pe
pt

id
e,

1
L

a,
1
L

b
,

1
B

a,
1
B

b

fo
r

Ty
r,

Ph
e,

T
rp

Si
de

ch
ai

ns
ha

ve
a

m
ar

ke
d

in
flu

en
ce

on
th

e
ne

ar
an

d
fa

r
U

V
C

D
,

pa
ra

m
et

er
s

fr
om

ab
in

it
io

ca
lc

ul
at

io
ns

.
20

04
54

In
flu

en
ce

of
ar

om
at

ic
si

de
-c

ha
in

s
on

th
e

C
D

of
pr

ot
ei

ns
n
π

∗ ,
N

V
1

fo
r

pe
pt

id
e

1
L

a,
1
L

b
,

1
B

a,
1
B

b

fo
r

ar
om

at
ic

s
Pa

ra
m

et
er

s
fr

om
ab

in
it

io
ca

lc
ul

at
io

ns
re

pr
od

uc
e

ne
ar

-U
V

C
D

sp
ec

tr
a

be
tte

r
th

an
pr

ev
io

us
ly

us
ed

se
m

ie
m

pi
ri

ca
l

pa
ra

m
et

er
s.

20
04

55
In

flu
en

ce
of

ch
ar

ge
tr

an
sf

er
st

at
es

on
th

e
C

D
of

pr
ot

ei
ns

L
nπ

∗ ,
L
π

π
∗ ,

C
T

nπ
∗ ,

C
T
π

π
∗b

E
le

ct
ro

ni
c

pa
ra

m
et

er
s

de
ri

ve
d

fr
om

ab
in

it
io

ca
lc

ul
at

io
ns

on
m

od
el

co
m

po
un

ds
w

ith
tw

o
pe

pt
id

e
gr

ou
ps

fo
r

th
e

st
at

es
in

cl
ud

in
g

C
T

be
tw

ee
n

th
e

tw
o

gr
ou

ps
.

(c
on

ti
nu

ed
)

581



TA
B

LE
S2

.
(C

on
ti

nu
ed

)

Y
ea

r
R

ef
er

en
ce

Su
bj

ec
t

St
ud

ie
d

St
at

es
In

cl
ud

ed
b

C
om

m
en

ts

20
07

56
C

D
of

pa
lm

ito
yl

tr
an

sf
er

as
e

Pa
gP

n
π

∗ ,
N

V
1
,

N
V

2
fo

r
pe

pt
id

e;
1
L

a,
L

b
,

B
a,

B
b

fo
r

Ty
r,

T
rp

;
L

a,
B

a,
B

b
fo

r
Ph

e
E

xc
ito

n
co

up
lin

g
be

tw
ee

n
Ty

r
26

an
d

T
rp

66
pr

od
uc

es
po

si
tiv

e
ba

nd
at

23
3

nm
an

d
pr

ov
id

es
a

se
ns

iti
ve

co
nf

or
m

at
io

na
l

pr
ob

e.
20

08
57

G
qu

ar
te

ts
π

π
∗

in
ba

se
s

C
al

cu
la

tio
ns

re
pr

od
uc

e
em

pi
ri

ca
l

co
rr

el
at

io
n

be
tw

ee
n

C
D

sp
ec

tr
a

of
G

qu
ar

te
ts

an
d

th
e

re
la

tiv
e

po
la

ri
ty

of
st

ac
ke

d
qu

ar
te

ts
.

20
08

58
s6

G
in

D
N

A
π

π
∗

in
ba

se
s

C
al

cu
la

tio
ns

re
pr

od
uc

e
th

e
ob

se
rv

ed
lo

ng
-w

av
el

en
gt

h
ba

nd
in

6-
th

io
G

pr
ob

es
in

tr
od

uc
ed

at
va

ri
ou

s
po

si
tio

ns
.

20
08

59
In

flu
en

ce
of

ch
ar

ge
tr

an
sf

er
st

at
es

on
th

e
C

D
of

pr
ot

ei
ns

L
nπ

∗ ,
L
π

π
∗ ,

C
T

n
π

∗ ,
C

T
π

π
∗b

V
ac

uu
m

-U
V

C
D

of
71

pr
ot

ei
ns

ca
lc

ul
at

ed
.

A
gr

ee
m

en
t

w
ith

ex
pe

ri
m

en
t

si
gn

ifi
ca

nt
ly

im
pr

ov
ed

.
20

09
60

Po
ly

(P
ro

)I
I

he
lix

of
po

ly
(A

la
)

an
d

po
ly

(P
ro

)
n
π

∗ ,
N

V
1
,

N
V

2
fo

r
pe

pt
id

e;
hi

gh
-e

ne
rg

y
tr

an
si

tio
ns

in
ba

ck
bo

ne
an

d
si

de
ch

ai
n

M
od

ifi
ed

ex
ci

to
n

m
od

el
re

pr
od

uc
es

C
D

of
po

ly
(A

la
)

in
po

ly
(P

ro
)I

I
co

nf
or

m
at

io
n

w
el

l,
bu

t
no

t
th

at
of

po
ly

(P
ro

).
20

10
61

α
-r

ic
h

pr
ot

ei
ns

(h
em

og
lo

bi
n,

le
pt

in
,

tr
op

om
yo

si
n)

,
β

-r
ic

h
pr

ot
ei

ns
(l

ec
tin

,
m

on
el

lin
,

Ft
sz

)

n
π

∗
an

d
N

V
1

fo
r

pe
pt

id
es

C
om

bi
ne

d
M

D
si

m
ul

at
io

n
w

ith
C

D
ca

lc
ul

at
io

ns
fo

r
st

ru
ct

ur
es

al
on

g
tr

aj
ec

to
ry

,
ta

ki
ng

in
to

ac
co

un
t

sp
re

ad
in

tr
an

si
tio

n
en

er
gi

es
du

e
to

st
ru

ct
ur

al
va

ri
at

io
n

an
d

el
ec

tr
os

ta
tic

en
er

gi
es

.
20

10
62

R
et

in
al

Sc
hi

ff
ba

se
di

m
er

L
ow

es
t

en
er

gy
π

π
∗

tr
an

si
tio

n
In

tr
od

uc
ed

tr
an

si
tio

n
de

ns
ity

fr
ag

m
en

t
in

te
ra

ct
io

n
m

et
ho

d
fo

r
ca

lc
ul

at
in

g
co

up
lin

g
be

tw
ee

n
th

e
re

tin
al

ch
ro

m
op

ho
re

s;
go

od
ag

re
em

en
t

w
ith

ab
in

it
io

sp
lit

tin
g.

1
P.

M
.

B
ay

le
y,

E
.

B
.

N
ie

ls
en

,
J.

A
.

Sc
he

llm
an

,
J.

P
hy

s.
C

he
m

.
19

69
,

73
,

22
8

–
24

3.
2
R

.
W

.
W

oo
dy

,
B

io
po

ly
m

er
s

19
69

,
8

,
66

9
–

68
3.

3
E

.
S.

Py
sh

,
J.

C
he

m
.P

hy
s.

19
70

,
52

,
47

23
–

47
33

.
4
A

.
K

.
C

he
n,

R
.

W
.

W
oo

dy
,

J.
A

m
.C

he
m

.S
oc

.
19

71
,

93
,

29
–

37
.

5
T

.
O

oi
,

R
.

A
.

Sc
ot

t,
G

.
V

an
de

rk
oo

i,
H

.
A

.
Sc

he
ra

ga
,

J.
C

he
m

.P
hy

s.
19

67
,

46
,

44
10

–
44

26
.

6
J.

F.
Y

an
,

G
.

V
an

de
rk

oo
i,

H
.

A
.

Sc
he

ra
ga

,
J.

C
he

m
.P

hy
s.

19
68

,
49

,
27

13
–

27
26

.
7
V

.
M

ad
is

on
,

J.
Sc

he
llm

an
,

B
io

po
ly

m
er

s
19

72
,

11
,

10
41

–
10

76
.

8
R

.
W

.
W

oo
dy

,
B

io
po

ly
m

er
s

19
72

,
11

,
11

49
–

11
71

.
9
R

.
N

ag
ar

aj
an

,
R

.
W

.
W

oo
dy

,
J.

A
m

.C
he

m
.S

oc
.,

19
73

,
95

,
72

12
–

72
22

.
10

W
.

J.
G

ou
x,

T
.

M
.

H
oo

ke
r,

Jr
.,

J.
A

m
.C

he
m

.S
oc

.
19

75
,

97
,

16
05

–
16

06
.

11
D

.
S.

M
oo

re
,

T
.

E
.

W
ag

ne
r,

B
io

po
ly

m
er

s,
19

74
,

13
,

97
7

–
98

6.
12

T
.

M
.

H
oo

ke
r,

Jr
.,

P.
M

.
B

ay
le

y,
W

.
R

ad
di

ng
,

J.
A

.
Sc

he
llm

an
,

B
io

po
ly

m
er

s,
19

74
,

13
,

54
9

–
56

6.
13

D
.

S.
St

ud
de

rt
,

R
.

C
.

D
av

is
,

B
io

po
ly

m
er

s
19

74
,

13
,

13
77

–
13

89
.

582



14
D

.
S.

St
ud

de
rt

,
R

.
C

.
D

av
is

,
B

io
po

ly
m

er
s

19
74

,
13

,
13

91
–

14
03

.
15

D
.

S.
St

ud
de

rt
,

R
.

C
.

D
av

is
,

B
io

po
ly

m
er

s
19

74
,

13
,

14
05

–
14

16
.

16
R

.
W

.
W

oo
dy

,
St

ud
ie

s
of

th
eo

re
tic

al
ci

rc
ul

ar
di

ch
ro

is
m

of
po

ly
pe

pt
id

es
:

C
on

tr
ib

ut
io

ns
of

ß
tu

rn
s,

in
P

ep
ti

de
s

P
ol

yp
ep

ti
de

s
an

d
P

ro
te

in
s,

E
.

R
.

B
lo

ut
,

F.
A

.
B

ov
ey

,
M

.
G

oo
dm

an
,

an
d

N
.

L
ot

an
,

E
ds

.,
Jo

hn
W

ile
y

&
So

ns
,

N
ew

Y
or

k,
19

74
,

pp
.

33
8

–
35

0.
17

P.
E

.
G

re
bo

w
,

T
.

M
.

H
oo

ke
r,

B
io

po
ly

m
er

s
19

75
,

14
,

18
63

–
18

83
.

18
R

.
W

.
W

oo
dy

,
B

io
po

ly
m

er
s

19
78

,
17

,
14

51
–

14
67

.
19

W
.

J.
G

ou
x,

T
.

M
.

H
oo

ke
r,

Jr
.,

J.
A

m
.C

he
m

.S
oc

.
19

80
,

10
2

,
70

80
–

70
87

.
20

W
.

J.
G

ou
x,

T
.

M
.

H
oo

ke
r,

Jr
.,

B
io

po
ly

m
er

s
19

80
,

19
,

21
91

–
22

08
.

21
J.

M
.

D
un

ga
n,

II
I,

T
.

M
.

H
oo

ke
r,

Jr
.,

M
ac

ro
m

ol
ec

ul
es

19
81

,
14

,
18

12
–

18
22

.
22

B
.

B
.

Jo
hn

so
n,

K
.

S.
D

ah
l,

I.
T

in
oc

o,
Jr

.,
V

.
I.

Iv
an

ov
,

V
.

B
.

Z
hu

rk
in

,
B

io
ch

em
is

tr
y

19
81

,
20

,
73

–
78

.
23

R
.

W
.

Sn
yd

er
,

T
.

M
.

H
oo

ke
r,

Jr
.,

B
io

po
ly

m
er

s
19

82
,

21
,

54
7

–
56

3.
24

V
.

R
iz

zo
,

J.
A

.
Sc

he
llm

an
,

B
io

po
ly

m
er

s
19

84
,

23
,

43
5

–
47

0.
25

A
.

L
.

W
ill

ia
m

s,
C

.
C

he
on

g,
I.

T
in

oc
o,

Jr
.,

L
.

B
.

C
la

rk
,

N
uc

l.
A

ci
ds

R
es

.
19

86
,

14
,

66
49

–
66

59
.

26
D

.
S.

M
oo

re
,

A
.

L
.

W
ill

ia
m

s,
B

io
po

ly
m

er
s

19
86

,
25

,
14

61
–

14
91

.
27

M
.

C
.

M
an

ni
ng

,
R

.
W

.
W

oo
dy

,
B

io
po

ly
m

er
s

19
87

,
26

,
17

31
–

17
52

.
28

D
.

E
.

C
al

la
ha

n,
T

.
M

.
H

oo
ke

r,
Jr

.,
B

io
po

ly
m

er
s

19
87

,
26

,
45

7
–

46
1.

29
M

.
C

.
M

an
ni

ng
,

M
.

Il
la

ng
as

ek
ar

e,
R

.
W

.
W

oo
dy

,
B

io
ph

ys
.C

he
m

.
19

88
,

31
,

77
–

86
.

30
M

.
C

.
M

an
ni

ng
,

R
.

W
.

W
oo

dy
,

B
io

ch
em

is
tr

y
19

89
,

28
,

86
09

–
86

13
.

31
T

.
M

.
C

oo
pe

r,
R

.
W

.
W

oo
dy

,
B

io
po

ly
m

er
s

19
90

,
30

,
65

7
–

67
6.

32
G

.
G

ot
ta

re
lli

,
P.

Pa
lm

ie
ri

,
G

.
P.

Sp
ad

a,
G

az
z.

C
hi

m
.I

ta
l.

19
90

,
12

0
,

10
1

–
10

7.
33

M
.

C
.

M
an

ni
ng

,
R

.
W

.
W

oo
dy

,
B

io
po

ly
m

er
s

19
91

,
31

,
56

9
–

58
6.

34
R

.
W

.
W

oo
dy

,
Te

tr
ah

ed
ro

n:
A

sy
m

m
et

ry
19

93
,

4
,

52
9

–
54

4.
35

J.
Fl

ei
sc

hh
au

er
,

J.
G

rö
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AB INITIO ELECTRONIC CIRCULAR

DICHROISM AND OPTICAL ROTATORY
DISPERSION: FROM ORGANIC

MOLECULES TO TRANSITION METAL
COMPLEXES

Jochen Autschbach

21.1. INTRODUCTION

The electronic and vibrational chiroptical properties of molecules and molecular aggre-
gates are of fundamental and of applied interest in chemistry, biochemistry, physics, and
other scientific disciplines [1–7]. In particular during the past decade, a large number of
research studies have demonstrated that molecular chiroptical properties can be computed
reliably, starting from first principles quantum theory. A number of review articles, for
instance references 8–18, document the progress made in the computational chiroptics
field in recent years.

Theoretical work dating back almost as far as the first rigorous formulation of modern
quantum theory has allowed researchers to gain a deeper understanding of the electronic
and structural origins of optical activity [19–25]. However, these pioneering theoreti-
cal works had to rely on formal derivations along with calculations for simple models,
on calculations using semiempirical wavefunctions, or—in the case of transition metal
complexes—on crystal field and ligand field theories. During the 1980s and 1990s the
development of Hartree–Fock (HF) methods for calculations of natural electronic optical
activity [26–28] paved the way for subsequent developments of methods that incorporate
electron correlation, either based on wavefunctions or within density functional theory
(DFT). In particular during the first decade of the new millennium, a “renaissance” in
chiroptical methods [11] has been made possible by the availability of efficient first-
principles theory-based electron correlation methods that can be used to predict, confirm,
and assign experimental data. Predominantly, these are linear response theory approaches

Comprehensive Chiroptical Spectroscopy, Volume 1: Instrumentation, Methodologies, and Theoretical
Simulations, First Edition. Edited by N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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rooted in time-dependent density functional theory (TDDFT [18]) and methods using
coupled cluster wavefunctions [10]. It is now possible to perform first-principles com-
putations of electronic optical activity for relatively large organic molecules, transition
metal complexes, and metal clusters. A combination of such electronic structure calcu-
lations with classical or ab initio molecular dynamics can be used to investigate how
dynamics, temperature, or solvent effects influence the chiroptical response of a molecule
and molecular aggregates.

This chapter is concerned with computations of electronic circular dichroism (ECD)
as well as optical rotation (OR) and optical rotatory dispersion (ORD). A brief introduc-
tion to the theoretical and computational aspects of electronic optical activity (ECD and
ORD) is provided, and in the remainder of the chapter the author hopes to demonstrate
the wide range of applicability of modern theoretical methods. Much of the material
has been compiled, updated, and revised from three recent review articles [8, 18, 29]
where the reader can find additional information on the subject. Separate sections in this
chapter highlight applications to organic molecules and to transition metal complexes
(with some citations to recent work on metal clusters). Right after this Introduction,
a section on theoretical aspects introduces equations for the rotatory strengths and the
optical rotation parameter in terms of exact wavefunctions. Subsequently, it is sketched
how one might approach calculations of ECD and ORD using approximate electronic
structure methods, followed by a more detailed description of TDDFT. Sections 21.2.3
and 21.2.4, focus on more technical details of the theoretical formalism and might be of
interest mainly to theoreticians. At the end of Section 21.2 the reader can find a brief
discussion of some more general computational considerations pertaining to the ab initio
modeling of ECD and ORD. The discussion of organic molecules (Section 21.3) and
metal complexes (Section 21.4) occasionally refers to the material presented in the the-
ory section, but the author has tried to render each part reasonably self-contained such as
to allow a reader who is interested in a particular topic to skip other sections. Additional
information and a tutorial on computations of chiroptical properties can be found in
reference 8.

21.2. CALCULATING ECD AND ORD STARTING
FROM FIRST PRINCIPLES

In this section some of the theoretical background for electronic chiroptical properties
is reviewed and related to electronic structure methods that can be used to compute
these properties. Particular attention is given to time-dependent density functional theory
(TDDFT). General references for this section are the textbook by Kauzmann [21], a
seminal article by Condon [20], and references 1, 8, and 30.

21.2.1. Exact Wavefunctions, Sum-over-States (SOS) Equations

The calculation of ECD spectra requires excitation energies and transition moments.
Conceptually, there are different ways to approach this problem. Suppose it were possible
to solve the time-independent electronic Schrödinger equation (SE)

Ĥ�i = �i Ei (21.1)
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exactly.1 In this case, a conceptually straightforward approach would be to calculate the
N -electron ground-state wavefunction and energy, �0 and E0, along with the desired
number of excited states �j and Ej . The excitation frequencies are ωj = (Ej − E0)/�.
The transition moments for each excitation from the ground state are

Tj = 〈�0|T̂ |�j 〉, (21.2)

where T̂ is an operator for one of the transition moments. For instance, with T̂ = D̂u =
−e

∑N
i=1 ru ,i one obtains the u component, u = x , y , or z , of the electric transition dipole

vector, and with T̂ = M̂u = −e/(2mec)
∑N

i=1(ri × p̂i )u one obtains the u component of
the magnetic transition dipole vector for the excitation from the ground state2 to state no.
j . In the previous equations, the summations run over the electrons with positions ri and
momentum operators p̂i = −ı�(∂/∂ri ). The theory contains a few empirically determined
fundamental parameters such as the unit charge e, the electron mass me , Planck’s constant
� = h/(2π), and the speed of light c, and it is nonrelativistic. A relativistic version can
be worked out, for instance by starting with the Dirac–Coulomb–Breit equation, but for
the purpose of this chapter it is sufficient to consider the electronic SE as the basis for
a description of chemical and spectroscopic phenomena.3

Suppose, furthermore, that it were possible to solve the SE not only for a few states,
but for the complete set of wavefunctions. In that case, the real isotropic optical rotation
parameter β as a function of the frequency ω of the incident light can be calculated
from the set of excitation frequencies and transition moments as

β(ω) = 2c

3�

∑
j �=0

Rj

ω2
j − ω2

, (21.3)

where

Rj = Im

[∑
u

〈�0|D̂u |�j 〉〈�j |M̂u |�0〉
]

= Im[Dj · M∗
j ] (21.4)

is the isotropic rotatory strength for excitation number j of the molecule, and Dj and
Mj are the electric and magnetic transition dipole moment vectors, respectively. Further
details on how this equation is derived are given below. The rotatory strength of each
transition as well as the OR parameter have opposite signs for a pair of enantiomers
of a chiral molecule. The sum-over-states (SOS) expression for the optical rotation in
Eq. (21.3) assumes an infinite lifetime of the excited states but is otherwise exact. The
OR parameter β is the real part of a complex function β̃ = β + ıβ ′ and accompanied
by an imaginary part β ′(ω). At an excitation frequency, the OR parameter of Eq. (21.3)

1 Unfortunately, one cannot solve the SE analytically for many-electron systems. Furthermore, it is impractical
to solve for all excited states even with a suitable approximation of the SE unless the molecule and the basis
set are small.
2 The excitation is assumed to take place from the ground state. Therefore, it is not necessary to write T0j , ω0j ,
and so on. If the reference state is not the ground state, the expressions can be easily modified, for instance
by replacing subscripts j with nj to indicate transitions between �n and �j .
3 The electronic SE does not consider nuclear motion, and therefore the description is far from exact. For
instance, see Section 21.3.4 regarding vibrational effects.
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diverges while the imaginary part becomes nonzero, as indicated by the presence of δ

functions in the imaginary part:

β ′(ω) = πc

3�ω

∑
j �=0

Rj
[
δ(ωj − ω) + δ(ωj + ω)

]
. (21.5)

A quantity closely related to β is the mixed electric–magnetic polarizability of the
molecule, G ′. The real part of G ′ is given as

G ′ = −ωβ = −2c

3�

∑
j �=0

ωRj

ω2
j − ω2

. (21.6)

Depending on the theoretical formalism used, it can be more convenient to consider
G ′ instead of β. Note that G ′ vanishes for zero frequency (i.e., infinite wavelength),
of the incident light (static limit), whereas β might have a nonzero static limit. Both
β and G ′ are the isotropic averages of rank-2 tensors, the OR tensor with Cartesian
components βuv , and the G ′ tensor with Cartesian elements G ′

uv , where u , v , ∈ {x , y , z }.
The isotropic averages are given by 1/3 of the sum of the diagonal tensor elements,
that is, β = (1/3)(βxx + βyy + βzz ) and similarly for G ′. This chapter only considers
isotropic media—for instance, solutions of freely rotating chiral molecules, or gas-phase
measurements. For chiroptical properties of samples with oriented molecules, see Chapter
12 and references [31–38].

If one includes in the derivation of the SOS equation of the optical rotation parameter
dephasing constants �j for the excited states, the equation for the real part of the OR
parameter reads4

βuv (ω) = c

3�ω

∑
j �=0

Rj

[
(ωj − ω)

(ωj − ω)2 + �2
j

− (ωj + ω)

(ωj + ω)2 + �2
j

]
(21.7)

and the imaginary part is given by

β ′
uv (ω) = c

3�ω

∑
j �=0

Rj

[
�j

(ωj − ω)2 + �2
j

+ �j

(ωj + ω)2 + �2
j

]
. (21.8)

In the limit where all �j are zero, Eqs. (21.3) and (21.5) are obtained again.
For an ensemble of noninteracting molecules, the molecular parameter β, given here

in cgs units of cm4, can be converted to an isotropic optical rotation (OR) angle in terms
of specific rotation [α] or molar rotation [φ] as detailed elsewhere in this book. The
rotatory strength is the chiroptical equivalent of the line strength of absorption spectra
[39]. To simulate ECD spectra the excitations are typically broadened with an empirical
broadening function (often Gaussian) to obtain a CD intensity in terms of �ε or the
ellipticity [θ ].

4 Please note that the corresponding expression in reference 8 has an incorrect sign.
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21.2.2. Response Methods in Approximate Wavefunction Theories
and Time-Dependent DFT in a Nutshell

If approximate Schrödinger equations for ground and excited states can be solved in a
practical way, approximate absorption and ECD spectra can be obtained from the calcu-
lated energies of the states along with the transition moments calculated explicitly from
Eq. (21.2) using the approximate wavefunctions. If all excited states are calculated, then a
value of the OR parameter that is correct within the approximations of the computational
model can be obtained from the SOS formula in Eq. (21.3). Typically, however, even
with approximate wavefunction methods, only a rather limited number of excited states
can be calculated and therefore the SOS equation for β is of limited practical value.
Moreover, for the currently most widely applied electronic structure method, density
functional theory (DFT), excitation spectra, and optical rotations cannot be accessed in
this manner because DFT has been formulated rigorously for ground states only, not for
excited states.

Consider a conceptually different approach: Suppose an efficient approximate method
were available to calculate the OR parameter β(ω) for a given input frequency ω directly.
According to Eq. (21.3), determining the corresponding ECD spectrum is then “simply”
a matter of finding for which frequencies ω the real part of the OR parameter diverges, as
indicated in Figure 21.1. Whenever ω coincides with one of the excitation frequencies ωj ,
the expression for β becomes singular in the absence of excited states damping. It would
be tedious to scan point by point through a frequency range of interest (although this can
be a practical way to compute an ECD spectrum). Alternatively, it can be possible to
derive from the equation for β(ω) an equation system that mathematically represents such
a scan in the following sense: The solution of the equation system yields the excitation
energies and the desired transition moments but bypasses the explicit calculation of
excited-state wavefunctions. Since the OR parameter β is calculated for the electronic
ground state, such an approach is also possible in DFT. However, since β is related to
oscillating time-dependent perturbations of the molecule, time-dependent DFT (TDDFT)
and time-dependent wavefunction-based response methods are required.

As a starting point for the approach sketched in the previous paragraph, one needs
an equation for the OR parameter or for G ′ derived for the approximate electronic struc-
ture method of choice. This is accomplished by considering a perturbation of the electric
dipole moment d with Cartesian components du of a chiral molecule by a magnetic field
(components Bv ), or alternatively the magnetic dipole moment m of a molecule being
perturbed by an electric field (component Ev ). The physical origin of optical rotation is a

ω

β(ω)

ω

β′(ω)

Figure 21.1. Behavior of the real and the imaginary part of the OR parameter [Eqs. (21.3) and

(21.5)] in the vicinity of excitation frequencies (dashed lines in left panel, ‘‘line spectrum’’ in the

right panel). The line spectrum indicates the δ-function shape of β ′, while the length of the lines is

proportional to the rotatory strengths used to generate the plot in the left panel. For broadened

versions, see Figure 21.2.
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difference in the refractive indices of the medium for left- and right-hand circular polar-
ized light, nL, nR . The refractive index for electromagnetic waves at optical frequencies
is, in turn, related to dynamic electronic polarizations in the medium, governed at the
molecular level by electric and magnetic dipole and higher-order multipole polarizabil-
ity tensors. An expansion in the electromagnetic field amplitudes around the coordinate
origin yields [1, 20, 21]

d ′
u = αu ,v Ev − c−1βu ,v (∂Bv/∂t) + · · · , (21.9a)

m ′
u = χu ,v Bv + c−1βu ,v (∂Ev/∂t) + · · · , (21.9b)

for each component of the molecular dipole moment perturbations, where in addition to
the OR tensor elements the elements of the polarizability tensor (α) and the magnetiz-
ability tensor (χ ) appear in lowest order. Terms of higher order in the field amplitudes or
in the multipole expansion are indicated by “· · ·”. The terms involving β are the lowest-
order terms that lead to a difference between nL and nR . The fact that time derivatives of
the fields are involved with the mixed electric–magnetic perturbations highlights the fact
that the observable optical activity vanishes as ω → 0. In a nutshell, the SOS equation
for the OR parameter as given in Eq. (21.3) is obtained from Eqs. (21.9a, 21.9b) as
follows [21, 40]:

(i) Assume perturbing fields of frequency ω (alternatively, one can start with a
general time dependent field and then do a Fourier transformation afterwards).

(ii) Expand the dipole moment expectation values as perturbation series in Ev , Bv

and collect the terms linear in the field amplitudes. Each term in the SE, Eq.
(21.1), is also expanded as a perturbation series of zeroth, first, and higher
orders in the field amplitudes.

(iii) Step (ii) involves the unperturbed ground-state wavefunction, along with its
dynamic electric or magnetic field perturbation to first order. The first-order
wavefunction is then expressed on the basis of unperturbed excited-states wave-
functions, with a set of unknown coefficients. This is the origin of the sum-
over-states, where the excited-states wavefunctions are supposed to be known
explicitly.

(iv) Equations for the expansion coefficients for the first–order wavefunction in
terms of unperturbed excited states �j of step (iii) are obtained from the terms
in the SE that are linear in the field amplitudes. Putting it all together and
taking the isotropic average of the tensor components yields Eq. (21.3) for the
OR parameter, with a similar equation for G ′.

Instead of assuming exact wavefunctions as a starting point for a calculation, one
can define the expectation value for the electronic electric and magnetic dipole moments
within whatever approximate first-principles electronic structure method is chosen, con-
sider a time-dependent perturbing field of frequency ω, and derive the equations for the
mixed electric–magnetic perturbations directly within the approximate method. Since
one is concerned here with dynamic perturbations of the dipole moments linear in
the field strengths, the task is accomplished by resorting to dynamic linear response
methods—that is, first-order time-dependent variational or nonvariational perturbation
theory. For example, within the DFT framework, one uses variational dynamic linear
response TDDFT methods. Within the coupled cluster (CC) wavefunction methods, non-
variational dynamic linear response methods are employed, as detailed in the chapter
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by Crawford (Chapter 23, this volume). Semiempirical methods employ parameterized
approximate versions of time-dependent Hartree–Fock linear variational perturbation the-
ory [41–44], and so on. The final form of the equations depends on the chosen electronic
structure method, as well as on other factors such as whether variational or nonvaria-
tional parameters are determined with respect to the AO basis functions, or (as typical,
for instance, in TDDFT) in a basis of molecular orbitals (MOs). For the interested reader,
an account of the TDDFT linear response approach to calculations of ORD and CD is
given further below.

To gain a rough idea of how one proceeds from an equation for the OR parameter to
arrive at equations for ECD spectra, without the explicit use of excited states wavefunc-
tions, consider the following generic example: In the absence of excited states dephasing,
the calculation of the linear magnetic dipole moment perturbation of Eq. (21.9b) of a
chiral molecule might require the solution of an equation system

[M − ω2]x = b, (21.10)

where a set of parameters x such as perturbed MO coefficients or wavefunction parameters
is determined and subsequently used in conjunction with magnetic dipole integrals (e.g.
over the AO or MO basis) to calculate β. The actual equations for the quantities in
(21.10) and the dimension of the matrix problem depend on specific details of the chosen
approximate electronic structure method. Furthermore, in nonvariational methods it can
be necessary to solve additional equations. In the example, b is supposed to be a constant
right-hand-side (rhs) vector that depends on the nature of the perturbing field, that is, the
electric field. The matrix M may or may not be Hermitian. The formal solution of Eq.
(21.10) is obtained by multiplying from the left with the inverse of [M − ω2] to yield

x = [M − ω2]−1b. (21.11)

One can write the inverse matrix in Eq. (21.11) in form of its spectral resolution. For
simplicity, assume that M is Hermitian. Given the complete set {Fj } of eigenvectors of
M, with eigenvalues ω2

j , the inverse is

[M − ω2]−1 =
∑

j

Fj F
†
j

ω2
j − ω2

. (21.12)

Compare Eq. (21.12) with the SOS equation for the OR parameter: Both expressions
appear in a very similar form. That is, the eigenvalues of the matrix M yield the (squares
of) the excitation energies, and the eigenvectors can be used to calculate the transition
moments and the rotatory strengths. If one is interested in the ECD spectrum, it is usually
sufficient to determine a set of lowest eigenvalues along with the associated eigenvectors.
For calculations of β, one solves Eq. (21.10) directly in an efficient way, without taking
the spectral resolution detour.

As the reader can imagine, many details were glossed over in the previous
paragraph, but as a general idea it emerges that: (i) The OR parameter, or G ′, can
be calculated in first-principles quantum chemical methods by solving a set of linear
response equations for a given input frequency ω. (ii) The formal solutions of these
equations can be written in a spectral form that resembles a SOS equation, typically
involving a generalized eigenvalue-type problem. The excitation energies are obtained
from the eigenvalues, and expressions for the transition moments can be obtained in
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terms of the eigenvectors. In exact wavefunction theory, the result leads back to the
original SOS equations for β and G ′.

21.2.3. TDDFT and Molecular Orbital Linear Response Theory
for Electronic Chiroptical Properties

For the interested reader the formalism is sketched in this section in more detail for the
case of molecular-orbital-based Kohn–Sham TDDFT, because of its widespread appli-
cation in the chiroptics area of research. Some definitions are going to be helpful before
proceeding to the details of the calculation of chiroptical properties.5 For the unperturbed
system, using a standard AO basis set {χμ} to expand the singly occupied Kohn–Sham
molecular spin orbitals ϕi as ϕi = ∑

μ χμCμi , the electron density is given as

ρ(r) =
∑

i

ni ϕ
∗
i ϕi =

∑
μ,ν,i

ni C
∗
μi Cνi χ

∗
μ(r)χν(r), (21.13)

where the ni are the MO occupation numbers and assumed here to be 0 or 1. The MO
coefficients and the occupation numbers are conveniently collected in matrices C and n
(with n being diagonal).6 The electronic Coulomb potential is given as

VC(r) =
∫

d3r ′ · ρ(r′)
|r − r′| (21.14)

and in DFT it is accompanied by VXC = δEXC /δρ, the exchange–correlation (XC) poten-
tial which is obtained from the XC energy as its functional derivative with respect to
the electron (spin) density. The canonical Kohn–Sham equations used to determine the
time-independent MOs read in matrix form

FC = SCE. (21.15)

Here, F = h+V C +V XC is the AO matrix of the Kohn–Sham Fock operator, where h
collects the one-electron operator matrix elements for kinetic energy and electron–nuclear
attraction. The matrix E = C†FC is a diagonal matrix7 with elements εi , the so-called
orbital energies, and Sμ,ν = 〈χμ|χν〉 is an element of the AO overlap matrix S.

In wavefunction theory, in the presence of time-periodic perturbations the time-
dependent wavefunction �(t) can be written as a product of a time-dependent phase
factor times a time-periodic phase-free function � such that(

Ĥ − ı
∂

∂t

)
� = �Q(t) (21.16)

has the formal structure of the Schrödinger equation; here the operator in parentheses
replaces the Hamiltonian, and the quasi energy

Q(t) =
〈
�

∣∣∣∣Ĥ − ı
∂

∂t

∣∣∣∣�
〉

(21.17)

5 Hartree atomic units are used in this section.
6 Notation A,B, . . . indicates matrices.
7 There is the assumption here and in the remainder of this section that the unperturbed orbitals are canonical.
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takes the role of the energy. In the presence of time-dependent external fields the quasi
energy can be used as a starting point for analytic derivative perturbation methods
[45–47]. The symbol ı is used in this chapter to denote

√−1 in order to avoid confusion
with orbital indices.

In the adiabatic approximation of TDDFT, where the XC potential is not explicitly
time-dependent, a quasi-energy functional that is suitable for TDDFT response methods
can be written in matrix form as [48]

Q̃(t) = Q(t) − trn
[
C†SC −1

]
= trn

{
C†hC + 1

2
C†V CC − i

[
C†ṠC + C†SĊ

] − [
C†SC −1

]} + EXC[ρ(t)],

(21.18)

where trn indicates that the diagonal elements of the resulting matrices should be multi-
plied with the MO occupation numbers and added. The basis set can be time-periodic and
dependent on one or more perturbation parameters. The basis functions are denoted as ξμ

in order to distinguish them from their static AO counterparts χμ which do not depend on
the magnetic or electric field. The matrix Ṡ has elements

〈
ξμ

∣∣ ∂
∂t ξν

〉
, and Ċ = (∂/∂t)C(t).

The matrix h may now include matrix elements of the operators for perturbing time-
dependent external fields, and the electron density, the MO coefficients, and potentially
also the overlap matrix S are now time-dependent. The functional includes variational
constraints with Lagrangian multipliers λij (t) collected in the matrix . These terms
ensure that the MOs remain orthonormal when the MO coefficients are varied. In the
absence of time-dependent external fields, the static limit of Q (time derivatives vanish)
is the energy functional used to derive Eq. (21.15), with the set of Lagrange multipliers
for the unperturbed system being the set of orbital energies εi .

One can define an element of the G ′ tensor in the frequency domain as a time-
averaged quasi-energy derivative:

G ′
u ,v (ω) = Im

d2Q̃

dBu(−ω)dEv (ω)
, (21.19)

where the frequencies of the two fields need to have opposite sign in order to yield a
nonvanishing time average of the response. The order of differentiation in Eq. (21.19)
can be chosen based on convenience. For the second derivative in Eq. (21.19), one needs
the perturbed MO coefficients to first order in the amplitudes of one of the fields.8 The
perturbed MO coefficients to first order can be obtained from a perturbation expansion
of the time-dependent Kohn–Sham equations which read in matrix form (AO basis)

FC − ı[ṠC +SĊ] = SC . (21.20)

As an example, consider an electric field perturbing the orbitals, and assume that the
basis set does not depend on the electric field amplitudes. This simplifies the proce-
dure since no perturbation expansion of S and Ṡ needs to be considered in this part
of the calculation. The MO coefficients can be expanded into Fourier components as

8 This is after elimination of redundant terms involving the second derivative of C and its first derivative with
respect to the amplitudes of the other field.



602 COMPREHENSIVE CHIROPTICAL SPECTROSCOPY, VOLUME 1

C(t) = C(0) + C(+)eiωt Eu(+ω) + C(−)e−iωt Eu(−ω) + · · ·, and similarly for F (t) and
other time-dependent quantities. One usually parameterizes C(±) = C(0)A(±) where the
matrices A(+),A(−) mix unoccupied with occupied MOs to describe the first-order per-
turbations [in a sense much like excited states wavefunctions enter the SOS expression
for β(ω)]. Collecting from Eq. (21.20) terms linear in the electric field amplitude and
neglecting any dependence of the basis set on the perturbation yields, after multiplication
from the left with C(0)†,

F (±) +E(0)A(±) − A(±)E(0) ± ωA(±) = (±)
, (21.21)

where C(0)†S(0)C(0) =1 (MO orthonormalization) was used to simplify a number of
terms. To first order, only the matrix elements between occupied and unoccupied orbitals
are needed to obtain the response function.9 Once the matrices A(±) are determined, one
can calculate G ′ or the OR parameter β. It is beneficial at this point to introduce spin
indices σ , τ for the MOs to keep track of their spins. Indices a , b refer to unoccupied
MOs, and indices i , j refer to occupied MOs. In Eq. (21.21), F (±) is the perturbed
Kohn–Sham Fock operator in the basis of unperturbed MOs (not AOs), with matrix
elements

F (±)
aiσ = h(Ev )

aiσ +
∑
b,j ,τ

[Kaiσ ,jbτ A(±)
bjτ + Kaiσ ,bjτ A∗(∓)

bjτ ], (21.22)

where the superscript (Ev ) indicates the electric field perturbation explicitly. The quan-
tities

Kaiσ ,bjτ =
∫

d3r1d3r2ϕ
∗
aσ (r1)ϕiσ (r1)

[
r−1

12 + f στ
XC (r1, r2, ω)

]
ϕ∗

bτ (r2)ϕjτ (r2) (21.23)

are elements of a “supermatrix” K (a matrix of matrices, indicated by the bar) which
is sometimes called the TDDFT coupling matrix.10 The r−1

12 terms in K are related
to the perturbation of the Coulomb potential by the external field, while the linear
exchange-correlation (XC) response kernel f στ

XC yields the first-order perturbation of the
XC potential. It is in principle a function of frequency. In the adiabatic approxima-
tion of TDDFT, it is taken to be a frequency-independent object that can be obtained,
for instance, as the functional derivative of a static DFT XC potential. A large vari-
ety of functionals is available for this purpose, including hybrid and range-separated
hybrid functionals. For brevity, the notation in (21.23) refers to the ‘pure’ TDDFT
terms only.

The perturbed Kohn–Sham Fock operator depends on the first-order perturbation of
the MO coefficients; that is, F (±) depends on A(±) [Eq. (21.22)] and A(±) is the solution
of (21.21) which depends on F (±). One can solve the so–called coupled perturbed time-
dependent Kohn–Sham equations (21.21) self–consistently for F (±). Initially unknown
are the coupling terms involving elements of A(±) in Eq. (21.22). With an initial guess
of h(Ev ) for the perturbed Fock operator, a converged solution is usually quickly found.
Substituting (21.22) in Eq. (21.21) in order to resolve the dependence of F (±) on the
coefficients in A(±) yields a system of uncoupled linear equations for the unknown

9 The matrix
(±)

in Eq. (21.21) can be chosen as zero in the occupied–unoccupied blocks.
10 Definitions in the literature may vary as to the ordering of indices.
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elements of the matrices A(±). Using a shorthand notation where matrix indices a , i
and b, j and spin indices σ , τ are combined to single composite vector / (super)matrix
indices (a i σ) and (b j τ), the equation system obtained from (21.21) upon substitution
of (21.22) can be written in compact form11 as

[ (
G K

K
∗

G
∗

)
− ω

(
−1 0
0 1

) ](
A(+)

A∗(−)

)
= −

(
h(Ev )

h∗(Ev )

)
. (21.24)

Here, G has elements

Gaiσ ,bjτ = δστ δabδij (εaσ − εiσ ) + Kaiσ ,jbτ , (21.25)

h(Ev ) collects the (a i σ) matrix elements for the external field perturbation (here: the
electric field). Quantities without a perturbation superscript index are of zeroth order
in the field amplitude. The matrices in the uncoupled equation system have o2v2 ele-
ments, where o is the number of occupied and v the number of unoccupied (‘virtual’)
orbitals—in contrast to the coupled equations (21.21) where the matrices have o · v
elements. The dimension of the equation system usually makes it necessary to solve it
iteratively in a way such that the full matrices are never stored, with an initial guess
for the solution vectors A(+) and A∗(−). Equations (21.21) and (21.24) are different
representations of the same computational problem.

Once the coefficient sets A(+) and A∗(−) for the electric field perturbation have
been determined, the response function in Eq. (21.19) can be calculated. In the simplest
scenario, when taking the quasi-energy derivatives, one assumes a basis set in Eq. (21.18)
that does not depend on the magnetic field perturbation. After elimination of all redundant
terms, the mixed electric–magnetic response function has the following, rather simple,
expression in the MO basis:

d2Q̃

dBu(−ω)dEv (ω)
=

∑
aiσ

ni

{
h(Bu )

iaσ A(Ev ,+)
aiσ + A∗(Ev ,−)

aiσ h(Bu )
aiσ

}
, (21.26)

where h(Bu )
ai = −(1/2c)〈ϕa |(r × p̂)u |ϕi 〉 is a matrix element of the external magnetic

field perturbation operator (the orbital Zeeman term).
The advantage of having an explicit linear equation system such as (21.24) for the

linear response coefficients instead of a set of coupled perturbed SCF equations such
as (21.21) is the following: The solutions of Eq. (21.24) become singular where the
matrix in square brackets on the left has vanishing eigenvalues. For simplicity, assume
real unperturbed orbitals, in which case all quantities in Eq. (21.24) are real for an
electric field perturbation. Adding and subtracting the two equations obtained from the
2 × 2 matrix–vector product in (21.24), solving one of them for (A(+) − A(−)

), and
substituting the result in the other equation yields

[(G −K)(G +K) − ω2](A(+) + A(−)
) = −2h(Ev ). (21.27)

11 To avoid confusion: For the matrices A(±) in Eq. (21.24) and (Ev ) one now considers only one of their
occupied–unoccupied blocks such that the dimension of the equation system is the number of occupied times
the number of unoccupied MOs.
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Equation (21.27) has the same structure as the linear equation system (21.10) discussed
above. Therefore, an equation resembling the SOS expression for the OR parameter can
be derived formally within TDDFT. From such an equation, the excitation energies and
transition moments can be calculated directly from a non-Hermitean eigenvalue problem
involving the matrix [(G −K)(G +K)] from (21.27) or from a modified version with a
Hermitean matrix [49–51]. The excitation energies and transition moments are calculated
without the need to compute excited states densities or wavefunctions, by considering
time-dependent perturbations of the ground states.

21.2.4. Origin Dependence and GIAOs

For optical rotation and ECD calculations a complication arises: Molecular properties
related to magnetic field perturbations are generally dependent on the choice of the
coordinate origin when the basis set is incomplete. Such an origin dependence is a mani-
festation of a more general violation of invariance of calculated observables with respect
to the gauge chosen for the magnetic vector potential [40] with incomplete basis sets
or certain types of approximate wavefunctions. In TDDFT and various other classes of
variational electronic structure methods, the origin dependence can be eliminated for
some properties by introducing ‘gauge including atomic orbital’ (GIAO) basis functions.
GIAOs and other distributed gauge origin methods are also in widespread use for com-
putations of NMR chemical shifts where the magnetic field is static [52]. For dynamic
response, one may define time-periodic GIAOs in reference to an oscillating magnetic
field as [48]

ξν(t) = exp
[
− ı

2c

(
B+eıωt + B−e−ıωt ) × Rν · r

]
χν , (21.28)

where Rν is the center of a regular field-independent real AO basis function χν . As far
as TDDFT is concerned, with the magnetic-field-dependent GIAO basis set, practically
all terms in the quasi-energy functional, Eq. (21.18), contribute to the magnetic field
derivative when the mixed electric–magnetic response function is calculated. After elim-
ination of redundant terms, and of terms that sum to zero because they involve products
of symmetric with antisymmetric matrices, the the mixed electric–magnetic response can
be calculated from

d2Q̃

dBu(−ω)dEv (ω)
=

∑
μν

{ ∑
aiσ

niσ h(Bu )
μν

[
C ∗

μiσ Cνaσ A(Ev ,+)
aiσ + C ∗

μaσ Cνiσ A∗(Ev ,−)
aiσ

]

−
∑
aiσ

niσ εiσ S (Bu )
μν

[
C ∗

μiσ Cνaσ A(Ev ,+)
aiσ + C ∗

μaσ Cνiσ A∗(Ev ,−)
aiσ

]

+
∑
aiσ

niσ Ṡ ∗(Bu ,+)
νμ C ∗

μiσ Cνaσ A(Ev ,+)
aiσ + Ṡ (Bu ,−)

μν C ∗
μaσ Cνiσ A∗(Ev ,−)

aiσ

}
(21.29)

with

h(Bu )
μν = − 1

2c
〈χμ|(rν × p̂)u |χν〉 + ı

2c
〈χμ|[r × (Rν − Rμ)

]
u F̂ (0)|χν〉, (21.30a)
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S (Bu )
μν = ı

2c
〈χμ|[r × (Rν − Rμ)

]
u |χν〉, (21.30b)

Ṡ (Bu ,±)
μν = ± ıω

2c
〈χμ|[r × Rν

]
u |χν〉. (21.30c)

The first sum on the rhs of (21.29) is equivalent to (21.26). One can show that the
combined additional terms in Eq. (21.29) vanish in the complete basis set limit [53].
In addition to the GIAO overlap and perturbation operator matrix elements which are
well known from GIAO methods for NMR parameters [52], for example, the terms

involving the matrix Ṡ
(±)

are specific to dynamic response methods with time-periodic
basis functions and originate from the ‘operator’ ı∂/(∂t) in the quasienergy expression
acting on a time-dependent basis set. See also reference 54.

There are other ways to define origin independent magnetic properties. For optical
rotation and ECD calculations, one of the popular choices is to employ what is sometimes
called the velocity gauge for the dipole operator. The electric transition dipole moment
in the rotatory strength, Eq. (21.4), can be replaced by its velocity (momentum) form by
considering that in exact theory

〈�0|D̂|�j 〉 = ıω−1
j 〈�0|P̂|�j 〉. (21.31)

In the last equation, P̂ = ∑
i p̂i is the one-electron momentum operator. With incomplete

basis sets, Eq. (21.31) and its analog in the MO basis are not exactly satisfied, but ORs cal-
culated based on the velocity expression are origin-independent. Pedersen at al. [55] have
shown that in velocity gauge G ′ may afford a sizable static limit, while in exact theory
G ′ has to vanish for zero frequency. The nonvanishing velocity gauge G ′(0) is an artifact
of basis set incompleteness. A modified velocity gauge for the optical rotation tensor [55]
involves the subtraction of G ′(0) from G ′(ω), with both tensors computed in velocity
gauge at the same level of theory. There is some added computational cost because of the
additional response calculation at zero frequency. An advantage of the velocity gauge
is that it is generally applicable to variational and nonvariational electronic structure
methods and easy to implement for OR and various other response properties [56].

21.2.5. Lineshapes, ORD patterns, Kramers–Kronig Transforms

Equations (21.7) and (21.8) show that both the real and the imaginary part of the complex
OR parameter are determined by the rotatory strengths Rj . The real part β describes a
refractive process, while the imaginary part β ′ describes a chiroptical absorption process.
If the only broadening mechanism were a finite-lifetime dephasing of the excited states,
the lineshapes would correspond to the Lorentzian function pairs of Eqs. (21.7) and
(21.8). There are many other mechanisms that lead to ECD band broadening. Generally,
the real and the imaginary part of the broadened OR parameter are related to each other
in form of a Kramers–Kronig (KK) transform pair, such that [22, 57, 58]12

β(ω) = 2

π
PV

∫ ∞

0

μβ ′(μ)

μ2 − ω2
dμ, (21.32a)

β ′(μ) = −2ω

π
PV

∫ ∞

0

β(μ)

μ2 − ω2
dμ. (21.32b)

12 The real and imaginary part are assumed to vanish as ω → ±∞.
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At each frequency point ω the integration over μ includes the singularity where μ =
ω. To properly take into account these singularities, “PV” indicates that the principal
value of the integral should be taken. The lineshape functions in Eqs. (21.7) and (21.8)
represent KK transform pairs, and so do the SOS equations (21.3) and (21.5) for infinite
excited state lifetimes. Often, in spectral simulations the calculated ECD “line” spectra,
corresponding to the δ functions of Eq. (21.5), are broadened with Gaussian functions.
A normalized lineshape function pair for Gaussian broadening is [59]

gR(ω;ωj ) = ı
1

σ
√

2π
exp

(
− (ω − ω0)

2

2σ 2

)
erf

(
ı
(ω − ω0)

σ
√

2

)
, (21.33a)

gI (ω;ωj ) = 1

σ
√

2π
exp

(
− (ω − ωj )

2

2σ 2

)
, (21.33b)

where R and I indicate the real (refractive) and the imaginary (absorptive) part, respec-
tively. For a parameter σ equal to �j /

√
ln 4, the Gaussian absorption line has the same

width at half peak height as a normalized Lorentzian curve. The error function along
the imaginary axis in (21.33a) can be calculated by using numerical routines for the
so–called Dawson integral (see reference 59 for further details).

The qualitative behavior of the real and imaginary part of the OR parameter, or
alternatively of the real and imaginary part of the molar rotation [φ] and the molar
ellipticity [θ ] which also constitute a KK transform pair, is shown in Figure 21.2. The
sign of the peak/trough pattern in the “anomalous” dispersion region of the ORD around
an excitation is dictated by the sign of the rotatory strengths for the transition. As shown
in the figure, the ORD in the low-frequency (long-wavelength) domain might in some
cases exhibit a sign change that is not indicative of an excitation frequency, but rather
of competing influences of excitations with different signs of their rotatory strengths on
the low-frequency ORD. In the example, the negative sign of the low-frequency ORD
is dominated by the intense second transition. As ω approaches the first excitation from
below, the influence of the first transition (in the example with positive rotatory strength)
eventually becomes dominant and the ORD changes sign well before ω passes through
the first excitation frequency.

21.2.6. General Computational Considerations

As so often in computational chemistry, a study of ECD and ORD of a chiral molecule
begins with a determination of the molecular structure. The most common choices here

ω ω
ωex ωex

Re
Im

ω

Re x 100
Im, two excitations

Re, with bisignate
nonresonant ORD

ω

Figure 21.2. Qualitative behavior of the

electronic linear chiroptical response in the vicinity

of an excitation frequency ωex. Re = real part (e.g.,

molar rotation [φ], OR parameter β), Im =
imaginary part (e.g., molar ellipticity [θ ], OR

parameter β ′). A Gaussian broadening was used for

this figure [59]. In the lower panel, competition

between the first and the intense second transition

causes a bisignate nonresonant ORD.
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are to determine optimized local minimum structures, usually from a conformational
search, or to take structures from molecular dynamics (MD) or Monte Carlo (MC) simu-
lations. Chiroptical properties can then be computed from first principles and subsequently
averaged if more than one structure is employed. See Figure 21.3 for a simple flow chart.
Semiempirical methods are available for some types of computations (e.g., to simulate
the CD of polypeptides [39, 60], and for other applications [13]). More generally appli-
cable first-principles methods are nowadays fast enough to treat relatively large systems.
Among the currently popular methods are TDDFT, Hartree–Fock (HF, to some extent),
and correlated post-HF wavefunction-based theories such as coupled cluster (CC).

In general, electronic chiroptical properties are sensitive to the approximations made
in the electronic structure calculation, and it is therefore advisable to use the most accu-
rate method that one can afford for a given molecule. Beyond the usual method/basis
set considerations that are ubiquitous in computational chemistry, if comparisons with
experiment are the main interest it is important to check how well the computational
model represents experimental conditions. Among the important influences are solvent
and concentration effects, as well as finite temperature. Molecular vibrations, even at 0
K, can have a profound impact on optical rotations and should be considered whenever

Chemical
Formula

Determine
3D structure /

structures

Molecule
+

Environment

Calculate
Chiroptical
Response

ω
Δε

εLεR

Figure 21.3. Simple flow chart for computations of

chiroptical properties of a molecule. The calculations may

involve some or all of the following tasks: (1) Optimizing

structures, conformer search, molecular dynamics (MD), or

Monte Carlo (MC) simulations. (2) Modeling the

environment (e.g., solvent). (3) Computing electronic CD,

ORD for a selected set of molecules. (4) Averaging over

conformer distributions or MD /MC run(s). (5) Calculating

vibrational corrections (ORD) or vibronic coupling (CD).
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possible [61–64]. In calculations of ECD spectra, bandshapes are often modeled with an
empirical broadening when comparisons are made with experiment. However, it can be
feasible to calculate vibronic transitions explicitly from first principles, to some degree of
approximation [65–71], which takes some empiricism out of ECD spectra simulations.

HF theory is deprecated for computing electronic chiroptical properties because elec-
tron correlation is important for their accurate theoretical description. One may argue that
a well-parameterized semiempirical method can be preferable over HF. The latter has the
ab initio label but tends to yield spectra of poor quality. Correlated ab initio wavefunc-
tion methods can achieve excellent agreement with experiment. For smaller molecules it
is possible to perform correlated wavefunction-based ECD and ORD computations rou-
tinely, for instance with efficient variants of coupled cluster (CC) methods such as CC2
[72, 73] (an approximate CC singles-doubles) or CC with localized orbitals [74, 75].
Going beyond doubles in the cluster expansion appears to be too demanding at present
for routine applications, but might be required in selected cases [73]. Unfortunately, post-
HF wavefunction methods tend to scale rather unfavorably with the size of the system.
The scaling problem is exacerbated when trying to converge calculations with respect
to electron correlation effects—for example, in coupled-cluster SD–SDT–SDTQ, and
so on, hierarchies, because increasingly large one-particle basis sets or basis functions
that depend on the interelectronic distances are needed to describe the electron cusps
accurately.

Currently, most theoretical studies of chiroptical properties employ TDDFT, which
has a manageable scaling with system size and typically also has somewhat lower
demands on the basis set. TDDFT is an umbrella acronym for a large variety of different
levels of approximation. For a description of some of the approximations in TDDFT and
their potential detrimental impact on calculated ECD spectra and on optical rotation, the
reader is referred to reference 8. Among the more common problems are the asymptotic
behavior of the XC potential and self–interaction errors. Hybrid functionals with a large
fraction of HF exchange (50%) are often employed for calculations of electronic chirop-
tical properties, in part to balance these issues. In recent years, so-called range-separated
or long-range-corrected or Coulomb-attenuated functionals [76–78] have become popu-
lar. It appears that these functionals have fewer difficulties to treat charge-transfer (CT)
excitations than more commonly used functionals [79–81]. “Double–hybrid” functionals
that include a perturbative electron correlation term were introduced recently and have
also been shown to yield better CD band positions than standard nonhybrid and hybrid
functionals [82]. Regarding the adiabatic approximation introduced in Section 2.2, one of
its better known consequences is an inability of adiabatic XC kernels to describe simul-
taneous excitations of more than one electron. Because of the sometimes pronounced
effects from other approximations in the XC potential and kernel, along with basis set
truncation effects, it is somewhat unclear how strongly the adiabatic approximation in
comparison limits the ability to accurately predict ECD and ORD in the UV–vis range
of frequencies.

21.3. ECD AND ORD CALCULATIONS FOR ORGANIC MOLECULES

The literature on ab initio calculations of ECD and ORD of organic molecules is vast
and has been reviewed a number of times in recent years [8–11, 13, 18]. This section
is intended as a brief overview of the capabilities of contemporary theoretical meth-
ods to solve a wide array of problems with calculations of ECD and ORD. Regarding
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computational benchmark data, the emphasis is on TDDFT since correlated ab initio and
semiempirical wavefunction methods are discussed in other chapters. Solvent effects are
discussed in detail in other chapters as well. The reader is referred to these chapters and
references 18 and 8 for details and a review of recent literature.

21.3.1. ECD Spectra: Selected Examples

Among the first TDDFT calculations of electronic CD reported in the literature are those
for [n]–helicenes [83]. These molecules have fascinated researchers for a long time
and have also drawn significant efforts from theoreticians [84–86]. The spectra are in
some sense13 representative for the range and limitations of available first-principles
theory-based computational methods suitable for ECD spectra calculations of general
organic and inorganic molecules ranging in size from small to large. Good agreement
with experiment was obtained in Reference 83 with the BP86 nonhybrid functional and
the SV(P) Gaussian-type basis augmented with a set of diffuse functions at the ring
centers. The way the spectra were simulated is very typical for molecules of this size: The
vertical excitations were calculated, blue–shifted by 0.45 eV, and subsequently broadened
with Gaussian functions to mimic the experimental bandshapes. Figure 21.4 shows a
calculated CD spectrum of (M)-hexahelicene obtained by the author. A similar spectrum
was published in reference 87. These and other computed spectra from references 83 and
87 demonstrate the aforementioned good agreement between calculations and experiment
that can be obtained from first-principles computations as long as electron correlation
is considered to some degree. “Good” agreement with experiment has the following
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Figure 21.4. CD spectrum of (M)-hexahelicene. TDDFT calculations with the BP86 functional

and a double-ζ polarized Slater-type basis, using the code described in reference 87. Gaussian

broadening (σ = 0.15 eV) of the vertical excitations. Calculated excitation energies shifted by

+0.45 eV. Experimental data for the CD spectrum taken from reference 83.

13 The helicene chromophore is inherently chiral and the ECD is intense. Calculations on molecules where an
achiral chromophore is weakly perturbed by a nearby chiral center can be more challenging.
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meaning in this context: The main spectral features are correctly reproduced, and overall
the broadened vertical CD spectra simulated from the calculations match the experimental
spectra quite well after a global shift of the excitations which is often necessary, for
instance because of a tendency of TDDFT to underestimate excitation energies [49]. As
a general rule, intensities are difficult to reproduce correctly, and in the simulated spectra
they depend on the chosen broadening. Although the broadening parameters are ‘fudge
factors’ in these types of calculations there are physically reasonable limits for them, and
within these limits they usually cannot arbitrarily change the spectra. As a rule of thumb,
intensities tend to agree to within a factor of 2–5 between theory and experiment.

Charge-transfer excitations that often plague TDDFT computations are not a strong
concern for the spectrum of hexahelicene, and even the performance of a long established
gradient functional such as BP86 is very agreeable. For molecules with different types
of chromophores, it can be necessary to resort to shape corrected XC potentials, hybrids
without or with range separation in the exchange component, or to correlated wavefunc-
tion methods (if computationally affordable for the molecule of interest). Regarding the
performance of range-separated hybrid functionals, Shcherbin and Ruud [88] explored
the robustness of several parameterizations of the Coulomb-attenuated B3LYP functional
(CAM–B3LYP) [77] for chiroptical response calculations, with rotatory strengths as the
main focus. The test set comprised 14 molecules that had previously been benchmarked
for optical activity by a number of groups using TDDFT and CC [87, 89–92]. The cal-
culations showed that it is difficult to parameterize the CAM-B3LYP functional to yield
correct excitation energies and have the correct asymptotic behavior across a diverse set
of molecules, while simultaneously producing uniformly accurate results for the rotatory
strengths. See also a recent optical rotation benchmark where range-separated hybrids
did on average not give better agreement with experiment than standard hybrids [192].
In general there is no “one size fits all” type of functional to compute sensitive response
properties, and therefore researchers need to ascertain that the chosen functional and
basis set are capable of getting the important physics right.

For large molecules, locating and considering all thermally accessible conformers
in the calculations can become cumbersome. Missing a conformer can be an important
source of error when attempting to compare calculations with experiment. If different
conformers afford ECD bands of opposite signs and/or very different magnitude, this
can also lead to a deterioration of the computed results even if the electronic structure
method is, in principle, able to deliver an agreement with experiment such as shown in
Figure 21.4 or better. In the context of conformer averaging, the accuracy of the relative
energies of the conformers is of vital importance. For nonrigid molecules, depending on
the degree of cancellation of ECD strength, errors in the calculated mole fractions can
be just as influential as those in the calculated CD. Such issues have been discussed in
more detail in many applications of computational methods to calculate ECD and OR of
flexible molecules; for a selection see references 17 and 93–100.

An ECD example from natural product chemistry is shown in Figure 21.5. One way
of bypassing the problem of conformer distributions in solution is to record a spectrum
in a solid-state matrix. In this case, computations may focus on a single structure [13,
102–104]. Figure 21.5 shows the computed, solid-state, and solution-phase CD of
(5S,6S,10aR) Blennolide A. The agreement of the computed CD spectrum with exper-
iment is seen to be reasonable both for the solid-state (KCl disc) and the solution-phase
(dichloromethane) spectrum. Among other cases where a combination of solid-state CD
and computations was used to assign an absolute configurations are globosuxanthone
A [105], papyracillic acids [106], ascochin and ascodiketone [107], massarilactones
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[108], 2,3-dihydropyrenophorolic acid and 2,3,10,11-tetrahydropyrenophorol [109],
oxepino[2,3-b]chromones, 20-acetylsinularolide B [110], fusidilactone D [111],
blennolide G [110], tetracyanobutadienes [112], and macropodumines [113].

21.3.2. Single-Wavelength Optical Rotation Calculations

Single-wavelength calculations of OR have demonstrated great utility for routine assign-
ments of absolute configurations (ACs) of organic molecules [12, 15, 16, 18]. However,
since all calculations have inherent systematic errors, and because the computational
model typically strongly oversimplifies the conditions under which experimental data are
obtained, AC assignments need to take the computational error bars into consideration.
Stephens et al. [16] pointed out that for a reasonably safe AC assignment within the
95% confidence interval the computed specific rotation of the correct enantiomer should
be within ±2σ from the experimentally measured value and simultaneously the calcu-
lated OR for the other enantiomer has to be outside of the ±2σ interval. Here, σ is the
RMS deviation of the calculated OR from experiment for a given level of theory. If the
molecule has multiple conformers, or more than one stereocenter, the criteria should be
even more strict.

The simplest and most commonly used computational model is to ignore solvent
effects and to neglect vibrational corrections. Stephens et al. determined for B3LYP/aug-
cc–pVDZ//B3LYP/6-31G(d) gas-phase GIAO TDDFT computations a value for 2σ of
about 58 deg/[dm (g/cm−3)], meaning that reasonably safe AC assignments can be made
with this computational model if [α]D has roughly this magnitude or higher [16, 89].
The value for σ was determined with a benchmark set of 65 chiral rigid molecules with
relatively small specific rotations not exceeding 100 deg/[dm (g/cm−3)]. The selection
of molecules included 17 alkanes, 16 alkenes, 19 ketones, and 13 heterocycles. The
calculated and experimental ORs did not agree in sign for eight of the 65 molecules.
Subsequently, McCann and Stephens [114] computed ORs and ECD spectra of 26 con-
formationally rigid alkenes with [α]D up to ±500 deg/[dm (g/cm3)], along with two
conformationally flexible alkenes. The RMS deviation between the calculations and
experiment was found to be 29 deg/[dm (g/cm−3)] (2σ = 58), consistent with the RMS
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error from reference 16. The calculated ECD spectra were considered to be of “modestly
good to poor” quality.

Although B3LYP remains a popular functional, it is likely that currently accepted
(and expected) error bars of single-wavelength OR calculations will be refined in the near
future, based on calculations with better performing functionals or reasonably fast corre-
lated wavefunction methods. In order to yield significantly smaller RMS deviations, the
computational model is likely going to require solvent effects and temperature-dependent
vibrational corrections [61, 63, 115], although errors in the gas-phase static equilibrium
value might remain a dominant source of error [116]. For small-cage bicyclic structures
that are abundant in commonly used benchmark sets the basis set, convergence is perhaps
slower than previously suspected [117].

As a consequence of the SOS nature of OR, Eq. (21.3), the accuracy of OR calcula-
tions is indirectly influenced by the accuracy of the rotatory strengths and the associated
electronic transition energies in the ECD spectrum. A way to reduce errors from shifts in
the computed excitation energies can be to apply wavelength corrections and to calculate
the optical rotation from a SOS [118]. Wavelength corrections have also been discussed in
reference 119 in a concerted OR & ECD study of [32](1,4)barrelenophanedicarbonitrile. It
might be possible to include a wavelength correction in the linear response equations for
β, to be supplied as an empirical parameter in the computations. If the OR is calculated
from a sum over states one needs to keep in mind that the SOS equation for OR converges
extremely slowly as a function of how many excitations are included [98, 120, 121].

Optical rotations have been computed for helicenes [90, 91]. The transitions in the
UV–vis range calculated from TDDFT are too low in energy compared to experiment,
as pointed out in Section 21.3.1. Given that the energy denominators in the SOS of
the optical rotation parameter decrease if the spectrum is red-shifted, and given that the
available computed spectra agree reasonably well with experiment for the CD intensities,
one may expect an overestimation of the OR magnitude in TDDFT computations, which
is indeed what has been found. As an example, for (M)-hexahelicene a BP86 value
from reference 91 is −5259 deg/[dm (g/cm−3)], compared to an experimental specific
rotation of −3640. A hybrid functional (B3LYP) result of −4887 deg/[dm (g/cm−3)]
obtained by Grimme agrees somewhat better with experiment, although it is still too
large in magnitude [90]. Similar trends have been reported for other [n]-helicenes as
well [90, 91]. We recently obtained excellent agreement with the experimental OR of
hexahelicene [122] using the BHLYP functional, which has a larger (50%) fraction of
HF exchange than B3LYP (20%). However, the trend of TDDFT to underestimate the
energies of certain types of excitations that are typically present in organic molecules
does not lead to a uniform tendency to overestimate OR magnitudes, as evidenced by the
more or less statistical errors reported in several benchmark studies where diverse test
sets of molecules were considered [16, 89–91, 114]. For response property calculations,
it appears that functionals such as BHLYP with an elevated fraction of HF exchange tend
to perform better than B3LYP or nonhybrid functionals, but not to a degree that would
allow to make a recommendation for their “black box” use. Likewise, range-separated
hybrids do not cure all TDDFT problems, as already mentioned above in the context of
ECD spectra.

Norbornenone has gained some notoriety for its large optical rotation that seems to be
particularly sensitive to approximations in the computational model. The specific rotation
in solution (hexane) is −1146 deg/[dm (g/cm−3)] [123]. Moscowitz [124] considered the
twisted arrangement of the C O and C C bonds an inherently chiral chromophore. The
electronic coupling between the two double-bond moieties is very important; the related
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molecules norbornanone and α-pinene with either a C O or a C C chromophore
have small specific rotations (within ±50 deg). The OR depends particularly sensitively
on the O C-C C dihedral angle, as was shown by computations [120]. Hybrid DFT
calculations (B3LYP/aug-cc-pVDZ) using an optimized geometry yield a specific rotation
that is very close to experiment [89, 94]. However, CC theory gives a much smaller
magnitude of the optical rotation [94]. Nonhybrid DFT strongly overestimates the OR
magnitude [91].

21.3.3. Optical Rotatory Dispersion

Instead of considering the optical rotation at a single frequency, configurational assign-
ments can be bolstered by considering the ORD over a larger frequency range. One may
conceptually separate the “normal” dispersion of the OR in the off-resonance (transpar-
ent frequency) regime from the “anomalous” dispersion around electronic transitions. See
Figure 21.2 for a qualitative illustration.

An example for a successful calculation of ORD in the transparent frequency range
is the case of (P)-(+)-[4]triangulane [75, 125]. Experimentally, the specific rotation in
the neat state ranges from around 200 deg/[dm (g/cm−3)] at 589.3 nm to over 600
deg/[dm (g/cm−3)] at 365 nm. Coupled-cluster (CC) and TDDFT methods were compared
in reference 75. Both methods yielded ORs that agreed well with experiment, with
CC performing being somewhat better (assuming negligible vibrational corrections and
medium effects). It was noted, however, that the CC calculations required a large amount
of computer time.

As an example for a concerted computational and experimental study of flexible
molecules, Wiberg et al. [126] have considered the ORD of 2,3-hexadiene and 2,3-
pentadiene. The ORD of 2,3-hexadiene was experimentally measured in gas phase, in
neat liquid, and in a number of different solvents, demonstrating sizable differences
between the gas-phase and condensed-phase optical activity. The rotation of the ethyl
group as shown in Figure 21.6 gave rise to three conformers of 2,3-hexadiene labeled
cis , gauche(+), and gauche(−).
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Figure 21.6 shows the calculated Boltzmann-averaged nonresonant ORD of 2,3-
hexadiene along with experimentally measured optical rotations for selected wavelengths
for liquid and gas phase, as reported by Wiberg et al. [126]. The computations agree
well with the gas-phase measurements, in particular for the CCSD level of theory. The
computations also highlight the potential importance of solvent effects, which contribute
to the RMS deviations between theory and experiment discussed in the previous section.

Some molecules exhibit a bisignate nonresonant ORD, which can be caused by
different influences; among those are vibrational effects. A bisignate ORD can also
be caused by the intrinsic electronic optical activity of the molecule, as illustrated in
Figure 21.2, via a competition of low-frequency and higher-frequency transitions with
rotatory strengths of different signs and magnitudes. A selection of small molecules with
bisignate nonresonant ORD for which computations have been performed is β –pinene
[118, 127], spiroselenurane [118, 128], methyloxirane [118], dimethyloxirane [8] and
trans-dimethylcyclopropane [91, 129].

For absolute configuration assignments based on resonant ORD, it can be sufficient
if the calculations reproduce the ORD sign pattern as a function of wavelength [48,
118, 130]. As an example, Giorgio et al. [130] have measured and computed the ORD of
nine rigid organic molecules [(−)-verbenone, (−)-4-methylverbenene, (−)-fenchone, (−)-
methylenefenchone, (+)-camphor, (−)-methylenecamphor, (+)-nopinone, (−)-β-pinene,
and (−)-Tröger’s base]. The computations employed Hartree–Fock and DFT (B3LYP),
along with the rather small 6-31G(d) Gaussian-type basis set. The sign patterns of the
calculated ORDs matched the experimental ones, prompting the authors to conclude that
such calculations are suitable for AC assignments as long as the ORD includes resonant
frequencies. Since the OR is generally sensitive to the quality of the basis set, it is
presently unclear if such a “small basis but more data points” approach can be applied
more routinely.

One of the drawbacks of the calculations of reference 130 has been that no excited
states damping was considered in the calculations. The divergent ORD (see Figure 21.1)
makes a direct comparison with experiment difficult. It was later shown that computations
employing damping in the linear response calculations allow for a direct comparison with
experimental resonant ORD [129]. For the study reported in reference 129, five organic
molecules were selected from reference 130 (verbenone, fenchone, camphor, nopinone,
Tröger’s base), another was selected from reference 91 (dimethyl-cyclopropane [131]),
and as an example for a transition metal complex the tris-bidentate [Co(en)3]3+ complex
ion was chosen [see the section on metal complexes (Section 21.4) regarding the latter].
Some authors refer to the damping method as the complex polarization propagator, or
as complex linear response, since the calculations yield bot the real and the imaginary
part of the OR parameter at a given frequency. Employing a global empirical damping
factor γ yields OR parameters that conceptually correspond to letting each �j = γ in
Eqs. (21.7) and (21.8). The ORD calculated in this way with damping corresponds to
the Kramers–Kronig transformation of the ECD broadened with Lorentzian functions,
which was explicitly demonstrated in reference 121. The dampened ORD curves
reported in reference 129 matched the experimental trends and the magnitudes of the
peaks and troughs of the ORD quite well in the 200- to 600-nm range—except for
Tröger’s base, for which agreement was somewhat worse. As an example for these
calculations, the calculated ORD of fenchone is compared to experimental data in
Figure 21.7.

Two drawbacks of the method to calculate damped resonant ORD were subsequently
addressed in reference 59. One drawback is that one needs to compute the ORD at a
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relatively large number of frequency points in the resonance region in order to obtain
a well-resolved rotatory dispersion curve. The other drawback is that the damping tech-
nique causes an intrinsic Lorentzian lineshape, although typically a Gaussian lineshape
would be more realistic [132]. Both issues can be addressed by realizing that rapid
oscillations of the ORD are caused by transitions nearby in frequency and that these
oscillations are well described by simply performing a KK transformation of the ECD
bands corresponding to these nearby transitions. However, the complete ORD includes
contributions from all other excitations as well, creating a kind of “baseline” on which
the anomalous dispersion is superimposed. One can combine calculations of the ORD at a
few ‘anchor’ frequency points with calculations of the ECD spectrum over the frequency
region of interest in form of so–called subtractive KK transformations [59, 133]. With
such transformations, the rapid oscillations in the UV–vis range ORD are obtained from
the KK transformation of the UV–vis range ECD spectrum while the calculated anchor
points β(ωi ) eliminate errors from not including the complete spectrum. If the ECD is
broadened with Lorentzian functions first, one can use the subtractive transformations in
a two-step forward–backward fashion to create ORD curves related to Gaussian or other
lineshapes [59].

In reference 59 it was found that N − 1 KK transformations with two anchor points,
chained together over a set of N anchors like a splines fit, performed better than a
straightforward application of a single N anchor point transformation. We have dubbed
this technique a “chained doubly subtractive Kramers–Kronig” (CDKK) transformation.
Figure 21.7 shows a 7-point CDKK (line) that agrees almost perfectly with the ORD
calculated on 25 frequency points. The computational time savings were about a factor
of 3 in this case since the calculation of a few excitation frequencies is comparable to
calculating the ORD for one frequency. The computing effort for the KK transformations
is negligible. The subtractive KK technique was also applied with just two anchor points
to the [4] triangulane system of reference 75 discussed above, indicating that it can
significantly save computational resources for larger systems and in combination with
computationally expensive correlated wavefunction-based linear response methods.
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21.3.4. Effects from Molecular Vibrations on Optical Rotation
and ECD Spectra

Vibrational effects can play an important role in the chiroptical response of a molecule
[61, 118, 134]. On the extreme end, if a molecule becomes chiral by isotopic substi-
tution, vibrational corrections would be essential. In less extreme cases, the OR might
exhibit pronounced zero-point vibraional corrections (ZPVCs) and temperature effects
that are not simply explained by changes in mole fractions (if the molecule has multiple
conformers) or by temperature-dependent solvent effects.

Vibrational corrections to calculated ORs have been investigated for a number of
small molecules at various levels of theory [73, 116, 134–136]. Regarding the over-
all expected magnitude of zero-point vibrational corrections (ZPVCs) for optical rota-
tions, Mort and Autschbach [61] have considered a set of 22 rigid organic molecules
(B3LYP/aug-cc-pVDZ). The individual ZPVCs varied between 2% and 155%, with a
median of about 20% relative to the calculated equilibrium optical rotation. The average
agreement of computed and experimental data did not improve when including vibrational
corrections. One reason might be that solvent effects need to be considered simultane-
ously. Another reason might be the performance of B3LYP for the equilibrium ORs.
Pedersen et al. [116] recently proposed to combine TDDFT vibrational corrections with
CC equilibrium optical rotations in order to obtain more accurate results. Another issue
is the basis set convergence, which was already pointed out.

The data set needed to generate ZPVCs of optical rotations can also be used to predict
temperature effects as far as the temperature-dependent population of vibrational excited
states is concerned [62, 63, 73]. Following an initial report for fenchone [62], in refer-
ence 63 the temperature-dependent ORs of α-pinene, β-pinene, cis-pinane, camphene,
camphor, and fenchone were calculated with TDDFT (B3LYP/aug-cc-pVDZ). The study
was motivated by the availability of experimental data for these molecules and previous
speculation that the observed T -dependence originated in vibrational effects [137].

For four out of the six compounds the temperature dependence seen experimentally
was reproduced. A selection of the results at one of the wavelengths considered is shown
in Figure 21.8. The experimental trends are reproduced by the calculations excellently
to moderately well, demonstrating that the observed T -dependence for these molecules
might indeed be dominated by vibrational effects. The temperature trends calculated for
β-pinene and cis-pinane were opposite to the experimental trends. These cases were ana-
lyzed further by considering low-lying excitations in their ECD spectra, but the analysis
was inconclusive. It is presently unclear if the disagreement between theory and experi-
ment for these molecules is caused by basis set incompleteness or by deficiencies in the
functionals or whether the temperature-dependence of the OR for these molecules is not
dominated purely by vibrational effects.

A recurring problem in calculations of vibrational averages is the treatment of hin-
dered rotations, in particular of methyl rotations. In reference 64 a computational protocol
for treatment of such hindered rotations has been suggested. In a nutshell, in this approach
a quasi-free rotation of a functional group is treated separately from the vibrational aver-
age, using numerically calculated hindered-rotor wavefunctions. When there is strong
coupling between the modes, the rotation cannot be cleanly separated. The validity of
the rotational separation can be tested by comparing rotational averages calculated with
relaxed and unrelaxed potentials. Large differences indicate strong coupling. To calculate
the relaxed potentials, the molecular coordinates are optimized for each rotational angle,
except along the rotational coordinate.
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Vibrational effects are also encountered when considering the lineshapes and
vibrational fine structure of ECD spectra. Typically, when ECD spectra are simulated,
the computed “stick spectra” corresponding to vertical electronic transitions are
broadened with Gaussian or sometimes with Lorentzian functions. Bandshapes and
widths in electronic spectra resulting from vibronic fine structure can also be computed
directly [65, 68–71, 138–140]. In these approaches, an empirical broadening is still
applied, but to the individual vibronic transitions. The shape and width of the complete
electronic CD band is then determined nonempirically by the computed distribution and
the computed intensities of the vibronic transitions. One should keep in mind that there
are other broadening mechanisms and that the presence of solvent, for instance, may
need particular consideration.

Several studies have considered vibronic effects in ECD spectra at a first-principles
level. Promising results were obtained for trans-(2,3)-dimethyloxirane [68] by computing
Franck–Condon (FC) factors within TDDFT. The ECD spectrum for this molecule is
shown in Figure 21.9 in comparison with experiment. The experimental gas-phase spec-
trum displays well-resolved vibronic fine structure, which is for the most part reproduced
in the simulated spectrum. An empirically broadened vertical spectrum has negative CD
intensity between 7.5 and 8 eV, which does not agree with experiment [87], unlike
the spectrum of Figure 21.9. A follow–up study by Nooijen [138] has focused on the
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intensity differences in the computed and experimental spectrum at higher energy. Lin
et al. [70] have applied a methodology reported by Santoro et al. [139] to calculate
the vibronic fine structure in the CD spectrum of (R)-(+)-3-methylcyclopentanone and
obtained a convincing agreement between simulation and experiment. Figure 21.9 shows
another example applying the method of Santoro et al.: the absorption and ECD spectrum
for the lowest energy excitation of d -camphorquinone. The example has been taken from
a recent TDDFT study of this molecule and (S , S )-trans-β-hydrindanone which had the
aim of modeling their circular polarized emission (CPL) spectra [69]. As can be seen, the
predicted absorption and ECD bandshapes and band widths agree well with experiment.
The calculated absorption intensity appears to lack some intensity, but the deviation
from experiment is within typical boundaries. For the carbonyl centered valence transi-
tion underlying the spectra of Figure 21.9, basis set effects and the functional dependence
were demonstrated to be relatively modest. The CPL and emission spectra (not shown)
agreed similarly well with experiment as the ECD and absorption spectra.

21.3.5. Chiral Sectors in Molecules from an Ab Initio Perspective

Chiral-response “sector maps” computed from first principles were recently used to
describe ECD and OR induced by small perturbations in nonchiral chromophores
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[98, 143, 144]. The computation of such sector maps has been inspired by the sector
rules for ketones that are well known to chemists [44, 124, 145–147]. The first-principles
theory-derived maps can be constructed by creating a grid around the chromophore of
interest and by scanning the chiroptical response induced in the chromophore by a point
charge or another perturbing entity on each grid point. The ECD and OR computations
are based on first-principles methods. However, one needs to keep in mind that the
maps are simplified models for the corresponding chromophores in chiral molecules
because the nature of the perturbation is highly idealized. An example is the OR induced
by a perturbing charge around a carboxylate functional group, which is a common
chromophore in chiral organic molecules. In Figure 21.10 both a three–dimensional
scan of the chiral sectors and a contour map are shown.

The sign pattern around the C—O bonds resembles those of the ketone sectors, with
the carboxylate map resembling somewhat of an overlay of two C O sector maps at
a 120◦ angle. A model for such a chromophore has been considered by Jorgensen in
1971 [148] to rationalize the pH dependence of the optical rotation of amino acids (see
below for further details). Sector rules for other chromophores of interest can easily be
constructed from such computed maps.

An example for an application of computed sector maps is the OR of phenylalanine
[143]. Sector maps for the phenyl chromophore (benzene) were computed for the molar
rotation and for the ECD of selected transitions. The findings of reference 143 were in
agreement with a revision of the benzene sector rule by Pescitelli et al., who investigated
a set of chiral molecules with phenyl substituents ( PhCH(Me)R, with R = Et, nPr, i Pr,
and t Bu) [149].

Sector maps have recently helped to uncover the reasons why the optical rotation
of natural amino acids in aqueous solution becomes more positive upon adding a strong
acid. This interesting effect has been described quite some time ago by Clough, Lutz, and
Jirgensons [150–152] (CLJ). TDDFT computations [98] (BHLYP and B3LYP, aug-cc-
pVDZ basis set) have been carried out for a number of amino acids which demonstrated
that the molecular origin of the CLJ effect can be traced back to a sign change of the CD
of the lowest-lying excitation in the carboxylic acid functional group upon protonation.
Sector maps computed for an achiral glycine model were used to rationalize this trend.
The glycine optical rotation sectors are shown in Figure 21.11. They are seen to be

Formate (–0.1)-point charge  Molar Rotation sectors

Figure 21.10. Optical rotation induced

in the–COO− chromophore by a point

charge (B3LYP/aug-cc-pVDZ, formate

model, arbitrary units). Left: Contour

map 1.3 Å above the molecular plane.

Right: 3D Isosurfaces. Arbitrary units.

Darker shaded isosurfaces and contours

indicate negative induced optical

rotation.
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Figure 21.11. Molar rotation sectors for glycine, obtained with perturbing point charges of −0.1

and +0.3 for the deprotonated and protonated carboxylic acid groups, respectively (BHLYP/aug-

cc-pvDZ). The scan was performed 1.3 Å above the chromophore plane. White areas indicate

an induced positive optical rotation, gray areas indicate negative optical rotation. The circles

indicate the approximate position of the link atom for the amino acid side chain. See reference

98 for further details.

strongly distorted compared to that of a carboxylate group in the absence of the α-amino
substituent (Figure 21.10) which renders the application of an overlapping carbonyl model
invalid. Moreover, the calculations showed that the sector model is only applicable if
the perturbing charge changes sign from negative to positive upon protonation at the
carboxylate group. In reference 98 this “antioctant” behavior was rationalized by the
overall positive charge of the protonated species, causing the side chain to compete for
electronic charge with the amino acid chromophore.

The CLJ effect can be generalized to other α-substituted chiral carboxylic acids
[144]. A combination of computed OR, ECD, and sector maps (BHLYP/aug-cc-pVDZ)
for hydroxo and fluoro acids indicated that the physical origin of the generalized CLJ
effect is the same as for amino acids. This links the absolute configuration directly to the
sign of the generalized CLJ effect. For conformationally flexible molecules with small
optical rotations, the presence of a CLJ-type effect can potentially improve the reliability
of computation-aided assignments of absolute configurations, at the cost of additional
computations needed to compare protonated and deprotonated species.

21.4. METAL COMPLEXES AND METAL CLUSTERS

Chiral metal complexes have for a long time resisted a theoretical treatment by first-
principles methods, mainly because of the relatively large number of electrons present
in even the smallest members of this class of compounds. Semiempirical computational
studies of ECD in metal complexes dating back up to several decades have been reviewed
by Kuroda and Saito [25]; see also references 153–155. This section focuses on more
recent theoretical work carried out with TDDFT.

A number of studies have aimed at developing a better understanding of the origin of
optical activity in the various types of transitions that may take place in a transition metal
complex, such as ligand-field (LF) transitions involving mainly d orbitals, ligand-to-metal
and metal-to-ligand charge transfer (LMCT, MLCT), and predominantly ligand-based
transitions such as π -to-π∗ in complexes with phen, bipy, and other unsaturated ligands,
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which may afford intense exciton coupling CD bands. Other theoretical works have
focused more closely on the performance of TDDFT, in particular how some of the better
known issues such as self-interaction errors and the difficulties of standard functionals
to treat CT excitations affect calculated CD spectra. At the time of writing this chapter,
there has been only a small body of data available for OR/ORD for metal complexes
calculated from first principles. Much of the discussion in this section therefore focuses
on ECD spectra.

21.4.1. Representative Examples and Benchmark Computations

Figure 21.12 shows three representative cases where simulated CD spectra (Gaussian
broadened vertical excitations) of transition metal complexes are compared to experiment.
The complexes have D3 symmetry, with electrically and magnetically allowed transitions
between the A1 ground state and excited states of A2 and E symmetry. As it is the case
for two of the spectra in Figure 21.12, global shifts of calculated excitation energies are
often applied to align band peaks with experiment, both for organic molecules and for
metal complexes. For the Co ethylene diamine complex, only part of the spectrum is
shifted.
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Parts of the spectra are magnified.
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The spectrum of the tris(ethylenediamine)–cobalt(III) complex ion, [Co(en)3]3+, is
comparatively simple. There is a range of weakly intense LF transitions (T1g in Oh parent
symmetry, split into A1 and E components under D3 symmetry) below 35 × 103cm−1,
followed by a set of more intense LMCT excitations. The TDDFT-based assignment is
in agreement with the assignment based on experimental observations [25, 156]. The
sign and ordering of the A1/E pairs of excitations for a given absolute configuration
depend on the geometric distortion of the ligand atoms relative to an idealized octahedral
system [160], which is discussed in detail in Section 4.2. The LF excitations are relatively
pure HOMO to LUMO transitions when calculated with TDDFT. The orbital diagram
for [Co(en)3]3+ shows that the energy splitting between A1 and E has a corresponding
splitting of the t2g HOMO levels into a1 and e components of different energy upon
distortion of the ligand field from achiral Oh to chiral D3. The experimental spectrum
of [Co(en)3]3+ [25] affords two additional very weak bands around 13 to 18 × 103

cm−1 assigned to triplet states that were not modeled. Reference 156 reported the lowest
calculated triplet state of [Co(en)3]3+ to be 4 × 103cm−1 below the S1 state, in decent
agreement with the experimental spectral data. Apart from the excitation energies, the
intensities and of course in particular the signs of the rotatory strengths are of critical
importance and are seen to be reasonably well predicted by the computations. Other
Co(III) complexes studied in reference 156 and follow-up work [161, 162] showed similar
agreement with experiment as [Co(en)3]3+.

For tris(acetylacetonato)-cobalt(III), [Co(acac)3], the agreement with experiment is
overall better than that for [Co(en)3]3+. The spectrum of the acac complex is more
complex since the experimentally accessible part of the spectrum also includes ligand-
based transitions, and the metal and ligand atoms have π interactions that contribute to the
spectrum [163]. The first two CD bands have weak intensity and are pure LF transitions.
The remainder of the spectrum cannot be cleanly separated into LMCT and ligand π -
to-π∗. However, the analysis of the calculated spectra showed that the range from 20
to 34 × 103 cm−1 is dominated by LMCT excitations with additional contributions from
MLCT, and the range above 40 × 103 cm−1 is dominated by ligand π -to-π∗ transitions
(yielding the intense exciton coupling CD) with additional contributions from MLCT and
LMCT [156, 163].

The spectrum of tris(phenantroline)-osmium(II), [Os(phen)3]2+, has been assigned
with the help of TDDFT calculations in reference 157. Figure 21.12 shows that the
agreement with experiment is remarkably good. The intense CD bands around 35 to
40 × 103 cm−1 originate from a “helical” coupling of the long axis polarized π -to-π∗
transitions of the phen ligands (see Section 21.4.2 for details). In the lower-energy portion
of the spectrum, the most intense transition are of MLCT character, including the lowest-
energy HOMO–LUMO metal-d to ligand π∗ transition. The LF transitions have weak
intensity and do not contribute significantly to the CD intensity.

An issue that has been noted occasionally is the sometimes too covalent metal–ligand
bonding obtained in DFT calculations [164] that, along with self-interaction errors in the
XC potential and kernel [157], may lead to overestimated frequencies for LF transitions
and underestimated LMCT frequencies in TDDFT calculations. The 3d shell in first row
transition metals appears to be notoriously difficult to treat with DFT/TDDFT, a fact
that has also been pointed out in theoretical work on NMR parameters and electric field
gradients of 3d metals [165, 166]. As an example, the LF transitions of [Co(en)3]3+
in Figure 21.12 had to be red-shifted by 6 × 103 cm−1 or 0.7 eV in order to match the
experimental band peaks. This is a large error and is outside of what is typically expected
for valence excitations calculated with TDDFT (unless charge-transfer excitations are of
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Figure 21.13. CD spectra of �-[Co(en)3]3+

and �-[Rh(en)3]3+ (ob3-conformers)

calculated with nonhybrid TDDFT. Excitations

not shifted. Data to prepare the figures were

taken from reference 156. See also

Figure 21.12.

concern, depending on the functional). Other CoIII complexes for which calculated spectra
were reported in reference 156 afforded similar overestimations for the LF excitation
frequencies, ranging from 2 to 8 × 10−3 cm−1.

Heavier metals appear to be somewhat less prone to cause problems in calculations,
as far as approximations in the functional are concerned. This point is highlighted by
Figure 21.13 where unshifted CD spectra for the LF transitions of �-[Co(en)3]3+ and its
rhodium analog, �-[Rh(en)3]3+, are compared to experiment. The results are represen-
tative for other Co(III) and Rh(III) complexes [156, 161, 162, 167]. The LF transition
frequencies are more strongly overestimated in the Co complex.

Another illustrative case is the CD spectrum of tris(phenantroline)-iron(II),
[Fe(phen)3]2+ [157], as illustrated in Figure 21.14. TDDFT computations with different
functionals have no difficulties with reproducing the intense exciton CD bands around
35 to 40 × 10−3 cm−1 —although the calculated intensities vary by about a factor of
two, depending on whether a nonhybrid or a hybrid functional is used. Similar results
were reported for [Ru(phen)3]2+ and [Os(phen)3]2+. Calculations on a (phen)3 ligand
system with a ghost atom in place of the metal showed that the metal orbitals do not
play an important role in the exciton CD bands [157]. The main source for the intense
CD in the ligand π -to-π∗ energy range is a through-space electrostatic coupling of the
ligand π -to-π∗ excitons. The lower energy range of the CD spectra, dominated by CT
and ligand-field excitations involving the metal d orbitals, is modeled well by TDDFT
for the Os and Ru complex. The situation is somewhat different for the low-energy
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in reference 157. Note that the spectra are

magnified below 33 × 103 cm−1.

region of the [Fe(phen)3]2+ spectrum [157]. Figure 21.14 demonstrates that both the
B3LYP//BP and BP//B3LYP combinations for spectrum//geometry yield an acceptable
sign pattern whereas the BP//BP and B3LYP//B3LYP combinations do not.14 In such
calculations, it is always advisable to compare different classes of functionals (e.g.,
nonhybrid versus hybrid versus range separated hybrid) in order to ensure that the
calculated spectra are not very sensitive to approximations in the electronic structure
calculations or to small changes in the geometry. For the Fe complex, additional
calculations performed with local HF potentials and other functional combinations
indicated that DFT self-interaction errors might be causing problems with calculating
the frequencies of transitions involving d orbitals accurately [157].

Many of the currently most popular functionals (example: B3LYP) were developed
before the year 2000. Thus, an extensive review from 2004 by Rosa et al. [168] dealing
with the performance of TDDFT for excitation spectra of metal complexes remains a
valuable guidance on the subject. For more recent reviews see also references 29, 169,
and 170. Rosa et al. were not able to identify a single functional or class of functionals

14 The calculations were performed with two different TDDFT programs. Some of the differences in the spectra,
deemed to be minor, are due to differences in the types of basis sets that were employed.
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that was clearly superior in a broader range of applications to metal complexes, although
it appeared that asymptotically corrected XC potentials offered clear improvements over
standard nonhybrid functionals. It is likely that similar improvements will be found
for range-separated functionals versus standard hybrids. Rosa et al. further pointed out
that TDDFT often does not have problems with describing transitions that are formally
classified as MLCT or LMCT because not much charge is actually transferred and the
metal d -shell populations remain fairly constant [168]. Diagnostic tools are available to
identify cases where charge transfer might be a problem [81].

Solvent effects on the ECD spectra of metal complexes can be noticeable. For group
8 (phen)3 complexes 157 they were found to be much less pronounced than some of the
solvent effects on LMCT band calculated for some Co(III) complexes with +3 overall
charge such as [Co(en)3]3+ and [Co(tn)3]3+ [156]. The solvent effects in references 156
and 157 were modeled by a continuum model (COSMO). Jensen et al. revisited solvent
effects on the CD spectrum of [Co(en)3]3+ [171], using a combination of force-field
molecular-dynamics simulations with discrete solvent molecules treated by a discrete
reaction field (DRF) model and TDDFT calculations coupled with DRF. The solvent
effects were overall very similar to those obtained from the COSMO continuum model in
static computations. Some degree of solvent broadening of the LMCT bands was obtained
in the DRF computations due to the underlying molecular dynamics, but the excitations
had to be further broadened empirically in order to match the experimental band widths,
indicating that solvent broadening is not the main mechanism that determines the CD
band widths for this system.

Most of the available benchmarks and assignments of CD spectra of metal complexes
are concerned with closed-shell systems. A smaller number of computational studies on
metal complexes with unpaired electrons are also available. For TDDFT applications, a
complication is that in the Kohn–Sham approach the noninteracting reference system is
assumed to have a single determinant wavefunction. This creates issues with spatially
degenerate ground states. Fan et al. [172] have investigated the CD of high-spin trigonal
dihedral Cr(III) complexes. Two examples are shown in Figure 21.15. A spin-unrestricted
TDDFT method to compute the CD spectra was implemented. The spectra were compared
to structurally related closed-shell Co(III) complexes (see Figure 21.12). Similar shifts of
the excitation energies for Co(III) and Cr(III) had to be applied to match the spectra with
experiment. The d orbitals of Cr(III) are spatially more extended than those of Co(III).
A consequence of this is a larger ligand field splitting in the Cr complexes, resulting in a
blue shift of the LF and LMCT transitions for Cr relative to Co. For some of the ligands
the spectral trends were similar between Co and Cr, for instance with [M(thiox)3]3−, but
not so similar for the acac and oxalate complexes. TDDFT computations of CD spectra
of metal complexes with unpaired electrons have, for example, also been reported in
reference 173 ([CoII(bipy)3]2+) and in reference 174 (bis(biuretato) spin triplet cobalt
complexes).

Applications of first-principles quantum chemical methods to calculate ECD spectra
of quite large and structurally complex metal systems shows that these methods are mature
and demonstrate their usefulness in a wide range of scientific areas. For example, Cough-
lin et al. [175] have synthesized neutral iridium(III) luminophores and characterized them
by CPL and ECD. TDDFT calculations of ECD were performed for (MeOmppy)2Ir(acac)
at the B3LYP/LANL2DZ level of theory. The comparison of simulated and experimental
spectra was favorable, predicting the structure to be a � configuration. To support the
assignment, calculations were also performed on fac-�-Ir(pppy)3 with a known struc-
ture (pppy = phenylpinenopyridine). In another study [176], Coughlin et al. considered
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spectra for two high spin Cr(III) complexes. Data

to prepare the figures were taken from

reference 172. Excitations below/above 40 × 103

cm−1 shifted by ∓6 × 103 cm−1 for [Cr(en)3]3+.

Exp. spectrum magnified by a factor of 2.

Global shift of −5 × 103 cm−1 for [Cr(acac)3].

Spectra for the analogous Co(III) complexes are

shown in Figure 21.12.

UV–vis and CD spectra of Fe, Ru, and Zn complexed with a large enantiopure hemicage
ligand. The TDDFT computed excitation energies and intensities agreed well with exper-
imental data, allowing us to assign the configuration around the metal center. An example
related to the development of molecular wires is the absolute configuration of the nickel
metal complex Ni3[(C5H5N2)]4Cl2 [177]. The absolute configuration was determined
by comparing experimental and calculated ORD and ECD (BHLYP/LANL2DZ) as well
as vibrational circular dichroism spectra. Each method indicated the same (P)-helical
structure for the enantiomer with a negative specific rotation at 589.3 nm. Kobyashi et
al. investigated the CD spectra of a chiral oxovanadium(IV) phthalocyanine complexes
[178]. The most intense bands of a simulated CD spectrum for a model complex, based
on TDDFT calculations, were in agreement with experiment, yielding a configurational
assignment as right-handed. An analogous silicon phthalocyanine was studied as well.
The calculations indicated that a lack of Q bands for the Si system is caused by a
cancellation of rotatory strengths of opposite signs in low-energy conformers.

Tunable chiroptical properties of helicene derivatives containing metal centers have
been investigated by Crassous, Autschbach, Reau et al. [122, 179, 180]. For instance,
organometallic helicene structures incorporating metals such as Pt and Ir have been pre-
pared in enantiopure form, and their crystal structures have been determined [179]. For
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the Pt-helicenes TDDFT (BHLYP), computations of ECD spectra and molar rotations
were carried out with the intent to quantify the involvement of the metal orbitals in the
optical activity of the helicene backbone. The computed UV–vis absorption as well as
the ECD spectrum matched well with experiment after a modest red shift of 0.25 eV,
as shown in Figure 21.16. The agreement between calculation and experiment is com-
parable to that obtained for pristine helicenes themselves (see references 93 and 87 and
Section 21.3.1). Regarding the optical rotation at 589.3 nm, the experimental molar rota-
tion is [φ] = 8.2 × 103 deg cm−2 dmol−1 (dichloromethane). The computed gas-phase
molar rotation was 10.3 × 103 deg cm2 dmol−1. For comparison, the molar rotation of
pristine hexahelicene has been measured to be 12.0 × 103 and calculated to have the same
value (BHLYP/SV(P)) [90]. The calculations for the platinahelicenes revealed significant
participation of the metal (in particular from Pt 5dπ orbitals) in the excitations in the
UV–vis spectral range, rationalizing why the metallahelicenes displayed an intense phos-
phorescence. The involvement of a Pt 5d orbital in the HOMO of the platina-helicene,
for instance, is clearly visible in Figure 21.16.

A communication by Graule et al. [180] reported preliminary data on metal–
bis(helicene) complexes. The structure for a Pd complex is shown in Figure 21.17),
along with the calculated and experimental CD spectrum. The agreement between
the simulated and the experimental CD spectrum for the Pd complex is seen to be
quite good. A red-shift of 0.25 eV was applied to match the positions of the first
intense CD bands. An analysis of the computed spectrum showed that the intense
bands can be assigned to π -to-π∗ transitions within the extended π framework of the
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Figure 21.17. Structure of a Pd-bis(phosphole–helicene) complex and a comparison of the

computed (BHLYP/SV(P)) and experimental CD spectrum. Data to prepare the figure were taken

from reference 180.

phosphole–helicene ligands. Contrary to what was initially expected, the CD bands
cannot be assigned separately to excitations centered in the helicene and phosphole
moieties, respectively.

In reference 122, Graule et al. investigated the reasons for the drastic difference
in magnitude for the optical rotation (and ECD intensities) between analogous
bis(phosphole–helicene) Pd and Cu complexes. The experimentally measured molar
rotation of the Pd complex was 23.1 × 103 deg cm2 dmol−1± 2% in dichloromethane.
For an analogous Cu complex it was 13.1 × 103± 2%. The calculations yielded a
similar difference of the molar rotations. A detailed analysis uncovered that the nature
of the metal (preferring square planar versus tetrahedral coordination) dictates (a) the
conformation of the ligand adopted in the complexes and (b) the relative orientations
of various chromophore moieties with respect to each other. The different ligand
conformations adopted in the Pd and Cu complex are the main reason for the very
different CD intensities as well as for the large difference in the optical rotations of the
two systems, whereas metal orbitals hardly participate in the excitations.

Although metal clusters pose their own challenges to first-principles theoretical calcu-
lations and have very different spectral properties than metal complexes, it is appropriate
here to cite some recent computational work related to the optical activity of gold clus-
ters. Garzón et al. recently employed calculations of ECD spectra to investigate the
origin of the optical activity for Au25 clusters protected by 18 cysteine or glutathione
ligands [181]. The computations were performed for the cysteine system and agreed rea-
sonably well with an experimental ECD spectrum for the glutathione protected cluster.
TDDFT computations of ECD spectra of Au14(R-methylthiirane) suggested that chiral
signatures might be observable in the IR/NIR spectral region for an ensemble of gold
clusters passivated with chiral adsorbates [182]. Provorse and Aikens [183] used TDDFT
computations to study gold complexes of the type [Au11L4X2]+ with X=Cl, Br, and L
representing coordination of the gold cluster by chiral mono and bidentate phosphine
ligands. The authors pointed out that their study was the first to demonstrate how the
optical activity of the metal core depends sensitively on the presence and chiral arrange-
ment of surrounding ligands. Given the tremendous interest in gold and other metal
clusters one can expect many more studies of this type to appear in the near future.
The required careful benchmarking of potential shortcomings, in particular of TDDFT,
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for these types of applications is also likely going to benefit computational studies in
coordination chemistry.

As far as the OR and ORD of transition metal complexes is concerned, the author
is aware of only a few calculations at the ab initio level. Some of the calculations on
metal organic helicene systems and a tri-Ni complex were already discussed above. The
prototypical system representing a chelate complex with saturated ligands is [Co(en)3]3+
[25]. The ORD in the visible range was already reported in the 1930s separately for the �

and the � enantiomer (Mathieu 1934, Jaeger 1937, in reference 184). The anomalous OR
dispersion in the visible wavelength range is caused by the LF transitions. Figure 21.18
shows the experimental ORD along with nonhybrid and hybrid TDDFT data [185]. The
ORD curves reflect the TDDFT errors in the d -to-d excitation energies, which are seen
to be somewhat less pronounced for the hybrid functional. Overall, however, apart from
a wavelength shift the computed dispersion curves reproduce the experimental ORD. The
calculated PBE0 specific rotation at 589.3 nm is [α]D = 105 deg/[dm (g/cm−3)], which
is in reasonable agreement with an experimental rotation of 123 deg/[dm (g/cm−3)] that
was reported for a solution of the tris-bromide monohydrate salt [184].

21.4.2. Spectral Assignments and Analyses

Much of the recent computational work on metal complexes has been directed at uncov-
ering the origin of the optical activity in the excitations. A series of papers by Ziegler
et al. has focused on tris–bidentate complexes with local D3 symmetry [161–163, 167,
172, 187]. If one considers the six metal-coordinating ligand atoms in such a pseudo-
octahedral complex, as shown in Figure 21.19, a lowering of the symmetry from Oh

to D3 can be considered as a sequence of a polar elongation or compression along
the threefold symmetry axis (Oh → achiral D3d ) followed by an azimuthal distortion.
Deviations of the polar ratio s/h and azimuthal angle φ from their values for an ideal
octahedron (s/h = 1.22, φ = 60◦) quantify the structural chirality around the metal center
[188]. More recently, Fan and Ziegler employed the angle ω shown in Figure 21.19 for
additional analyses. For an ideal octahedron, ω = ±35.3◦. It is convenient to define the
distortions �(s/h), �φ, and �ω which adopt values of zero for an idealized octahedral
ligand arrangement.

Jorge, Ziegler, et al. have investigated the origin of the CD of LF and LMCT transi-
tions in CoIII and RhIII complexes with saturated σ bonding ligands. An analysis of the
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transition dipole moments in terms of contributions from individual orbitals (canonical
and localized) allowed to relate the TDDFT results to semiempirical models developed
several decades ago. Reference 161 focused on the LF transitions. Formally, these tran-
sitions derive from the parity-forbidden crystal-field transitions between the t2g and eg

d -orbital levels of an octahedral environment. The 1T1g HOMO–LUMO d -to-d tran-
sition splits into an A2/E pair upon lowering the symmetry from Oh to D3 [25]. The
energetic ordering is determined mainly by the sign of �(s/h), with the energy splitting
between A2 and E being correlated to the magnitude of �(s/h). The question then arises
whether the circular dichroism of the LF transition is predominantly caused by a small
geometry distortion of the nitrogen ligands away from perfect octahedral symmetry, or
by a weak electronic coupling of the metal and ligand backbone orbitals, or by a com-
bination of these and perhaps other factors. In order to understand better what happens
to the transitions upon these distortions, a model based on first-order perturbation theory
can be set up [161]. Instead of Oh parent symmetry, consider the D3d subgroup, initially
at a �(s/h) = 0 geometry. The T1g transition splits into a A2g/Eg pair under D3d , for
which the rotatory strengths are (upon taking the imaginary parts of the expressions)

R(A2) = 〈A1g |D̂|A2g 〉〈A2g |M̂|A1g 〉, (21.34a)

R(E ) =
a ,b∑
d

〈A1g |D̂|E d
g 〉〈E d

g |M̂|A1g 〉, (21.34b)
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where a,b are the components of the twofold degenerate E state. For notational brevity,
the ‘Im’ of equation (21.4) is omitted in this section, and it is understood that the scalar
product of the transition moment vectors is taken. The electric and magnetic moment
operators have been defined in Section 21.2.1. Under D3d symmetry, the electric dipole
operator matrix elements vanish because the operator is ungerade (u , odd) and the wave-
functions involved in the ligand field transitions are gerade (g , even). The magnetic
moment matrix elements can be nonzero because the components of M̂ belong to the
even symmetry species (irreducible representations). Thus, the leading order effects that
cause the circular dichroism in the LF transitions can be considered as those that create
nonvanishing electric transition dipoles. The �φ azimuthal distortion lowers the symme-
try to D3 and mixes g with u species. For small distortions, a perturbation Hamiltonian
∂Ĥ /∂φ is associated with a vibrational normal mode of a1u symmetry. The azimuthal
distortion mixes some odd symmetry (u) LMCT character in the ligand field transitions,
with the sign of the perturbation depending whether �φ > 0 or �φ < 0. This behavior
is supported by experimental data (see below for further details).

It is convenient at this point to switch to a one-electron orbital picture instead of
using many-determinant excited-state wavefunctions for the perturbations. The follow-
ing discussion is based on the analysis in reference 161. The rotatory strengths can be
analyzed conveniently in terms of MOs within a TDDFT approach, for example [18].
The metal-centered symmetry orbitals of d character under D3d symmetry are shown in
Figure 21.20. In D3d symmetry, the LF transitions (formally HOMO to LUMO) rotatory
strengths have orbital contributions such as

R(A2) ∝ 〈π(ega)|D̂|σ ∗(egb)〉〈σ ∗(egb)|M̂|π(ega)〉, (21.35a)

R(E ) ∝ 〈π(ega)|D̂|σ ∗(ega)〉〈σ ∗(ega)|M̂|π(ega)〉, (21.35b)

where, as pointed out in the caption of Figure 21.20, the LUMO σ ∗(egb) represent
antibonding combinations of the metal dσ orbitals and ligand σ combinations. The electric
dipole integrals in Eqs. (21.35a) and (21.35b) vanish because the electric dipole operator
is of odd symmetry. For the model, it is sufficient to (a) consider the mixing of the
π(eg ) HOMOs with odd ligand combinations Lσ (eu) upon azimuthal distortion and (b)
focus on the electric dipole integrals. In the distorted system of lower D3 symmetry, the
HOMO levels of e symmetry are to first order

π(ed ) = π(egd ) + �φ · C · Lσ (eud ) (d = a , b). (21.36)

The mixing coefficient C is given by first-order perturbation theory as

C = 〈Lσ (eud )|∂F̂/∂φ|π(egd )〉
ε[π(egd )] − ε[Lσ (eud )]

, (d = a , b) (21.37)

where a complete AO basis is assumed for brevity. In Eq. (21.37), F̂ is an effective
one-electron operator such as the DFT Fock operator introduced in Section 21.2.3, and
the ε are orbital energies. Considering these perturbations, the rotatory strengths of the
azimuthal distorted system are dominated by orbital contributions such as

R(A2) ∝ �φ · C · 〈Lσ (eua)|D̂|σ ∗(egb)〉〈σ ∗(egb)|M̂|π(ega)〉, (21.38a)

R(E ) ∝ �φ · C · 〈Lσ (eua)|D̂|σ ∗(ega)〉〈σ ∗(ega)|M̂|π(ega)〉 (21.38b)
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with the coefficient C given in Eq. (21.37). In this orbital-based perturbation theory
ansatz the sign and magnitude of �φ determines the relative sign and magnitude of the
rotatory strengths R(A2) and R(E ) for these transitions for a given absolute configuration
of the complex.

A survey of structural data [161] for CoIII and RhIII complexes with the ligands en,
pn, tn, acac, and ox showed that for these systems the angle φ is usually lower than
60◦ and that for these systems in the � configuration we have R(E )> 0, R(A) < 0. An
exception is the complex [Co(tn)3]3+, for which—depending on the conformations of the
chelate rings—φ can be slightly above or below 60◦, with a concomitant change in the
signs of the rotatory strengths of the LF transitions. Another factor that determines the
CD spectra in the low-frequency range is, as already pointed out, the sign and magnitude
of �(s/h). The deviation from the octahedron value of 1.22 determines which of the
excited states, A2 or E , is lower in energy. Most of the complexes surveyed in reference
161 exhibit s/h > 1.22, along with ωE − ωA2 < 0. The authors noted that the sign of the
frequency difference is not easy to predict from qualitative considerations.

An MO analysis of the TDDFT-derived electric transition dipole moments for the
excitations was reported in reference 161 to test the relevance of various semiempirical
theories. For example, in a crystal field model the only source of optical activity of
the LF transitions can be a mixing of even with odd metal-centered orbitals, mainly nd
with (n + 1)p, under the azimuthal distortion. The TDDFT analysis of model complexes
indicated that this mechanism contributes less than five percent to the optical activity.
A dynamic theory by Mason and Seal [159] attributed the optical activity of the LF
transitions to matrix elements between occupied and unoccupied ligand orbitals. The
TDDFT analysis found that this mechanism is also of minor importance (<5%) for
complexes with saturated ligands. However, for CoIII complexes with the ligands acac
and ox, such contributions were found to be significant. Already in a perfect octahedral
arrangement of the coordinating ligand atoms, there can be a participation of even and
odd ligand π orbitals in the HOMO and LUMO levels of the complex, which significantly



FROM ORGANIC MOLECULES TO TRANSITION METAL COMPLEXES 633

complicates the spectral analysis. As a consequence, in the presence of such ligands, the
simple model for the sign pattern of the rotatory strengths depending on the azimuthal
distortion may break down.

In a follow-up study [162], Jorge et al. extended the orbital-mixing model of reference
161 to the LMCT excitations of complexes with saturated σ binding ligands. For pairs
of LF and LMCT transitions that are of the same symmetry, the signs are coupled and
alternating. The excitations originate in occupied ligand σ orbitals that are of t1u parentage
in Oh symmetry. In analogy to the rotatory strengths of Eqs. (21.35a), (21.35b), for the
LMCT excitations one finds orbital contributions such as

R(A2) ∝ 〈Lσ (eua)|D̂|σ ∗(egb)〉〈σ ∗(egb)|M̂|Lσ (eua)〉, (21.39a)

R(E ) ∝ 〈Lσ (eua)|D̂|σ ∗(ega)〉〈σ ∗(ega)|M̂|Lσ (eua)〉. (21.39b)

In Oh and D3d parent symmetry, the LMCT excitations are electric dipole allowed, but
magnetic dipole forbidden since the magnetic dipole operator is of even symmetry. The
leading terms in the rotatory strengths upon azimuthal distortion are now obtained from
a mixing of the ligand orbitals Lσ (eu) with even occupied π(egd ) metal orbitals such that
the mixing causes nonzero magnetic transition dipoles. The perturbed occupied orbitals
to consider are

Lσ (eud ) = Lσ (eud ) + �φ · C ′ · π(egd ) (d = a , b), (21.40)

where the mixing coefficient C ′ is the negative of the mixing coefficient C of Eq. (21.37)
as long as the orbitals are real. The reason is that the same orbitals are involved in the
equation for the mixing coefficient, but they must be interchanged because now the
perturbation of the ligand based orbitals are of concern. The sign change stems from
the orbital energy denominator in Eq. (21.37). From substituting (21.40) in the magnetic
moment integrals of (21.39a) and (21.39b) and using C ′ = −C , the rotatory strengths of
the LMCT excitations in the perturbation model are seen to afford orbital contributions
such as

R(A2) ∝ −�φ · C · 〈Lσ (eua)|D̂|σ ∗(egb)〉〈σ ∗(egb)|M̂|π(ega)〉, (21.41a)

R(E ) ∝ −�φ · C · 〈Lσ (eua)|D̂|σ ∗(ega)〉〈σ ∗(ega)|M̂|π(ega)〉. (21.41b)

These are the same expressions as those for the LF transitions, but with the opposite
signs. The model predicts similar intensities for the CD of the LF and LMCT excitations,
although typically the circular dichroism of the LMCT transitions is far more intense.
However, in agreement with experiment and first-principles theory the perturbation model
predicts that (a) the circular dichroism of the LF and LMCT excitations in σ bonded
trigonal dihedral metal complexes exhibits alternating sign patterns and (b) their the
coupled signs of the CD bands depend on the sign of the polar distortion of the complex
relative to an idealized octahedral ligand arrangement. The model indicates that the origin
of the optical activity is the mixing of odd and even metal and ligand orbital combinations
due to a slightly distorted arrangement of the σ coordinating ligand atoms. The analysis
of the TDDFT excitation vectors of a number of complexes and model systems in terms
of orbital contributions (cf. Section 21.2.2) has supported this model in favor of other
possible mechanisms [161, 162].
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The authors of reference 162 further investigated the influence of conformational
changes on the ECD of various CoIII and RhIII complexes with aliphatic bidentate amine
ligands. Of concern here is the orientation of the chelate rings with respect to the threefold
symmetry axis [25]. The two possible configurations are termed ob and lel , depending
on whether the C—C bonds of the amine backbone are oblique or approximately parallel
to the threefold axis. An alternative way of labeling the geometries derives from the
rotational sense δ or λ of the helical configuration of the ligand chelate ring. In the
case of [Co(en)3]3+ the differences in the CD for the ob3 and lel3 conformers were
shown to be rather minor, but somewhat more noticeable for [Co(tn)3]3+ [156]. The
systems studied by Jorge et al. in reference 162 also included S- and R-pn (pn = 1,2-
propyldiamine). In this ligand, the methyl group has a strong preference for an equatorial
orientation with respect to the chelate ring. By comparing a large set of experimental data
with computed data, it was shown that the TDDFT computations correctly reproduced
changes in the CD spectra due to changes in the chelate ring conformations. The signs
and intensities of the CD transitions as a function of ob versus lel conformation are a
direct consequence of the sign and size of the chelate bite angle, which is in turn dictated
by the preferred configuration of the rings. Thus, the configurations of the chelate rings
determine the geometry of the six nitrogens around the metal center. As the perturbation
theory models clearly illustrate, the geometry arrangement of the nitrogen sextet is mainly
responsible for the sign, energetic ordering, and CD intensity of the d-to-d and LMCD
transitions.

Fan and Ziegler recently extended the model to be numerically more predictive,
by explicitly deriving expressions of the rotatory strengths in terms of orbital overlap
integrals and matrix elements of the dipole operators. A proof of concept was provided for
[Co(en)3]3+ in reference 187. Subsequently, the model was applied to trigonal dihedral
CoIII complexes with the ligands acac, ox, mal, and thiox, with a focus on the transitions
involving π orbitals [163]. A third paper of the series investigated group 8 tris-bidentate
phen and bipy complexes [167].

As pointed out above, π -to-π∗ transitions that take place within the ligands can
couple electronically and may exhibit very strong circular dichroism. Examples are the
[Fe(phen)3]2+ complex for which CD spectra are shown in Figure 21.14, [Os(phen)3]2+
and [Co(acac)3] (both Figure 21.12). The CD spectra of the group 8 (phen)3 complexes
have been analyzed in detail in references 157 and 172 based on TDDFT calculations.
For detailed analyses of the acac complexes, and related systems with ox, thiox, and
mal, ligands, see references 156 and 163. Much insight into the nature of the exciton
coupling CD in these systems was obtained decades ago by Mason and co-workers; see,
for instance, references [158, 189–191] regarding phen and bipy complexes. Consider
the phen ligand as an example. In a D3 propeller arrangement, the intense long-axis (�)
polarized π -to-π∗ excitons of the three ligands can couple as shown in Figure 21.21
and create the strong exciton CD seen in the [Fe(phen)3]2+ spectrum. Because of the
helical arrangement of the ligands, the rotatory strengths of the coupled excitations are
nonzero and arise from the linear combinations of the electronic dipole moments in
the couplet [189]. Assume an octahedral parent geometry such that the angles between
each transition dipole vector D� of the long-axis polarized transition and the C3 of the
complex is ω = 35.3◦ (Figure 21.19), with the centers of the phen ligands at a distance
r from each other (r is the distance between the origins of the transition dipole vectors
in Figure 21.21). Mason [189] derived for a degenerate point dipole coupling model an
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Figure 21.21. D3-symmetric arrangement of three phen ligands as adopted in complexes such

as [Fe(phen)3]2+, [Os(phen)3]2+. Shown here is a � configuration. Left: The arrows centered in

the phen ligands represent the electric transition dipoles DA, DB, DC for the long-axis polarized

π -to-π∗ transition in the phen ligands A, B, C. Right: The arrows represent electric transition

dipoles for the A2 and E components of the coupled set of excitations.

exciton splitting energy of

V = �

3
[ωA2 − ωE ] = D� · D�

4r3
(21.42)

along with rotatory strengths of

R(E ) = −R(A2) =
√

2

3
πν̃�r(D� · D�) (21.43)

for a � configuration (cgs units). Here, R(E ) is the rotatory strength for the two E com-
ponents combined. TDDFT computations for the � configurations of a number of (phen)3

and (bipy)3 complexes indeed yielded positive rotatory strengths for the E transitions
assigned to coupled ligand π -to-π∗, which appeared at lower frequency in the spectra
than the A2 components of the exciton couplets, in agreement with experiment and the
dipole coupling model [157, 167]. Irrespective of the low-energy part of the spectra, the
π -to-π∗ frequency range is therefore a reliable indicator of the absolute configuration
of these complexes. Regarding the geometry dependence of the rotatory strengths, Fan
et al. [167] derived a common sin ω · cos ω behavior, where ω is the tilt angle shown in
Figure 21.19. Since ω changes sign when going from a � to a � arrangement of the
ligands around the metal, the sin ω cos ω term determines the sign change of the exciton
CD when comparing � to � configurations.

21.5. CONCLUDING REMARKS

Chemists have a variety of computational tools available to investigate electronic optical
activity. Theoretical methods that were derived from first principles can be applied to
general types of molecules, transition metal complexes, metal clusters, fullerenes, nan-
otubes, and many other systems. The quality of the computational model is of critical
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importance. There is always the important decision about which basis set and electronic
structure method to select, but the computational model should ideally also consider the
environment of a molecule (solvent, solid-state matrix, counterions, and so on), and it
is important to check whether it is necessary to explicitly consider vibrational effects.
Computing vibrational fine structure and bandshapes for ECD spectra is not yet routinely
carried out, but the available studies show good promise. The majority of computations
are presently performed with some type of density functional method. The continuing
development of functionals for DFT and TDDFT remains as important as ever. Estab-
lished computational error bars and performance expectations derived from numerous
benchmarks with the B3LYP functional and a variety of gradient corrected nonhybrid
functionals from static-structure gas-phase computations are likely going to be revised
in the foreseeable future.
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22
THEORETICAL ELECTRONIC

CIRCULAR DICHROISM
SPECTROSCOPY OF LARGE ORGANIC

AND SUPRAMOLECULAR SYSTEMS
Lars Goerigk, Holger Kruse, and Stefan Grimme

22.1. INTRODUCTION

Electronic circular dichroism (ECD) spectroscopy plays an important role in chemistry,
biology, pharmaceutics, and medicine. Particularly, the comparison between experimen-
tally and theoretically obtained spectra has become a strong tool for the determination of
absolute configurations of unknown compounds and helps reveal their structure-chiroptic
properties. Compared to UV–vis spectroscopy, the fact that ECD bands can have posi-
tive or negative signs adds an additional useful dimension, as the spectra then become
sensitive to geometric and electronic properties of the analyzed molecule. This, however,
requires more sophisticated methods in concomitant theoretical treatments that simulta-
neously must yield accurate excitation energies, band intensities, and signs. For detailed
general discussions on theoretical ECD spectroscopy, see references 1–4. While small
systems can be accurately treated with sophisticated ab initio techniques, the application
of theoretical methods to larger systems of actual chemical interest is a challenging task.
Herein, we try to give useful hints on how to tackle this challenge. First, we summarize
important facts about theoretical ECD and will give an overview of ab initio, semiem-
pirical and DFT methods. We will also give useful advice for carrying out calculations
of ECD properties. We will then apply some of the presented methods to large systems
covering different aspects that might also occur in the analysis of unknown compounds.
These include exciton coupling, charge-transfer excitations, and noncovalent interactions
in aggregates, inclusion compounds, and conformationally flexible molecules. Particu-
larly the latter problem will be discussed in detail in some kind of general “tutorial”.

Comprehensive Chiroptical Spectroscopy, Volume 1: Instrumentation, Methodologies, and Theoretical
Simulations, First Edition. Edited by N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

643



644 COMPREHENSIVE CHIROPTICAL SPECTROSCOPY, VOLUME 1

Usually we will employ methods that have already been applied to chiroptical properties,
but we will also test—to the best of our knowledge for the first time—the performance
of range-separated density functionals and the SCS-CC2 approach for ECD spectroscopy.

22.2. THEORY

22.2.1. Theoretical Circular Dichroism Spectroscopy

In ECD spectroscopy, one of the main quantities of interest is the rotational strength R,
which determines the sign and the intensity of an ECD band [5]. Experimentally, it is
obtained by integrating the area under the corresponding band. In cgs units, R reads

Rexp = 2.297 × 10−39

λ2∫
λ1

�ε (λ)

λ
dλ, (22.1)

where λ is the radiation wavelength and �ε is the difference in the extinction coefficients
of left-and right-circularly polarized light.

Theoretically, R0i (for the transition between the electronic ground state to the i th
excited state) can be obtained according to Rosenfeld as the imaginary part of the dot
product between the electric ( �μ0i ) and magnetic ( �m0i ) transition dipole moments:

R0i = Im
(〈ψ0 | μ̂ | ψi 〉〈ψ0 | m̂ | ψi 〉

)
=| �μ0i || �m0i | · cos ( �μi0, �m0i ) , (22.2)

where ψ is the wavefunction of the respective state and μ̂ and m̂ are the electric and
magnetic dipole moment operators. Thus, the sign and absolute value of R depend on the
absolute values of both transition moments and their relative orientation to each other.
There are two common ways of calculating rotational strengths. The first one is the
so-called dipole length formalism

Rr
0i = 1

2c
〈ψ0 | r̂ | ψi 〉〈ψi | r̂ × ∇̂ | ψ0〉, (22.3)

while the so-called the dipole velocity formula reads

R∇
0i = 1

2cω0i
〈ψ0 | ∇̂ | ψi 〉〈ψi | r̂ × ∇̂ | ψ0〉. (22.4)

Compared to the length form, the velocity form has the advantage of being gauge-
invariant; that is, it does not depend on the specific choice of the coordinate system used
in the calculation. However, it is less sensitive toward the quality of the wavefunction ψ .
For theoretical ECD spectroscopy and the related calculation of optical rotatory dispersion
(ORD) it was shown that, particularly for time-dependent density functional theory (TD-
DFT), the length form is more robust; for example, it shows a quicker convergence to the
basis set limit [6]. In Figure 22.1, TD-BHLYP spectra of (M )-hexahelicene are presented,
which show that there is almost no difference between rotational strengths in length and
velocity form. A similar example was also discussed in reference 7. Herein, only the
length form will be used.
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Figure 22.1. Comparison of the

influence of technical parameters for

the theoretical ECD spectra of

(M)-hexahelicene. The spectra were

obtained with the TD-BHLYP method

and the basis sets TZVPP′ and

cc-pVTZ. In the case of the TZVPP′

basis, two spectra were simulated by

using the rotational strengths

obtained with the dipole length (Rr )

and velocity (R∇ ) formalism,

respectively. The cc-pVTZ spectrum

was simulated by using Rr values.

Often, theoretical spectra are directly compared with experimental ones. For that
purpose, it is not sufficient to just compare the experimental band positions with the
excitation energies and intensities of theoretical transitions. It is possible that several
transitions lie within the range of a certain band, or that transitions with opposite signs
lie close to each other. Therefore, it is strongly recommended to actually simulate an ECD
spectrum. This is usually done by overlapping Gaussian functions for each transition:

�ε(E ) = 1

2.297 × 10−39

1√
2πσ

A∑
i

�Ei Ri e[−(E−�Ei /2σ)]2

, (22.5)

where σ is the width of an absorption band at a height of 1
e , A is the number of excited

states, and �Ei and Ri are the excitation energy and the rotational strength of the i th
transition. Usually a value of σ = 0.2 eV is chosen for the bandwidth.

22.2.2. Theoretical Methods

22.2.2.1. Wavefunction-Based Methods. Herein, we will only give an
overview of single reference methods [8]. Multireference methods (e.g., CAS-SCF,
CAS-PT2, or MR-CI) are useful in electronically complicated cases and are often
used for the calculation of excited-state potential energy hypersurfaces and conical
intersections. Furthermore, only methods for excited states with dominant single
excitation character are considered. For a more detailed review on the calculation of
electronic excited states, see also reference 9.

The basis for treating single reference cases with wavefunction-based methods is
Hartree–Fock theory, in which the expectation value of one Slater determinant (or one
configuration) is minimized variationally. The electron–electron interaction is treated
within a mean-field approach; that is, each electron experiences just an averaged field
of the others. For many-electron systems, this approximation leads to a higher total
energy compared to the exact solution. This difference defines the electron correlation
energy. Electron correlated methods, like configuration interaction, coupled cluster, or
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many-body perturbation theory, use an HF determinant as starting point for a further
treatment of the electron–electron interaction. The computational effort for Hartree–Fock
formally only scales with O(N 4), with N being the number of basis functions; electron
correlated methods scale at least with O(N 5). For the calculation of electronic excited-
state properties, one can also rely on uncorrelated or correlated methods. An overview
of different methods is given in Figure 22.2; methods marked with an asterisk will be
used in the following examples.

In principle, the most simple uncorrelated approach to excited-state properties is the
configuration interaction singles model (CIS). The CIS wavefunction | ψCIS 〉 is described
as a sum of the HF reference | ψHF 〉 and all singly excited configurations | ψa

i 〉 (which
consist of two determinants for a singlet wavefunction) with respect to that reference,
that is,

| ψCIS 〉 = c0 | ψHF 〉 +
∑

ia

ca
i | ψa

i 〉. (22.6)

In a pictorial way, one electron is taken out of an occupied orbital i and “excited” into a
virtual orbital a to create a singly excited configuration. The coefficients c are determined
variationally. Usually, the CIS method systematically overestimates excitation energies
by up to 1 eV or more and the calculated states can be in the wrong order. The transition
moments and, thus, the rotational strengths are of only moderate accuracy. Improvements
can be achieved by including electron correlation in a perturbative treatment (PT). There
are different flavors of this approach (not every one is size-extensive). In the present
context, we will make use of the SCS-CIS(D) method [10]. CIS(D) stands for config-
uration interaction singles with perturbative doubles correction [11]; the acronym SCS
for spin component scaling , which means that electron pair energies of same and oppo-
site spin are scaled differently [12]. SCS-CIS(D) can yield excitation energies with an
average error of about 0.2 eV for large organic chromophores [13]. However, it is just a
correction to the CIS excitation energies and not to the rotational strengths.

The second uncorrelated approach based on a HF determinant is linear response
theory, which is in this context also known as time-dependent Hartree–Fock (TD-HF)
or as random-phase approximation (RPA) [14]. TD-HF can be written as an eigenvalue
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problem according to

(
A B
B A

)(
X
Y

)
= �E

(
1 0
0 −1

) (
X
Y

)
, (22.7)

where �E is the excitation energy, X and Y are solution vectors describing single
excitations and de-excitations, and A and B are related to the corresponding Hamiltonian
matrices between these (de-)excitations. The CIS method can be derived from TD-HF,
by setting the matrix B to zero [Tamm–Dancoff approximation (TDA)] [15]. TD-HF
yields excitation energies of CIS quality but usually yields better rotational strengths.

A route to a more sophisticated treatment of excited states is based on an electron
correlated ground-state description. In principal, the CIS model can be extended by
including higher excited determinants (CISD, CISDT,...), but because these truncated
CI models are not size-extensive, they are in practice of no use. The truncated coupled
cluster model, however, includes higher excitations and is still size-extensive. One way
of describing excited states is the equation-of-motion coupled cluster model (EOM-CC)
[16]. Another way is linear response coupled cluster (LR-CC), which yields the same
excitation energies as the EOM model. CC is iterative, though, and each iteration scales
(depending on the model) with O(N 6) (for CCSD), O(N 8) (for CCSDT), and more.
Alternatives are approximated coupled cluster models, like CC2 [17] and CC3 [18], which
are approximations to CCSD and CCSDT and scale with O(N 5) and O(N 7), respectively.
Particularly the CC2 model has become the “gold-standard” single-reference method for
excitation energies of large molecules. In this work, we will apply the corresponding
spin-component scaled approach SCS-CC2 [19]. For large chromophores, CC2 and SCS-
CC2 have an average error of about 0.17–0.20 eV [13]. ECD spectra, calculated with
SCS-CC2, are reported for the first time herein.

One final comment has to be made on wavefunction-based methods in general. In
contrast to DFT methods (vide infra), the exchange and correlation potentials decay with
the correct asymptotic behavior. As a result, Rydberg states and charge-transfer states
are described correctly (apart from errors due to finite basis sets and approximations to
the exact correlation energy).

22.2.2.2. Semiempirical Methods. The time-consuming part in wavefunction-
based methods is the calculation of the two-electron integrals. Semiempirical methods
make approximations to these integrals. Based on different levels of approximation,
integral contributions are completely or partially neglected. The remaining integrals are
parameterized to either experimental or theoretical data, and furthermore often calculated
within a minimal atomic orbital basis. Typically, excited-state properties are calculated
with either a linear response or a CIS approach. There is a huge variety of different
semiempirical methods. Herein, we will consider the Pariser–Pople–Parr (PPP) [20] and
the Zerner’s Intermediate Neglect of Differential Overlap method [21] for electronic
spectra (ZINDO/S). The PPP approach only considers π -electrons Thus, it is only appli-
cable to conjugated planar or slightly bent systems. In this work, we will consider PPP
within a linear response scheme (TD-PPP). The ZINDO/S method considers all valence
electrons. It is specially parameterized to spectroscopic properties in the framework of
CIS.

22.2.2.3. Density Functional Theory. The basis of density functional theory
(DFT) is the first Hohenberg–Kohn theorem, which states that there is a direct corre-
lation between a system’s electron density ρ(r) and its electronic energy E [22]. Both
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properties are connected by a functional, which depends on the electron density and for
which an adequate mathematical description has to be found. For chemical applications,
the acronym DFT usually stands for the so-called Kohn–Sham (KS) approach, in which
the kinetic energy is based on a reference system of noninteracting electrons, which still
yields the electron density of the real system (KS-DFT) [23]. This kinetic energy con-
tribution is computed by introducing orbitals (KS orbitals). The Kohn–Sham functional
F [ρ(r)]KS can be divided into functionals of the kinetic electronic energy Te[ρ(r)],
the interaction energy between electrons and nuclei Ven [ρ(r)], the electronic Coulomb
energy J [ρ(r)], the exchange energy Ex [ρ(r)] of the indistinguishable electrons, and the
electron correlation energy Ec[ρ(r)]. The functionals of the exchange and correlation
energies are combined to the so-called exchange-correlation functional Exc[ρ(r)] (Eq.
22.8). [24]:

F [ρ]KS = Te[ρ] + VeK [ρ] + J [ρ] + Exc[ρ],

Exc[ρ] = Ex [ρ] + Ec[ρ].
(22.8)

The only remaining unknown part of the Kohn–Sham functional is Exc[ρ(r)]. KS-
DFT is an exact theory, meaning that the exact total energy could be calculated, if the
true functional Exc[ρ(r)] were known, which is practically impossible. It is still a topic
in actual research to find adequate approximations to this functional.

Technically, the Kohn–Sham equations are solved iteratively, like it is done for
the wave mechanical Hartree–Fock theory. But in contrast to the latter one, DFT
already incorporates electron correlation effects and thereby can yield better results than
Hartree–Fock at the same or even less computational cost.

Therefore, DFT is usually applied for obtaining both good ground state geometries
and electronic excited-state properties. The latter are obtained with the help of linear
response theory. The resulting TD-DFT equation is similar to that of TD-HF [Eq. (22.7)].
Within the adiabatic approximation, standard time-independent ground-state functionals
serve as the basis for the exchange-correlation (xc) kernel in current TD-DFT [25]. For
a recent basic criticism of fundamental aspects of TD-DFT see references [26] and [27].

According to Perdew, a classification of density functionals is possible within a
metaphorical “Jacob’s Ladder” scheme [28]. Each class of functionals is ascribed to a
rung on this ladder (Figure 22.3). With reaching a higher rung, an improved accuracy
of the results is expected. On the other hand, higher rung functionals are mathematically
more involved and are characterized by an increase in computational cost.
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virtual orbitals

occupied orbitals

kinetic energy density
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local density
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Figure 22.3. The ‘‘Jacob’s Ladder’’

hierarchy of density functionals.

Methods marked with an asterisk are
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The lowest rung on Jacob’s Ladder just takes into account the information on the
local electron density. That is why these functionals are ascribed to the local density
approximation (LDA). Because the electron density strongly varies in molecules, LDA
functionals are insufficient for describing these. The next two rungs take additionally
into account the gradient [general gradient approximation (GGA)] and the kinetic energy
density (meta-GGA). In fourth place are the so-called hybrid functionals for which some
part of the DFT exchange is substituted by wave mechanical Fock exchange. So-called
global hybrids (e.g., B3LYP [29, 30] and PBE0 [31]) include a constant amount of
Fock exchange, whereas range-separated functionals (RSFs, e.g., CAM-B3LYP [32] and
LCωPBE [33]) differ between short-and long-range regions and they mix in different
amounts of Fock exchange in these regions. Fifth-rung functionals additionally take into
account the information of virtual KS orbitals. To this rung belong the so-called double-
hybrid functionals, which were developed by Grimme [34, 35]. Besides Fock exchange,
double-hybrids also include an orbital-dependent, perturbative contribution to the corre-
lation energy. Herein, we will make use of the B2PLYP [34] and B2GPPLYP [36] func-
tionals. Table 22.1 shows the amounts of Fock exchange of the various functionals used
in this work, which is important for classification in excited-state TD-DFT treatments.

Problems in current density functional formulations are the so-called self-interaction
error (SIE)—unphysical Coulomb interaction of an electron with itself—a wrong decay
of the electron density for large distances between electrons and nuclei and the inability
of describing nonlocal correlation effects, like, for example, London dispersion. The
latter problem can be easily accounted for by adding an empirical dispersion correction
(DFT-D [43]/DFT-D3 [40]). Later, we will show that this can be of utter importance for
obtaining good geometries and relative energies of conformers. When calculating excited-
state properties, the self-interaction error can lead to artificial low-lying excited states
that have no experimental counterpart (“ghost states”). This effect is most prominent
for GGA functionals, and it can be counterbalanced by mixing in high amounts of Fock
exchange (BHLYP and double-hybrids are practically free of ghost states). High amounts
of Fock exchange are also helpful for a correct description of states with ionic character,

TABLE 22.1. Overview of the Amount of Fock Exchange
(aX ) in Density Functionals Used in This Work

Functional aX

BLYP [37, 38] 0.00
PBE [39] 0.00
B3LYP [29, 30] 0.20
PBE0 [31] 0.25
PBE38 [40] 0.375
BHLYP [41] 0.50
CAM-B3LYP [32] 0.19a/0.65b

LCωPBE [33] 0.00a/1.00b

ωB97X [42] 0.158a/1.00b

B2PLYP [34] 0.53c

B2GPPLYP [36] 0.65c

a Short-range part.
b Long-range part.
cDouble-hybrids also mix in a portion of perturbative correlation
(0.27 for B2PLYP; 0.36 for B2GPPLYP).
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as demonstrated for large aromatic chromophores [44, 45]. This problem should not be
neglected, because these ghost states can have a strong influence on the shape of the
ECD spectra, as shown later on. The wrong decay of the exchange-correlation potential
leads to an underestimation of Rydberg and particularly charge-transfer states. RSFs
were designed to counterbalance this problem, because they include high amounts of
Fock exchange in the important long-range region.

Benchmark studies have shown that GGA and meta-GGA functionals lead to red-
shifted excitation energies (underestimation; average error of 0.5 eV for large chro-
mophores [13, 46]), whereas too high amounts of Fock exchange in hybrid functionals
can lead to a blue shift. However, at least 40% of Fock exchange is required for the
correct treatment of large, organic chromophores [13, 44–47]. Double-hybrid function-
als are the most accurate functionals at the moment and are comparable to or more
accurate than (SCS-)CC2 (with an average absolute error of about 0.16 eV for large,
organic chromophores) [13, 46]. Rotational strengths are adequate on all these levels.
Experience shows that they improve for hybrid functionals. Due to their construction
[35], double-hybrids yield better excitation energies but similar rotational strengths as
hybrids. In 2009, we also showed that TD-B2PLYP is a useful and accurate method for
the calculation of ECD spectra [7].

22.2.3. General Recommendations for the Calculation of ECD Spectra

The simulation of ECD spectra has stronger requirements with regard to the methods
applied than does the simulation of pure UV–vis spectra. Our experience from published
literature and peer-review appointments made us also note that in many applications
the TD-B3LYP/6-31G* level of theory is used as a standard, “black box”-like approach
without checking whether or not it is appropriate for the particular problem. Therefore,
we will mention in the following some important points that should be considered,
particularly for the treatment of larger systems.

1. The shape of an ECD spectrum depends strongly on the molecular structures.
Particularly in larger systems, noncovalent interactions can play a decisive role
and should be adequately considered by the chosen method. The application
of electron correlated methods to structure optimizations of chemically relevant
systems is limited due to their high computational cost, however. An economically
way is to make use of dispersion corrected DFT. Excitation energies have to be
predicted with high accuracy, otherwise, bands of opposite signs could cancel each
other out and cannot be observed in the theoretical spectrum. On the other hand,
it is also possible to calculate artificial bands that are not observed in experiment.
TD-DFT is usually the method of choice for the calculation of spectra. However,
one should not trust the result of merely one functional. It is wise to apply at
least two different functionals with different amounts of Fock exchange, to make
sure that no artifacts influence the outcome of a certain study.

2. Usually, basis sets of triple-ζ quality should be applied. When Rydberg states are
considered, it is crucial to include diffuse functions. To save computing time, it
is worthwhile to use Ahlrichs-type basis sets instead of the Dunning-type sets,
because the first one includes less primitive atomic basis functions. For larger
systems, compromises can be made and certain functions neglected. Herein, we
will sometimes make use of a truncated TZVPP basis dubbed TZVPP′. This
is a normal Ahlrichs-type TZVPP [48] basis, but with discarded f functions;
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f functions play no dominant role in excitations of organic molecules, but their
evaluation is very time-consuming. Furthermore, a TZVP [48] basis—that is, with
just one set of polarization functions—is applied to hydrogen atoms, which further
decreases the total number of basis functions. To demonstrate the usefulness of
this approach, an example is given in Figure 22.1. The ECD spectrum of (M )-
hexahelicene was calculated with cc-pVTZ [49] and TZVPP′. Both basis sets give
almost identical results. The total computation time is increased by a factor of 2.5
for cc-pVTZ compared to TZVPP′. In a recent study, we also found factors of
up to five, when diffuse functions are added [7]. Another possible way of saving
computational time, without any loss of accuracy, is applying smaller basis sets on
substituents that are not part of the chromophore. Sometimes it is also possible to
substitute larger moieties by smaller ones if their influence on the total spectrum
is expected to be negligible. If for the complete molecule a double-ζ basis (like
SV(P) [50]) has to be applied, it is advisable to do this after a study of the basis
set effect (maybe on a model system or something comparable).

3. ECD spectra are usually shown on an electron-volt or nanometer scale. For ana-
lyzing theoretical spectra, usually differences in band maxima and absorption
energies are considered. When doing such an analysis, it is important to consider
the type of energy scale that is chosen for the ECD spectra. If, for example,
an error of 10 nm is found in a region between 330 and 340 nm, this error is
0.1 eV. A difference of 10 nm in an energetically higher-lying region (e.g., from
190 to 200 nm) corresponds to a much higher value of 0.3 eV. When a theo-
retical method suffers from systematic errors, it is common practice to apply a
constant shift to the spectrum. However, this should be done carefully and under
consideration of the above-mentioned point.

4. If the theoretical results are compared with experimental ECD spectra, one should
always carefully consider the experimental setup. Solvent effects can usually lead
to a red shift of the absorption bands, which is important when theoretical gas-
phase spectra are used for the analysis. In principle, it is possible to do such a
comparison, but one has to bear in mind that solvent effects can reach up to 0.1 eV.
The less polar the solvent is, the less prominent these uncertainties become. It is
also possible to simulate solvent effects with, for example, continuum solvation
models [like PCM [51] or COSMO [52] models (see Section 22.3.1)]. However,
this approach is not advisable when, for example, hydrogen bonds between the
solvent and the solute are expected, because these cannot be described by con-
tinuum solvation models. Moreover, one has to check enantiomeric purity in the
measurement because this influences the ECD intensities, of course. In general,
it is acceptable if the theoretical and experimental intensities differ by a factor
between one and two. More important than the absolute intensities is the question
whether the relative intensities between two absorption bands can be reproduced
by theory. However, large deviations of more than a factor of two may be a hint
that the theoretical treatment is not adequate or that, for example, the experiment
was not carried out properly (e.g., impurities etc.).

5. Various quantum chemical codes implemented either all or just some of the meth-
ods, described in the theoretical section. The programs usually differ in efficiency.
We will not comment on these differences, but will just state which codes we
used for the presented calculations. Usually, all HF, CIS, SCS-CC2, and (TD)-
DFT calculations were performed with the TURBOMOLE 6.0 suite of programs
[53–57]. We strongly suggest the use of the resolution of the identity (density
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fitting) approximation, when possible, which is very efficiently implemented in
TURBOMOLE and was applied whenever possible [55, 57, 58]. Calculations
with RSFs were performed with GAUSSIAN09 [59]. ZINDO/S computations
were done with ORCA 2.7 [60]. The perturbative SCS-CIS(D) correction and the
TD-PPP treatments were carried out with two different programs, which were
developed in our group [61, 62].

22.3. EXAMPLES

22.3.1. Determining the Absolute Configuration
of a Pharmaceutically Relevant Molecule

A recent study of the Waldmann group identified an indolin-2-on-3-spirothiazolidinone
compound as a promising starting point for the development of antibiotics directed against
Mycobacterium tuberculosis . A TD-B2PLYP simulated ECD spectrum helped to assign
the absolute configuration of one of these compounds [63]. We will first discuss the result
of this investigation because it presents a straightforward example in actual research, and
additionally a first application of the TD-B2PLYP procedure.

In the calculations of the ECD spectra, a model compound with (R)-configuration,
where two of the phenyl rings have been replaced by methyl groups, has been used.
The main reason for this simplification was the reduction of the conformational freedom,
making a conformational analysis unnecessary. At ambient temperatures, the contribu-
tions of the neglected phenyl rings is expected to be averaged out in the experiment but
would lead to a huge number of different conformations that have to be computed (and
averaged) in the theoretical treatment. The spectrum was computed with TD-B2PLYP
[34, 35] in combination with the COSMO model [52] to account for bulk solvation effects
in acetonitrile, based on a COSMO-PBE0/TZVP′ structure. Here, the TZVP′ basis set
denotes a triple-ζ polarized basis set TZVP on all atoms except sulfur, where a (larger)
set of (2d1f) polarization functions has been employed (TZVPP). Since a fully consistent
COSMO/TD-DFT treatment of electronically excited states was technically not possi-
ble while preparing this chapter, we applied the COSMO model to the calculation of
the ground state and solely used the COSMO modified orbitals and eigenvalues in a
subsequent standard gas-phase TD-DFT treatment. A similar situation holds true for the
perturbative correction needed for TD-B2PLYP. Different from the other examples in
this work, a σ value of 0.35 eV for the width of the absorption band at a height of 1/e
is used in this case, because of the broadness of the experimentally measured bands.

In order to check how sensitive the results are with respect to this choice, the PBE0
[31] hybrid functional additionally has been applied. The computed ECD spectra shown
in Figure 22.4 result from 15 individual electronic transitions. The comparison with
the experimental ECD spectrum (enantiomerically pure) shows good agreement for both
computed spectra. The errors for band positions are below 0.3 eV with TD-B2PLYP for
all four ECD bands, and the signs of all Cotton effects are computed correctly. Also, since
the two different density functionals give qualitatively the same answer, the assignment
of the absolute configuration is quite definite and revealed the (R)-configuration of the
model compound.

22.3.2. Treatment of a Large Alleno-Acetylenic Macrocycle

In 2009, Alonso-Gómez et al. published the synthesis, the ECD spectrum, and a theoreti-
cal analysis (based on the ZINDO method) of an enantiomerically pure alleno-acetylenic
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Figure 22.4. Comparison of theoretical and experimental ECD spectra of the investigated

spirothiazolidinone model compound (COSMO-PBE0/TZVP′ structure shown above. Oxygen: dark
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the COSMO continuum model with a dielectric constant of ε = 35.9 was applied.

Figure 22.5. Structure of the

investigated alleno-acetylenic macrocycle

in (P,P,P,P)-configuration [65].

macrocycle, which shows extraordinarily high ECD intensities [65]. The optimized struc-
ture (taken from reference 65) is shown in Figure 22.5. The system is D4 symmetric,
contains 132 atoms, and has a (P,P,P,P )-configuration. The ECD spectrum was recorded
in n-hexane and is shown in Figure 22.6. It exhibits two main absorption bands of oppo-
site signs at around 300 and 250 nm. The first band shows three shoulders, which could
be caused either by vibronic effects or by overlapping transitions. This system serves as a
good example of how to treat large chromophores. In D4 symmetry, only transitions into
states of 1A2 and 1E are ECD active. If the programs can handle such non-abelian point
groups, significant reduction of the computational effort can be gained. For example in
D4, only 12 transitions had to be calculated for B2GPPLYP, whereas in C2 symmetry
the number increased to 29, because many forbidden transitions had to be additionally
calculated.
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calculate each spectrum. Positions

and rotational strengths of the

transitions are marked with vertical

lines for TD-B2GPPLYP and

TD-B3LYP. The experimental

spectrum was recorded in n-hexane.

We start the discussion of the theoretical spectra with the ZINDO/S method
(Figure 22.6). Computation of 32 transitions was necessary to cover the experimental
energy range. The ZINDO/S method seems to be adequate for the determination of
the absolute configuration of the molecule, as two large bands with the correct signs
are obtained. However, qualitatively the spectrum is incorrect due to a small band of
positive sign at around 425 nm. Moreover, the spectrum is red-shifted compared to
experiment.

We continue the discussion with the results for various TD-DFT methods. Due to
the system’s size, different basis sets were used for different parts of the molecule. The
important chromophore (i.e., the carbon backbone) was treated with the TZVPP′ basis.
The tert-butyl substituents, which are not part of the chromophore, were treated with the
smaller SV(P) basis. Alternatively, it would have also been possible to substitute the large
tert-butyl moieties by methyl groups and to treat the entire molecule with the TZVPP′
basis. If no severe conformational problems suggest an exchange to smaller substituents,
keeping the original ones is in general favored, since they can indirectly influence the
chromophore (sterically or electronically). However, test calculations with the BHLYP
functional showed that the resulting spectrum is almost identical to the one obtained with
the first approach, on which we will concentrate in the following discussion.

Due to the relating low computational costs, it seems tempting to use a GGA
functional for the calculations. However, functionals with no or low amounts of Fock
exchange suffer from low-lying, artificial (“ghost”) states. This is also observed in this
case for the PBE functional (Figure 22.6b) because it was necessary to calculate 60
transitions for the spectrum. Most of the ghost states are found at large wavelengths.
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Therefore, three bands of negative sign are found between 475 and 280 nm, which do
not bear resemblance with the experiment. When going to the PBE0 and B3LYP hybrids,
the numbers of ghost states are reduced. Thirty-two transitions were needed for cover-
ing the whole energetic range of the spectrum. Both spectra are very similar to each
other. Two bands with correct signs are obtained. The first bands are red-shifted com-
pared to experiment, while the second ones are blue-shifted. Furthermore, the first band,
also exhibits shoulders, which could be evidence for the claim that several transitions
overlap. However, when reducing the number of ghost states even more—that is, when
performing BHLYP and B2GPPLYP calculations (19 and 12 transitions, respectively,
needed)—the shoulders vanish. B2GPPLYP yields two bands of correct signs and of
excellent position at 289 and 240 nm. Because only one transition is dominant for the
band intensity, we deduce that the fine structure observed experimentally is caused by
vibronic effects, which are not covered by our theoretical treatment. Theoretical methods
for treating vibronic effects in ECD spectra have been developed, but are currently not
applicable to systems of this size [66, 47]. The intensities of the B2GPPLYP spectrum
are, like for most of the other methods, overestimated by a factor of roughly two. The
relative intensities between the two bands are reproduced quite well, though.

Summarizing, we have seen that making use of symmetry is crucial, when treating
large systems. The basis set size can be reduced by using less basis functions for moieties,
which are not part of the chromophore. It is also necessary to compare different density
functionals with each other in order to avoid interpretation of artifacts.

22.3.3. Exciton Coupling in a Merocyanine-Dimer Aggregate

An important feature of large molecules and supramolecular aggregates can be the occur-
rence of intra- or intermolecular exciton coupling. Exciton coupling is caused by the
through space interaction between the electric transition dipole moments in different
chromophores. This phenomenon is particularly well observed in ECD spectra, which
are then characterized by two consecutive absorption bands of similar intensities but
opposite signs. A supermolecular, theoretical treatment of this phenomenon is a nontriv-
ial task, because the correct description of such long-range interactions is very dependent
on the theoretical model chosen. In particular, it is a difficult case for TD-DFT methods,
for which the exchange-correlation potentials decay too rapidly with intermolecular dis-
tance. To show the differences between various theoretical approaches, we discuss a large
merocyanine dimer-aggregate, for which an experimentally measured ECD spectrum is
available (the monomer is shown in Figure 22.7 with R = OC12H25) [67]. In 2008, we
performed the first supermolecular quantum chemical calculation for an exciton coupled
ECD spectrum based on this system [68]. Due to its large size, though, the long dodecoxy
moieties were replaced by methoxy groups (R = OCH3 in Figure 22.7). The theoretically
treated system contains 150 atoms, which is computationally demanding for sophisticated
quantum chemical approaches.

For the present context, we will review our theoretical investigation, i.e., CIS,
SCS-CIS(D), TD-PPP, TD-PBE, and TD-PBE0 methods, and will extend it with the
semiempirical ZINDO/S method and various other TD-DFT approaches, including a
double-hybrid and range-separated functionals (RSFs).

The first important step in treating this aggregate is obtaining a good geometry with
a method that adequately accounts for noncovalent London dispersion effects. This rep-
resents a crucial point in the entire procedure because it determines the alignment of
the chromophores with respect to each other and eventually the coupling of the transi-
tion moments. Unfortunately, wavefunction-based methods are far out of reach for the
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R = OC12H25 (exp.)
R = OCH3 (theor.)

Figure 22.7. Structures of the merocyanine

dye monomers used in experiment[67] and in

the present theoretical investigation. The

stereoisomer with (R)-configuration of the

marked carbon atom is considered. The basic

chromophore is highlighted by the dashed box.

optimization of such a large system. DFT, on the other hand, cannot correctly account
for London dispersion effects. However, a good way to bypass this deficiency is disper-
sion corrected DFT. For the current system we chose the B97-D [43] GGA-functional
in combination with a triple-ζ basis set with one set of polarization functions (TZVP).
During this unconstrained geometry optimization, we scanned for different conformers.
The energetically most stable conformer found is shown in Figure 22.8 and turned out to
be the only relevant one. Because of the flatness of the corresponding potential energy
surfaces and the many degrees of freedom, this structure is not necessarily the real most
stable conformer in solution. However, as will be seen below, it can lead to a very good
agreement with experimental ECD spectra and it is therefore likely that it reasonably
represents the thermal average that is observed experimentally. The structure is also in
accordance with related experimental observations [69].

For obtaining quantitatively correct excitation energies and transition moments, in
general a basis set of at least triple-ζ quality is necessary. However, the large system
size restricts the choice of basis set. The ECD spectra shown in Figure 22.9 were, thus,
calculated with the double-ζ basis set SV(P). This choice had been validated by a check
of the basis set completeness in TD-DFT calculations for one monomer. We found differ-
ences between SV(P) and an extended TZVPP set of only 0.08 eV for the relevant bright
state and, thus, the SV(P) results can be considered as being semiquantitatively correct.

Figure 22.8. B97-D/TZVP optimized

structure of the theoretically

investigated merocyanine dimer [68].
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Figure 22.9. Electronic circular dichroism spectra of the investigated merocyanine dimer. The

theoretical spectra were obtained with the SCS-CIS(D), CIS, TD-PPP, and ZINDO/S methods (a),

as well as with the TD-PBE, TD-B3LYP, TD-PBE0, and TD-BHLYP (b), and the TD-CAM-B3LYP,

TD-LCωPBE, and TD-B2GPPLYP approaches (c). An SV(P) basis was applied in the all-electron

treatments. The numbers in brackets show how many transitions were necessary to calculate each

spectrum. Positions and rotational strengths of the transitions are marked with vertical lines for

SCS-CIS(D), TD-BHLYP and TD-B2GPPLYP. The experimental spectrum (scaled by a factor of two)

was recorded in 1,4-dioxane [67]. The theoretical spectra are partially taken from reference 68.

Having obtained a good structure and having checked the basis set dependence,
calculations were carried out for both the monomer and the dimer, with various methods.
The experimental ECD spectrum of the dimer was recorded in 1,4-dioxane [67] and is
shown in all three parts of Figure 22.9. It clearly features the typical characteristic of
an exciton coupled ECD spectrum with two absorption bands of opposite signs at 2.14
and 2.50 eV and similar absolute intensities. Theoretical results for the first two excited
states of the monomer and the two exciton coupled states of the dimer (that result from
coupling of the lowest state of each monomer) are given in Table 22.2.

The ECD spectrum obtained by the CIS calculation is shown in Figure 22.9a. We
calculated the first four electronic transitions, though it turned out that only the first two
were necessary to yield the desired absorption bands. Most importantly, their signs are the
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TABLE 22.2. Theoretical Results for the First Two Excited States of the Merocyanine Monomer
and the Two Exciton Coupled States of the Dimer (Values Are Partially Taken from Reference
68.)

Monomer Dimer

�E a f r b �E a f r b Rr c

SCS-CIS(D) 2.16 1.290 1.85 0.001 77.6
3.78 0.024 2.37 2.230 −28.0

TD-PPP 2.29 1.418 1.78d 0.001 27.3
3.21 0.002 2.46d 2.525 −16.2

ZINDO/S 2.27 1.167 2.54e 1.521 24.3
3.51 0.002 2.2.80e 0.057 −2.7

TD-BHLYP 2.83 1.531 2.59f 0.001 37.0
3.74 0.018 2.96f 0.005 −17.8

TD-PBE0 2.78 1.418 2.99g 2.345 78.7
3.08 0.001 3.64g 0.009 −42.3

TD-B3LYP 2.64 1.286 2.93h 2.218 80.7
2.89 0.001 3.47h 0.006 −34.2

TD-PBE 2.11 0.002
2.28 8 × 10−5 i

TD-B2GPPLYP 2.51 1.604 2.21 0.0.001 42.6
3.37 0.018 2.54 0.043 −33.3

TD-CAM-B3LYP 2.74 1.472 2.49f 0.001 36.2
3.62 0.017 2.86f 0.005 −18.4

TD-LCωPBE 2.74 1.533 3.14e 2.604 56.5
4.15 0.017 3.50e 0.031 −17.9

a In eV.
b Oscillator strength in the length form.
cRotational strength in the length form in 10−40 cgs units.
d The exciton coupled states are here the first and fourth excited states.
eThe exciton coupled states are here the second and third excited states.
f The exciton coupled states are here the first and third excited states.
g The exciton coupled states are here the fourth and ninth excited states.
h The exciton coupled states are here the fourth and eleventh excited states.
i No exciton coupled states found.

same as in the experiment, which supports the reliability of the optimized structure. The
band positions are blue-shifted by more than 1 eV, which is the typical error for vertical
CIS excitation energies for valence states. The band intensities are severely overestimated
by factors of about five and two, respectively. The SCS-CIS(D) correction leads to a large
red shift for the excitation energies of about 1.4 eV compared to CIS and to a theoretical
spectrum, which is in very good agreement with experiment (errors of about 0.3 and
0.1 eV). The first two electronic transitions in the SCS-CIS(D) spectrum are closer
to each other than in the CIS one. Nevertheless, the intensities are still overestimated
(e.g., by a factor of two in the case of the first band). The spectrum obtained by the
semiempirical TD-PPP treatment is also shown in the same figure. It is also in good
agreement with experiment with excitation energies of 1.78 and 2.50 eV, respectively.
The band intensities are lower than observed experimentally. In contrast to the CIS and
SCS-CIS(D) methods, where the two bands are formed by two transitions, two additional
excited states can be found in the energy range of the TD-PPP absorption bands at 2.11
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and 2.23 eV. However, due to their small rotational strengths (−3.0 and 7.1 × 10−40 cgs),
they do not influence appearance of the spectrum. The semiempirical ZINDO/S does not
correctly reproduce the shape of the spectrum. Exciton coupling is observed, but only
for the second and third excited states. The third transition has, moreover, only a very
small intensity. Furthermore, an artificial band with positive sign is observed, which is
energetically lower then the exciton coupled states.

Figure 22.9b contains the ECD spectra obtained with common TD-DFT methods.
This example clearly shows a breakdown of current density functionals when trying to
describe long-range exciton coupling. Instead of the desired two transitions leading to an
exciton coupled ECD spectrum, a lot of ghost states are calculated. The TD-PBE spectrum
was calculated with 15 transitions, and it still does not feature the typical exciton couplet.
Results for the monomer already indicate that PBE is inadequate for the description of
this dye. The first two transitions lie with 2.11 and 2.28 eV too close to each other when
compared to SCS-CIS(D) with 2.16 and 3.78 eV (Table 22.2). Moreover, both transitions
feature very low oscillator strengths. Admixture of Fock exchange as in TD-B3LYP and
TD-PBE0 improves the description. The excitation energies of the monomer increase and
the large oscillator strengths of the first transition indicate that the right state is lowest
in energy. Nevertheless, also B3LYP and PBE0 do not provide correct ECD spectra
(Figure 22.9b). They are qualitatively similar to the CIS spectrum in the high-energy
region with the exciton coupled states and also show severe overestimations of the band
intensities by factors of five and two. Moreover, the exciton coupled states are not the
lowest-lying ones. Many artificial states influence the shape of the spectrum in the region
where the experimental ECD signals are observed. In addition to the intense, artificial
absorption bands around 2.4 eV, several ghost states lie between the two exciton coupled
ones. Mixing in 50% Fock exchange as in TD-BHLYP reduces the number of ghost
states dramatically. Only three states were necessary with BHLYP. Exciton coupling is
observed, but the second band is much too low in intensity. Range-separated functionals
are expected to correct the erroneous decay of the exchange potential. Although less
artificial states are observed, no overall improvement can be seen (Figure 22.9c). The
LCωPBE functional yields a spectrum similar to B3LYP and PBE0 and CAM-B3LYP
performs similarly to BHLYP.

The double-hybrid functional B2GPPLYP is the only density functional that cor-
rectly predicts the spectrum. The excitation energies are with 2.21 and 2.54 eV in very
good agreement with experiment. Only two excited states were computed, and the band
intensities are even lower than for SCS-CIS(D) and, thus, closer to experiment.

In conclusion, we have seen that treating exciton coupling adequately is very
difficult. Wavefunction-based methods like SCS-CIS(D) give accurate results, but
are time-consuming. Semiempirical methods show an ambiguous behavior. TD-PPP
gave very good results for this system, ZINDO/S did not. TD-DFT methods—in
particular, GGAs—are inadequate for treating long-range exciton coupling. Global
and range-separated hybrid functionals are also not satisfying. The double-hybrid
B2GPPLYP is the only functional in this study that yields excellent agreement with
experiment.

22.3.4. Approaching a Supramolecular Organic Capsule with TD-DFT

In general, only successful TD-DFT applications are discussed in the literature. Herein,
we like to discuss instead a very problematic case for TD-DFT. The system under
scrutiny is the calix[4]resorcinearene dimer by Rebek and co-workers [70] encapsulating
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a chiral alcohol [(R)-2-tetradecanol] [71]. This supramolecular aggregate offers, apart
from the encapsulated chromophore of the alcohol, eight benzene rings and eight fused
imide–pyrazine moieties, providing potentially complicated exciton coupled and charge-
transfer absorption bands. This system presents two major hurdles. One is of course the
pure size of the system with 269 atoms. The structure itself can be obtained from DFT-
D calculations with a GGA-type functional within reasonable time and effort [72]. The
DFT-D methodology for the treatment of London dispersion is crucial for this complex.
The common approach to use the B3LYP/6-31G* level of theory is overrepulsive and
does not predict encapsulation of the guest molecule [73]. We employed B97-D/TZVP
optimized structures (Figure 22.10). Unfortunately, ECD calculations with TD-DFT and
GGA functionals suffer from the self-interaction error and too-fast-decaying xc-potentials
as mentioned in previous sections. This second hurdle can be partially solved by using
global hybrids or RSFs, which, however, constitute a major effort in computing time
with a reasonable triple-ζ basis set, since the scaling is linear with respect to the number
of states [roots in the linear equations; see Eq. (22.7)] and each state involves repeated
calculations of expensive exchange integrals. We therefore have to restrict ourselves to
the double-ζ basis set SV(P) and consider only eight excited states for this system.

Figure 22.11a shows rotational strengths (Rr ) for the supramolecular complex calcu-
lated with functionals based on Perdew’s PBE potential with different amounts of Fock
exchange and from TD-HF.

The TD-PBE method exhibits very small, barely visible, Rr values. These very small
values indicate that all these states are ghost states. Also the calculation of additional
states (up to a total of 20) combined with a larger basis set (TZVP) did not show
any improvement in the intensities. This clear failure of the xc-kernel shows that it is
dangerous to rely on GGA functionals for TD-DFT even if they might constitute the only
computationally feasible functional type. The TD-PBE result represents one extreme, the
other extreme is TD-HF. TD-HF, as well as CIS, suffers from a missing description of
electron correlation.

As mentioned in the theory section, the errors of excitation energies for TD-HF/CIS
are usually too high (usually overestimation and errors above 1 eV) and often wrong
ordering for states of different electronic character can be observed. The strong advantage
over TD-DFT, on the other hand, is the correct asymptotic behavior of the potential. If this
becomes crucial, TD-HF might become an option. In our case, TD-HF is used as an upper
bound to the exact Fock exchange included in global and RSFs. In that sense, TD-PBE can
be seen as the corresponding ‘lower bound’ with no Fock exchange. The intermediate
methods with a variable amount of Fock exchange show the expected behavior. The

Figure 22.10. B97-D/TZVP optimized

structure of the calix[4]resorcinarene

dimer with a (R)-2-tetradecanol guest.
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Figure 22.11. Positions and

rotational strengths of the calculated

transitions in the

calix[4]resorcinearene aggregate from

TD-DFT (a) and semiempirical schemes

(b). These are marked by vertical lines

(dashed lines for TD-PPP). Eight

transitions were calculated with

TD-DFT in the SV(P) basis sets, and 20

transitions were calculated with the

semiempirical methods.

increase of Fock exchange from TD-PBE0 (25%) or TD-PBE38 (37.5%) leads to an
increase of the rotational strengths and to a blue shift of the excitation energies. The
long-range corrected functional LCωPBE has the advantage of the correct asymptotic
behavior of the exchange potential (100% Fock exchange in long-range region) and
performs similar to the global TD-PBE38 hybrid.

We are not able to quantify the errors for the excitation energies. The experimental
ECD band occurs at 344 nm, which is in between the PBE0 and PBE38 result. It is
common to shift the simulated ECD spectrum if the method inherits a systematical
error. If we estimate the peaks of the simulated bands (PBE0: 345 nm, PBE38: 315 nm,
LCωPBE: 289 nm), we get shifts of PBE0 = 0.0 eV, PBE38 = 0.3 eV, and LCωPBE =
0.7 eV that would have to be applied. TD-HF is in this respect far off (about 1.5 eV).

There is little chance of tackling this large system with wavefunction-based methods
like CC2, CIS(D), or its SCS variants due to their computational demands. We are
basically left with semiempirical methods. Figure 22.11b shows rotational strength from
TD-PPP (dashed lines) and from ZINDO/S (bold lines) calculations. TD-PPP has been
successfully applied to this systems with an averaged spectrum based on semiempirical
molecular dynamics simulations [71]. As mentioned, the experiment exhibits one (weak)
ECD band at 344 nm, for which a reasonable, qualitative agreement could be achieved.
For 20 calculated states we see that strong rotational strengths from both semiempirical
approaches and the low-lying excitations occur roughly in the correct energy range. In
contrast to TD-DFT, we can easily obtain an (at least qualitatively correct) simulated
ECD spectrum. However, as always when working with semiempirical methods, careful
inspection of the results is mandatory.

22.3.5. How to Treat Conformationally Flexible Systems

In the previous examples, only one (the most stable) conformer of each system
was relevant. Treating such cases is straightforward. A qualitatively good structure
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has to be obtained and the spectra can then be calculated with different theoretical
methods and compared to experiment. Usually, though, systems of chemical interest
are conformationally flexible. Each conformer can yield a completely different
spectrum, and therefore these spectra have to be combined to a total spectrum
if a meaningful comparison to experiment is to be made. Herein, we discuss the
(S)-2-(3-fluoro-(p-tolyl)propyl)naphthalene molecule (Figure 22.12) as an example for
a conformationally flexible organic molecule. It is a challenging system, because it
contains two aromatic chromophores. Thus, stacked (due to London dispersion effects)
and nonstacked conformers are possible, whose spectra can exhibit locally excited,
CT, and exciton coupled states. In this example, we show how to obtain a total ECD
spectrum based on the accurate SCS-CC2 method.

The applied procedure is depicted schematically in Figure 22.13. It can be generalized
also to other systems and other methods. After having created a reasonable start structure,
a very fast screening for different conformers can be easily done with a standard force
field, like, for example, AMBER [74]. In the present case, this yielded 44 different
conformers. These were then further investigated. Due to the size of the system and
the huge number of conformers, we decided to use a GGA-functional. Because stacked
conformers were found, it was crucial, though, to make use of the empirical dispersion
correction (DFT-D3) [40]. This, in combination with the BLYP functional, had previously
been proven to be the best GGA methods for the correct energetic ordering of such
conformers [40]. At the beginning of the optimization procedure, it is useful to employ
a small basis set, like SV(P). This preoptimization reduced the number of conformers to
22. Many of the force-field conformers resulted to belong to the same local minimum
on the BLYP-D3/SV(P) hypersurface. The remaining 22 structures were then further
optimized with the TZVP basis. To decide which conformers are important for the total
ECD spectrum, their relative energies have to be determined. Therefore, we chose one
of the most accurate DFT methods, which is the B2GPPLYP functional in combination
with the DFT-D3 correction [75]. Usually, relative energies converge slower with basis
set size than geometries. Therefore, a larger basis set was used, that is, def2-TZVPP.

Having obtained good structures and relative energies for the 22 different conform-
ers, one has to decide which conformers are necessary for the calculation of the total ECD
spectrum. At room temperature, relative energies of up to 1.5 kcal/mol should be con-
sidered. In the present case, 10 of the 22 conformers are within this 1.5 kcal/mol range.
Their relative energies and thermal populations are given in Table 22.3. The structures
are shown in Figure 22.14.

The relative energy between the two most stable structures is 0.16 kcal/mol. The
other structures lie at least 0.90 kcal/mol higher in energy than the most stable one.
Eight structures are characterized by stacked alignments of the aromatic moieties. The
two structures 6 and 10 are the only nonstacked ones that lie within the considered
1.5 kcal/mol range.

For each relevant conformer, a single ECD spectrum had to be calculated. This was
done at the SCS-CC2/TZVPP′ level of theory including 10 transitions (see Figure 22.14).
The spectra are a good example that the structure has a decisive influence on their shape

F

Figure 22.12. Structure of (S)-2-(3-fluoro-

(p-tolyl)propyl)napthalene used as a flexible model

compound.
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and appearance. All spectra show transitions in the region of about 4.5 eV. The intensities
and signs of the band, though, vary significantly. The nature of these bands is in all
cases a local valence transition within the naphthyl moiety. Additional bands are predicted
in a range of 5.5 to about 6.5 eV. Again, their intensities and signs differ significantly.
The stacked conformers exhibit CT and valence transitions in these regions, whereas
the nonstacked ones show local valence transitions, particularly on the tolyl unit. In the
case of conformer 10, a band at about 7 eV is observed. Although this conformer is
energetically high-lying, it can still have an important influence on the total spectrum,
because the other conformers do not exhibit transitions in this region. A very important
observation is made for the two most stable conformers. Their spectra exhibit bands with
similar positions but usually of opposite signs. This has a dramatic influence on the total
spectrum, because these bands may almost completely cancel each other out. This is, in
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TABLE 22.3. Relative Energies and Boltzmann Weights for 10 Conformers of
(S )-2-(3-Fluoro-(p-tolyl)propyl)naphthalene, Based on B2GPPLYP-D3 and B3LYP Calculations

B2GPPLYP-D3 B3LYP

No. �E a Weightb �E a Weightb

1 0.00 35.7 4.43 —
2 0.16 27.3 4.53 —
3 0.90 7.8 5.09 —
4 1.09 5.7 5.44 —
5 1.10 5.6 4.62 —
6 1.29 4.0 1.23 11.1
7 1.30 4.0 4.91 —
8 1.37 3.5 4.82 —
9 1.40 3.4 5.12 —
10 1.47 3.0 0.00 88.9

a Energy difference in kcal/mol with respect to the most stable conformer (1 for B2GPPLYP-D3/def2-TZVPP
and 10 for B3LYP/TZVPP′).
b Boltzmann weights in % at 298.15 K. Only conformers within an relative energy range of 1.5 kcal/mol are
considered.

fact, a “worst case” scenario in an investigation of a conformationally flexible system
and, thus, our analysis should be considered as a tough test for the theoretical approaches
applied.

To obtain the final spectrum, each individual spectrum has to be scaled by a certain
factor, which reflects the relative population N at a certain temperature. For the i th
conformer, the Boltzmann population is given by

Ni =
exp

(
−�Ei
RgasT

)
∑all

i exp
(

−�Ei
RgasT

) , (22.9)

where �Ei is the energy difference of the i th conformer with respect to the most stable
one, Rgas is the universal gas constant, and T is the temperature (here T = 298.15 K
was chosen). For each individual conformer, the rotational strengths are scaled by these
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Figure 22.14. Structures and SCS-CC2/TZVPP′ ECD spectra for the 10 most stable conformers of

(S)-2-(3-fluoro-(p-tolyl)propyl)naphthalene. For each conformer the 10 lowest electronic transi-

tions were calculated.
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weights and a final spectrum of all combined transition energies and rotational strengths
is simulated. The resulting SCS-CC2 spectrum is shown in Figure 22.15a. The spectrum
shows three major bands. The first one at around 4.6 eV has a positive sign and is
caused by the local valence transitions within the naphthyl moiety, as explained for the
individual conformers. The second band of positive signs and the third band of negative
signs have shoulders, indicating several overlapping transitions. Mainly, these are caused
by the mixed local and CT transitions of the conformers. The shoulder at around 7.2 eV
is caused by the valence transition of conformer 10, thus showing the importance of also
including conformers with a low Boltzmann weight (3%).

For performing the Boltzmann averaging, it is crucial that the conformational ener-
gies are accurate. To demonstrate this, we repeated the investigation using energies from
the popular B3LYP functional without any dispersion corrections. The relative energies
are shown in Table 22.3. The most stable conformer at the B3LYP level is conformer
10, which is nonstacked. The only conformer within a 1.5-kcal/mol range is the sec-
ond nonstacked conformer 6. All relative energies between the stacked and the most
stable conformers are 4.4 kcal/mol or higher. The reason is that B3LYP does not cor-
rectly describe London dispersion effects. Thus, these conformers do not play any role
in the Boltzmann averaging. Consequently, only two conformers are necessary to com-
pute the total spectrum, which is shown in Figure 22.15b and is completely different
from the one based on B2GPPLYP-D3 relative energies.

Finally, it is possible to use the total spectrum in Figure 22.15a as reference for other
methods. SCS-CC2 is assumed to describe local and CT transitions quite accurately. We
consider only states up to 6 eV (the first two bands) and compare the SCS-CC2 spec-
trum to various TD-DFT methods. For each method, the single spectra were averaged
using the same B2GPPLYP-D3 Boltzmann weights. Figure 22.16 shows these spectra
obtained with the BLYP, B3LYP, CAM-B3LYP, BHLYP, and B2GPPLYP functionals
and the TZVPP′ basis. Spectra were also calculated with PBE, and PBE0, but they were
very similar to BLYP and B3LYP, respectively, and, therefore, not shown. Again, it is
observed that small amounts of Fock exchange lead to a higher number of excited states
to be calculated (e.g., 25 for each conformer for BLYP). Furthermore, these excited states
are more red-shifted than for other functionals. Particularly, for BLYP, many artificial
bands are observed between 3.5 and 5 eV. The model compound is a difficult case
for TD-DFT methods in general, because also CT excitations play an important role.
This is why also the BHLYP and B2GPPLYP functionals do not perform very well,
although the excitation energies are better than for BLYP and B3LYP and less artifi-
cial bands are observed. The intensities of BHLYP and B2GPPLYP, though, are very
low, and higher in the case of B3LYP. CAM-B3LYP performs similar to the BHLYP
functional.

In summary, it was shown how an ECD spectrum can be calculated for conforma-
tionally flexible systems. The important steps are the screening for possible conformers,
the determination of their geometries, and accurate relative energies. These treatments
should be carried out with methods that can correctly describe London dispersion effects.
A straightforward Boltzmann averaging then gives weights for the individual conformer
spectra and finally leads to a total spectrum that can be compared with experiment. As a
rule of thumb, conformers that are in an energy range of 1.5 kcal/mol with respect to the
most stable one should be considered when the averaging is done for room temperature.
Note that this procedure does not account for quantum mechanical averaging effects that
may result from large amplitude nuclear motions. These could be modeled by performing
molecular dynamics simulations and an averaging over the resulting trajectories.



THEORETICAL ELECTRONIC CIRCULAR DICHROISM SPECTROSCOPY 667

4.5 5 5.5 6 6.5 7 7.5

ΔE/eV

–30

–20

–10

0

10

20

SCS-CC2/TZVPP’ (B2GPPLYP-D3
based weighting)

(a)

Δε
/(

M
–1

 c
m

–1
)

ΔE/eV

4.5 5.55 6 6.5 7 7.5
–100

–50

0

50

100

150

200

SCS-CC2/TZVPP’ (B3LYP based
weighting)

(b)

Δε
/(

M
–1

 c
m

–1
)

Figure 22.15. Computed SCS-CC2/TZVPP′

ECD spectra of

(S)-2-(3-fluoro-(p-tolyl)propyl)napthalene based

on a Boltzmann averaging with B2GPPLYP-D3

(a) and B3LYP (b) relative energies.

3.5 4 4.5 5 5.5 6

–20

–10

0

10

20

30 SCS-CC2
TD-BLYP
TD-B3LYP
TD-CAMB3LYP
TD-BHYLP
TD-B2GPPLYP

ΔE/eV

Δε
/(

M
–1

 c
m

–1
)

Figure 22.16. Computed ECD spectra of

(S)-2-(3-fluoro-(p-tolyl)propyl)naphthalene

obtained with the TD-BLYP, TD-B3LYP,

TD-BHLYP, and TD-B2GPPLYP methods. An

SCS-CC2 spectrum is shown as reference.

The TZVPP′ basis was used in all cases.



668 COMPREHENSIVE CHIROPTICAL SPECTROSCOPY, VOLUME 1

22.3.6. Theoretical Treatment of Experimentally Investigated
Cyclophane Derivatives

In this example, we make use of the work of Mori et al.[76], who investigated conforma-
tionally flexible, donor–acceptor substituted para-cyclophanes with charge-transfer and
exciton-coupled transitions. Three structures and their respective conformational analyses
are taken from their work. The authors’ approach differs slightly from the one suggested
in Section 22.3.5. BLYP-D/TZV2P optimized conformers underwent SCS-MP2/TZVPP
single-point calculations that were used to calculate each conformer’s Boltzmann weights.
The SCS-MP2 level of theory is competitive to B2GPPLYP-D3 for these systems. For
each conformer the eight lowest states were taken into account.

We picked a charge-transfer-dominated cyclophane (1), an exciton-coupling-
dominated cyclophane (2), and a “mixed” cyclophane (3) that shows both charge-transfer
transitions and exciton coupling (see Figure 22.17). We tested a number of long-range
corrected functionals (LCωPBE, ωB97X, CAM-B3LYP) for their performance and
applied the double-hybrid B2GPPYLP and the global hybrid BHLYP. For a detailed
discussion of ECD in cyclophanes see reference 77.

Figure 22.18 depicts the results for the charge-transfer-dominated cyclophane 1. All
functionals predict the correct sign for each band and therefore would lead to a correct
assignment of the absolute configuration. However, the excitation energies are quite
different for the methods. A constant shift of the spectra could resolve much of this often
observed, systematic deficiency. Particularly the first state, a pure charge-transfer one, is
very sensitive to the method employed. Among the selection, TD-B2GPPLYP gives the
best excitation energies, while TD-LCωPBE yields the worst. For the excitation energies
TD-CAM-B3LYP improves only slightly over TD-BHLYP, and TD-ωB97X is similar to
TD-LCωPBE. Additionally, the simulation of the charge-transfer-dominated bands, like
the very first, suffer from too high intensities.

The exciton-coupled spectrum of cyclophane 2 is shown in Figure 22.19. The exper-
imental spectrum features for the first two bands a shoulder, indicating overlapping
transitions or vibronic effects. Regarding the total shape of the spectrum, the RSFs
perform better than TD-BHLYP or TD-B2GPPLYP. However, the band positions of TD-
B2GPPLYP are remarkably accurate, ignoring the fact that the functional is unable to
recover the experimentally observed shoulders, but instead forms a separate band. The
RSFs show these shoulders. Notice that TD-CAM-B3LYP yields the best excitation ener-
gies and intensities. Interestingly, the quality of the intensities computed by TD-LCωPBE
and TD-ωB97X decrease with higher excitations.

The cyclophane 3 (ECD spectrum in Figure 22.20) constitutes the most difficult case.
This is seen already for the first two bands (�ε increased by a factor of 10). Only one of

CN
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MeO
OMe
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MeO

MeO

21 3

Me

NC

Me
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Figure 22.17. Chiral para-cyclophanes investigated in this study.
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the bands is reproduced and its intensity is largely overestimated by all functionals. TD-
B2GPPLYP is unable to reproduce the last band. TD-BHLYP and RSFs improve slightly
and reproduce at least the general shape. Note that the band at 260 nm has a very weak
shoulder below 300 nm. All functionals produce a band near this region, indicating that
close-lying transitions partly cancel out in the experiment but not in the calculation.
Taking this into account, all functionals can be used to assign the absolute configuration
with TD-B2GPPLYP not being able to reproduce the high-lying transitions (the last band)
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correctly. Note that in this region the perturbative correction becomes already problematic
[7]. The RSFs yield the best relative intensities with TD-CAM-B3LYP showing the best
excitation energies among them.

For the investigated cyclophanes, the assignment of the absolute configuration is
possible with all applied functionals. Among the tested methods, TD-B2GPPYLP and
TD-CAM-B3LYP seem to perform best. However, the differences are small and often
only a systematic error in the excitation energies is found.

22.4. SUMMARY

Electronic circular dichroism (ECD) spectroscopy is a strong experimental tool for the
analysis of large organic and supramolecular compounds. A corresponding theoretical
treatment, however, is still a challenging task. We have tried to give useful advice for
practical calculations and mentioned important aspects that should, in our opinion, be
considered in any calculation of ECD spectra. This has been underlined and demonstrated
with six examples, covering exciton coupling, charge-transfer excitations and noncovalent
interactions in aggregates, inclusion compounds, and conformationally flexible molecules.
Particularly, an accurate treatment of conformationally flexible systems is nontrivial and
has to be carried out carefully. London dispersion corrections are essential in DFT for
an accurate description of ground-state properties that indirectly influence the shape of
an ECD spectrum.

Our examples showed that correlated ab initio methods are, in general, recommended
for the simulation of ECD spectra, but are rarely applicable for technical reasons. The
“cheaper” semiempirical methods are not equally well applicable, and their performance
strongly depends on the case under study. TD-DFT is the economically best approach,
but the functionals used have to be chosen carefully and cannot be applied in a “black
box” fashion. GGA functionals turned out to be not reliable, not even for qualitative
considerations. Global hybrid functionals should include 40% to 50% of Fock exchange,
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so that (for example) the B3LYP and PBE0 standard functionals cannot be recommended
in general. Range-separated hybrid functionals were applied for the first time in calcu-
lations of ECD spectra. They are, in general, better than global hybrids and yield good
excitation energies and rotational strengths. In the worst cases, though, they are compara-
ble to global hybrids. For not too high-lying energy states, double-hybrid functionals are
usually the best methods and can be recommended in general for ECD, which confirms
previous conclusions [7].
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HIGH-ACCURACY QUANTUM

CHEMISTRY AND CHIROPTICAL
PROPERTIES

T. Daniel Crawford

23.1. INTRODUCTION

In 1973, Pople devised the concept of a “theoretical model chemistry”—defined as
a method for computing an approximate electronic wavefunction with only the num-
ber of electrons (and spin multiplicity), as well as the charges and coordinates of the
nuclei as input [1]. The resulting wavefunction can then be used to compute a range
of chemically relevant properties, including reaction energies, potential energy surfaces,
vibrational and electronic spectra, and more. A complete model, Pople said, was one that
can be applied to any configuration of nuclei. His idea sparked the development of a
wide array of generally applicable quantum chemical methods and ultimately the great
triumph of modern theoretical chemistry: first principles, predictive models of molecular
properties.

Key to the success of quantum chemistry is the concept of a convergent ab initio
model—that is, one that is formally exact and thus may be systematically improved
in its mathematical completeness towards the limit of the solution to the electronic
Schrödinger equation. This allows the precise calibration of theoretical data even in
the absence of experiment and, in many cases, has provided simulations of molecular
properties of such high accuracy that they have overturned and even superseded empirical
results [2].

Comprehensive Chiroptical Spectroscopy, Volume 1: Instrumentation, Methodologies, and Theoretical
Simulations, First Edition. Edited by N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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In the last two decades, a variety of quantum chemical models have focused on
chiroptical properties [3], including optical rotation [4–15], electronic circular dichroism
[12, 14, 16–23], vibrational circular dichroism [5, 24–30], and Raman optical activity
[31–42]. One of the primary goals of this work has been the construction of compu-
tational tools to assist synthetic chemists in the elucidation of absolute stereochemical
configurations of chiral compounds. Although the experimental determination of these
properties is now well established, such measurements can only be used to establish
the three-dimensional structure of the compound if the circular dichroism, birefringence,
or scattering intensity differences are known a priori . Such analyses are vital to mod-
ern synthetic organic chemistry, for example, where the laboratory synthesis of chiral
species such as natural products requires careful control over the absolute and relative
configurations of stereogenic centers [43]. Thus, if theory can provide accurate, reliable,
and computationally efficient predictions of chiroptical properties as references for corre-
sponding spectral measurements, the sythesis of new chiral compounds—including new
chiral drugs—could be sped by years or even decades.

The purpose of this chapter is to provide an overview of the most accurate and
reliable quantum chemical method currently in use: coupled cluster theory [44–46]. The
power of this approach is in the accuracy of its predictions for a wide array of molecular
properties, an accuracy that can be systematically controlled through improvements in
the level of electron correlation employed and the completeness of the basis set. Lee and
Scuseria [47] provided a detailed analysis of the performance of coupled cluster methods
with large basis sets including up to g-type angular momentum functions for equilib-
rium geometries, vibrational frequencies (both harmonic and fundamental), dissociation
energies, enthalpies of formation, dipole moments, static polarizabilities, and excitation
energies for a large number of small molecules. As compared to the best available exper-
imental data, average errors for bond distances (including multiply bonded species) did
not exceed 0.003 Å, while experimental fundamental vibrational frequencies were repro-
duced to within 8.0 cm−1 on average. They reported binding energies to be accurate
to 1.0 kcal/mol for single bonds and 2.0 kcal/mol for multiple bonds, and similarly
impressive results for other properties.

More recently, Helgaker et al.[48] reported statistical analyses of coupled cluster
methods with even larger basis sets (in many cases including extrapolations to the com-
plete basis set limit), and they found that the errors relative to experiment for many
properties exhibit normal distributions. They demonstrated that both the center and spread
of the error distribution can be controlled by systematic improvements in the correlation
treatment and the basis set, and the proposed protocols involving sequences of cou-
pled cluster computations can methodically approach the exact answer to the electronic
Schrödinger equation. In many cases, significant discrepancies between theory and exper-
iment can thus be attributed to errors in the latter [2], making the coupled cluster method
the “gold standard” of quantum chemistry. On this basis, there is much reason for opti-
mism as to the potential usefulness of coupled cluster theory for predicting the optical
properties of chiral molecules.

We will begin with an overview of the history of coupled cluster theory, followed by
a brief primer on the fundamental aspects of the ground-state theory. After a discussion
of its extension to properties such as optical rotation and electronic circular dichroism
through the so-called linear response and equation-of-motion variants, we will review
a number of specific applications, including both its successes and failures. We will
conclude with a prospectus on the future of the method and its potential to reach the
goal of a computational tool for the determination of absolute configurations.
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23.2. COUPLED CLUSTER THEORY

23.2.1. History

The origins of the coupled cluster method lie in the theory of nuclear matter, starting
with the pioneering work of Coester and Kümmel in the early 1960s [49]. They were
the first to recognize the usefulness of an exponential form of the wavefunction, and
thus they dubbed it exp(S ) theory. A few years later, Čı́žek and Paldus adapted the
idea for electronic wavefunctions [50–52], and they were the first to develop convenient
mathematical and diagrammatic schemes for deriving the working equations [53]. Based
on a suggestion by Sinanoğlu, they adopted the name coupled pair many-electron theory
(CPMET)—which we now know as the coupled cluster doubles (CCD) method—since
their model focused on only pairs of electrons. In the early 1970s, however, it became
clear that this moniker was inadequate for the more generalized form of the theory, and
Harris soon produced the now-popular neologism coupled cluster theory [54].

There have many been contributors to the field of coupled cluster since the earliest
efforts by Čı́žek and Paldus. The Bartlett group at the University of Florida’s Quan-
tum Theory Project has been among the most prolific and influential [44, 45, 55–59],
starting with their report of the first implementation of (CCD) in 1978 [60] (published
simultaneously as an implementation by Pople et al. [61]). Bartlett and co-workers have
been responsible for many “firsts” in coupled cluster theory, including the first imple-
mentations of coupled cluster singles and doubles (CCSD) [62], triples (CCSDT) [63],
quadruples (CCSDTQ) [64], and pentuples (CCSDTQPH) [65], as well as a variety of
approximate schemes to balance accuracy and computational cost [66, 67]. The most
reliable and popular coupled cluster method is undoubtedly CCSD(T)—CCSD aug-
mented with a perturbational estimate of triple substitutions—which was first reported
by Raghavachari et al. in 1989 [68]. An alternative approximate hierarchy has been
introduced by the Scandinavian groups, starting from CC2 [69], which provides an
intermediate between second-order perturbation theory and CCSD, and including CC3
[70, 71], which incorporates the effects of connected triples but, unlike CCSD(T), is
applicable to frequency-dependent properties such as optical rotation.

The computation of molecular properties within coupled cluster theory began with
the work of Monkhorst in 1977 [72], who developed response equations for first- and
second-order properties. Soon thereafter, Mukherjee and co-workers reported an approach
for computing excitation energies and dynamic polarizabilities [73, 74] using related for-
malisms. In the 1980s, Sekino and Bartlett further developed coupled cluster response
formalisms, particular for excitation energies and transition properties [75], and in 1993
Stanton and Bartlett reported the development of the equation-of-motion coupled clus-
ter (EOM-CC) method for excitation energies, transition strengths, and polarizabilities
[76, 77]. In 1990, Koch and Jørgensen reported on a new formulation of coupled cluster
computing response properties [78] with applications to excitation energies [79], and
their approach has been used and extended many times since [9, 10, 13, 69–71 80–92].

23.2.2. Fundamentals

All many-body electronic structure methods, including perturbation theory, configuration
interaction, and coupled cluster, are based on expansion of the wavefunction in a set
of Slater determinants—antisymmetrized products of orthonormal one-electron molec-
ular orbitals (MOs) [93]. The MOs themselves are typically (but not always) obtained
from a Hartree–Fock self-consistent-field (SCF) computation, which produces both a set



678 COMPREHENSIVE CHIROPTICAL SPECTROSCOPY, VOLUME 1

of occupied orbitals, {φi }, and a set of unoccupied orbitals, {φa}.1 The set of Slater
determinants that can be constructed from the MOs are grouped based on the number of
orbitals they have in common with a reference determinant, |�0〉 (e.g., the Hartree–Fock
wavefunction): Those that differ from |�0〉 by substitution of one occupied orbital, φi ,
by an unoccupied orbital, φa , are called singles and are denoted |�a

i 〉, and those that
differ by substitution of two orbitals, φi and φj , by φa and φb , are called doubles and
are denoted |�ab

ij 〉, and so on.
In models such as configuration interaction (CI) [94], the total wavefunction is written

as a linear combination of Slater determinants, for example,

|�CI〉 = |�0〉 +
∑

ia

t a
i |�a

i 〉 + 1

4

∑
ijab

tab
ij |�ab

ij 〉 + · · · , (23.1)

where the t a
i , t ab

ij , and so on, are the expansion coefficients (amplitudes) and the prefactor
of 1/4 corrects for double counting of determinants. If all possible determinants are
included in the expansion, then the wavefunction represents the exact solution to the
electronic Schrödinger equation within the space spanned by the set of MOs—that is,
the full CI wavefunction. Unfortunately, the number of determinants grows factorially
with the number of electrons and MOs, thus limiting the practical construction of full
CI wavefunctions for molecules containing around 10 electrons at most. As a result,
the expansion must be truncated to low substitution levels to keep the computational
requirements manageable (e.g., singles and doubles to form CISD) up to triples for
CISDT, and so on.

The coupled cluster method differs from CI and perturbation theory in that it uses
an exponential rather than linear form for the wavefunction [44–46],

|�CC〉 = eT̂ |�0〉, (23.2)

where the cluster operator , T̂ = T̂1 + T̂2 + · · · generates the required sets of Slater deter-
minants from the reference, |�0〉; that is, the singles cluster operator gives

T̂1|�0〉 =
∑

ia

t a
i |�a

i 〉, (23.3)

and the doubles cluster operator gives

T̂2|�0〉 = 1

4

∑
ijab

tab
ij |�ab

ij 〉, (23.4)

and so on. The advantage of the exponential form can be seen from its power-series
expansion:

eT̂ = 1 + T̂ + 1

2
T̂ 2 + 1

6
T̂ 3 + · · · . (23.5)

1 We will adopt a common convention that occupied MOs are labeled with indices i , j , k , etc., and unoccupied
MOs by a , b, c, etc.
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Thus, if we choose to truncate the T̂ operator at only singles and doubles (yielding the
CCSD method [62]), then the exponential produces products of T̂1 and T̂2 operators,

eT̂1+T̂2 = 1 + T̂1 + T̂2 + 1

2
T̂ 2

1 + T̂1T̂2 + 1

2
T̂ 2

2 + 1

6
T̂ 3

1 + 1

2
T̂ 2

1 T̂2 + 1

2
T̂ 2

2 T̂1 + 1

6
T̂ 3

2 + · · · ,

(23.6)

where, for example, the action of a product of T̂1 and T̂2 on the reference determinant is
a triple,

T̂1T̂2|�0〉 = 1

4

∑
ijkabc

ta
i t cd

jk |�abc
ijk 〉. (23.7)

Therein lies one of the principal advantages of coupled cluster theory: Even when the
cluster operator is truncated (e.g., singles and doubles), the exponential wavefunction
implicitly incorporates higher substitution levels—triples, quadruples, and so on. As a
result, the coupled cluster expansion converges toward the full configuration interaction
limit much more quickly than the linear expansion of CI, making it a much more accurate
and reliable approach. Furthermore, the method is systematically improvable; that is,
greater and greater accuracy can be obtained by increasing the substitution level included
in T̂ , with the proviso, of course, that each new level incurs greater computational cost.

At first blush, the exponential expansion of Eq. (23.5) may appear to involve an
infinite number of terms (or at least as many terms as the number of electrons). However,
the mathematical structure of the equations leads to a natural and convenient trunction. If
we insert the exponential wavefunction into the Schrödinger equation and then multiply
on the left by the inverse of the exponential, we obtain

e−T̂ Ĥ eT̂ |�0〉 = ECC|�0〉. (23.8)

The similarity-transformed Hamiltonian on the left-hand side of the equation acts as an
effective Hamiltonian, which may be written as an expansion of commutators, namely,

H ≡ e−T̂ Ĥ eT̂ = Ĥ +
[
Ĥ , T̂

]
+ 1

2

[[
Ĥ , T̂

]
, T̂

]
+ 1

6

[[[
Ĥ , T̂

]
, T̂

]
, T̂

]
(23.9)

+ 1

24

[[[[
Ĥ , T̂

]
, T̂

]
, T̂

]
, T̂

]
+ · · · .

It may be shown [46] that this expression exactly truncates at the fourth-order commu-
tator because the electronic Hamiltonian, Ĥ , contains at most two-electron (Coulombic)
potentials. If we project the Schrödinger equation on the left by the reference determinant,
we obtain an equation for the energy,

ECC = 〈�0|H |�0〉, (23.10)

whereas left-projection by the determinants corresponding to the substitution level of T̂
yields sets of equations that may be solved for the amplitudes—for example,

0 = 〈�a
i |H |�0〉 (23.11)
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for the singles,

0 = 〈�ab
ij |H |�0〉 (23.12)

for the doubles, and so on. These formal equations must, of course, be converted into
forms that can be subsequently programmed and solved on the computer, and the literature
is replete with algebraic and diagrammatic techniques for carrying out this task [44–46,
95, 96].

It should be noted that, because of the exponential wavefunction, the final expres-
sions are nonlinear in the cluster amplitudes (unlike the linear equations of CI) and the
equations for the singles, doubles, etc., are coupled and thus must be solved simultane-
ously (hence the origin of the name “coupled cluster” theory). Furthermore, in contrast to
CI, the energy, ECC is not variational and hence not an upper bound to the exact energy.
However, in practice, this shortcoming rarely has any drawbacks. On the other hand, the
coupled cluster energy (and other properties discussed later) does have two other impor-
tant physical characteristics: It scales linearly with the number of electrons, a feature
commonly referred to as size extensivity , and the total energy of isolated fragments is
exactly the sum of their individual energies, which is known as size consistency [56].
The former is essential for a method to be applicable to large molecules, clusters, or
condensed phases, and the latter is necessary for reliable simulations of many chemical
reactions. (And neither is possible for truncated CI methods.)

An alternative formulation of the coupled cluster equations is based on the mini-
mization of a Lagrangian function [97, 98],

LCC ≡ 〈�0|
(

1 + �̂
)

H |�0〉, (23.13)

where the �̂ = �̂1 + �̂2 + · · · operator generates substituted Slater determinants in the
bra on the left in a manner analogous to T̂ , for example,

〈�0|�̂2 = 1

4

∑
ijab

λ
ij
ab〈�ab

ij |, (23.14)

and the λ
ij
ab amplitudes act a set of Lagrange multipliers. Minimization of LCC with

respect to �̂ yields the T̂ amplitude equations above, while minimization with respect to
T̂ yields equations for the �̂ amplitudes, for example,

〈�0|
(

1 + �̂
) (

H − ECC
) |�ab

ij 〉 = 0. (23.15)

While this formulation is not strictly necessary to obtain either the energy or the T̂
amplitudes, it is extraordinarily useful for computation of analytic derivatives of the
energy [99–101] and, as we will see below, properties such as optical rotation and circular
dichroism spectra. In addition, the Lagrangian formulation reveals that the coupled cluster
wavefunction can be viewed as having two distinct forms: (a) the right-hand form given
in Eq. (23.2) and (b) a left-hand form [102],

〈�̃CC| = 〈�0|
(

1 + �̂
)

e−T̂ . (23.16)

In this sense, the author is fond of thinking of coupled cluster theory as a “chiral”
quantum chemical method.
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23.3. RESPONSE THEORY FOR CHIROPTICAL PROPERTIES

The semiclassical derivation of expressions for molecular properties such as optical rota-
tion or circular dichroism often makes use of time-dependent perturbation theory, where
the Hamiltonian is partitioned into a zeroth-order time-independent term and a time-
dependent field [3, 103, 104],

Ĥ = Ĥ0 + V̂ (t). (23.17)

It is assumed that we have available as zeroth-order wavefunctions the exact solutions to
the time-independent electronic Schrödinger equation, |ψn〉, which are eigenfunctions of
Ĥ0. These stationary states are inserted into the time-dependent Schrödinger equations to
obtain perturbed wavefunctions, which are then used in an expansion of the expectation
value of a one-electron operator, such as the electric or magnetic dipole moments, in
orders of the external time-dependent multipole field. The desired properties are finally
obtained from tensors that modulate the contributions of each component of the field,
and the tensors themselves are written as sums over excited states (i.e., the zeroth-order
wave functions). For optical rotation and circular dichroism, the relevant tensor is [3]

G′(ω) = −2ω
∑
n �=0

Im[〈ψ0| �μ|ψn〉〈ψn | �m|ψ0〉]
ω2

n0 − ω2
, (23.18)

where �μ = −�r and �m = − 1
2
�L = − 1

2 �r × �p are the electric- and magnetic-dipole vector
operators, respectively, and ω denotes the frequency of the incident polarized radiation
field. The trace of G′ is related to the specific rotation [i.e., the total rotation, normalized
for path length (dm) and concentration (g/mL)], which is commonly denoted as [α]ω.
In addition, the rotational strengths of electronic circular dichroism (ECD) spectra are
directly related to the residues of G′, namely,

Rn0 = Im {〈ψ0| �μ|ψn〉 · 〈ψn | �m|ψ0〉} . (23.19)

A disadvantage of time-dependent perturbation theory lies in its generalization to
approximate wavefunctions, such as coupled cluster or configuration interaction. An
equivalent but more convenient approach is that of response theory [78, 86, 105–108],
where the time-dependent expectation value described above is written as an expansion
in the frequency-dependent perturbation operator, V̂ (ω) [which is the Fourier transform
of V̂ (t)],

〈Â〉 =〈ψ0|Â|ψ0〉 +
∫ ∞

−∞
dω〈〈Â; V̂ (ω)〉〉ωe−iωt (23.20)

+ 1

2

∫ ∞

−∞
dω

∫ ∞

−∞
dω′〈〈Â; V̂ (ω), V̂ (ω′)〉〉ω,ω′e−i (ω+ω′)t + · · · ,

where the Fourier coefficients, 〈〈Â; V̂ (ω)〉〉ω, 〈〈Â; V̂ (ω), V̂ (ω′)〉〉ω,ω′ , and so on, are
referred to as linear, quadratic, and so on, response functions, respectively. These func-
tions play the same role as the property tensors arising from time-dependent perturbation
theory, and indeed the two become identical for exact states, as elegantly demonstrated
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by Olsen and Jørgensen [105, 106]. In particular, the G′(ω) optical activity tensor above
is related to the mixed electric-dipole/magnetic-dipole linear response function,

G′(ω) = Im〈〈 �μ; �m〉〉ω. (23.21)

In Olsen and Jørgensen’s subsequent application of response theory to multiconfigu-
rational SCF wavefunctions, they demonstrated another advantage over time-dependent
perturbation theory, namely that the response of the wavefunction need not be formulated
as an expansion of excited states, but may instead be computed for each perturbation
operator in any complete yet convenient set of functions. This approach requires only
the solution of systems of linear equations for each V̂ (ω), and thus is far less expensive
than the computation of the complete set of excited states. In this sense, response theory
may be thought of as a noncanonical form of time-dependent perturbation theory.

23.3.1. Coupled Cluster Linear Response Theory

The extension of response theory to coupled cluster is problematic because of the asym-
metric nature of the wavefunction, where the distinct left- and right-hand forms [cf.
Equations (23.2) and (23.16)] complicate the formulation of an “expectation value.”
Indeed, there is no guarantee that the time-dependent left- and right-hand coupled clus-
ter wavefunctions will even yield a real expectation value of Hermitian operators as
required in the exact theory, leading to an often-used coupled cluster expression that
naturally extracts only the real component [86],

〈Â〉CC = 1

2

(
〈�̃CC|Â|�CC〉 + 〈�̃CC|Â|�CC〉∗

)
, (23.22)

where 〈�̃CC| and |�CC〉 are now time-dependent forms of Eqs. (23.16) and (23.2), respec-
tively. In addition, distinct left- and right-hand wavefunctions require solution of two
different time-dependent Schrödinger equations, namely,

Ĥ eiεeT̂ |�0〉 = i
∂

∂t
eiεeT̂ |�0〉 (23.23)

and

〈�0|
(

1 + �̂
)

e−T̂ e−iεĤ = −i
∂

∂t
〈�0|

(
1 + �̂

)
e−T̂ e−iε , (23.24)

where exp(iε) is a complex phase factor, and both T̂ and �̂ are implicitly time-dependent.
(Although the reference determinant is also time-dependent, conventional coupled cluster
response theory neglects this, in part because it adds significantly to the complexity of
the equations and because T̂1 typically accounts for most of the orbital relaxation effects.)
In spite of these difficulties, Koch and Jørgensen reported the first application of coupled
cluster response theory in 1990 [78], and several reformulations have been reported since
[86, 88, 107], including extension to higher levels of electron correlation beyond CCSD
[70, 71].

If the time-dependent Schrödinger equation for the right-hand wavefunction is pro-
jected onto the set of substituted determinants, |�ab...

ij ... 〉, the time evolution of the cluster
amplitudes may be obtained, namely [78],

−i 〈�ab...
ij ... |H |�0〉 = ṫ ab...

ij ... . (23.25)
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If the cluster operator is then expanded in orders of the time-dependent pertubation, V̂ (t),
the commutator expansion of the similarity-transformed Hamiltonian becomes

H = e−T̂ (0)−T̂ (1)−T̂ (2)−···
(

Ĥ0 + V̂ (t)
)

eT̂ (0)+T̂ (1)+T̂ (2)+··· (23.26)

= H 0 + V +
[
(H 0 + V ), T̂ (1)

]
+

[
(H 0 + V ), T̂ (2)

]

+ 1

2

[[
(H 0 + V ), T̂ (1)

]
, T̂ (1)

]
+ · · · .

In this equation, H 0 and V are similarity transformed using only T̂ (0), which are the same
as T̂ for the time-independent/unperturbed wavefunction. If this expansion is inserted into
the time-evolution equation above, we obtain, for example in first order,

ṫ ab...(1)
ij ... = −i 〈�ab...

ij ... |
(

V +
[
H 0, T̂ (1)

])
|�0〉. (23.27)

The Fourier transform of this expression may then be used to obtain a frequency-domain
system of linear equations that may be solved for the perturbed wavefunction amplitudes,

〈�ab...
ij ... |(ω − H 0)T̂

ω
V |�0〉 = 〈�ab...

ij ... |V (ω)|�0〉. (23.28)

Finally, the first-order perturbed T̂ (1) operator (as well as its left-hand counterpart,
�̂(1)) may be inserted into the expansion of the expectation value of the operator Â in Eq.
(23.22), which is then subjected to yet another Fourier transform to identify the linear
response function. For the specific case of the optical activity tensor, the corresponding
expression becomes

G(ω) = Im

{
Ĉ ±ωP̂ ( �μ(−ω), �m(ω))

[
〈�0|(1 + �̂)

[
μ, T̂ ω

m

]
|�0〉

+ 1

2
〈�0|(1 + �̂)

[[
H 0, T̂ ω

μ

]
, T̂ −ω

m

]
|�0〉

]}
, (23.29)

where the overbar denotes the similarity transformation of the given operator analogous
to H using the unperturbed T̂ operator. The permutation operator Ĉ ±ω simultaneously
changes the signs on the chosen field frequency and takes the complex conjugate of the
expression, and P̂ symmetrizes the expression with respect to the perturbations �μ and �m .

Equation (23.28) also gives some insight into the computation of excited states. If
the identity, expressed as a projector over all Slater determinants, is inserted between H 0

and T̂ ω
V , we obtain

∑
kl ...cd ...

〈�ab...
ij ... | (ω − H 0

) |�cd ...
kl ... 〉〈�cd ...

kl ... |T̂ ω
V |�0〉 = 〈�ab...

ij ... |V |�0〉. (23.30)

The matrix on the left-hand side will become singular as the external field frequency,
ω, approaches an eigenvalue of H 0, that is, as ω approaches resonance. As a result,
the perturbed wavefunctions become infinite, leading to first-order poles in the response
function at the excitation frequencies of the molecule—which is the correct behavior
according to time-dependent perturbation theory for exact wavefunctions. (Note that if
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we were to allow the MOs to respond to the external field, the pole structure would
become second-order, which is unphysical.) Thus, we may obtain excited-state energies,
En , and wavefunctions, Rn , by diagonalization of the H 0 matrix [76, 78],

H 0Rn = EnRn . (23.31)

However, the similarity-transformed Hamiltonian is no longer Hermitian, which implies
that the right-hand eigenvalue problem above has a distinct left-hand counterpart, namely,

LnH 0 = LnEn , (23.32)

where the two sets of wavefunctions are biorthonormal, that is, 〈Ln |Rm〉 = δmn . Once
the excited-state wavefunctions are known, then the rotational strengths of Eq. (23.19)
may be computed for simulation of the electronic circular dichroism spectrum through
the residues of the linear response function:

Rn0 = −Tr

[
lim

ω→ωn0

(ω − ωn0)G′(ω)

]
, (23.33)

where ωn0 is the excitation energy for the nth excited state.

23.3.2. Equation-of-Motion Coupled Cluster

An alternative approach for computing response properties is the equation-of-motion
coupled cluster (EOM-CC) method, originally discussed by Stanton and Bartlett [76].
The central difference between the coupled cluster response theory described above and
EOM-CC is in their respective definitions of the perturbed wavefunctions: The former
uses an exponentiated perturbation operator [cd. Eq. (23.26)], while the latter uses a
linear expansion,

T̂ (t) = T̂ (0) + T̂ (1) + T̂ (2) + · · · , (23.34)

and uses the perturbational partitioning of the similarity transformed Hamiltonian rather
than the bare Hamiltonian. This leads to different choices of the zeroth-order wavefunc-
tions for the right-hand side,

|�(0)〉 = |�0〉, (23.35)

and for the left-hand side,

〈�̃(0)| = 〈�0|
(

1 + �̂
)

, (23.36)

which may be contrasted with Eqs. (23.2) and (23.16), respectively. This leads to the
following final expression for the linear response function in the EOM-CC formalism:

G′(ω) = −Im
{

Ĉ ±ωP̂ ( �μ(−ω), �m(ω)) 〈�0|(1 + �̂)
[
μ, T̂ ω

m

]
|�0〉

}
, (23.37)

which differs from Eq. (23.29) only in the elimination of the terms that are quadratic in
T̂ ω

V . While this makes the response function somewhat less expensive to evaluate [109],
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it also results in a lack of size extensivity of G′(ω) (or, equivalently, a lack of size
intensivity in the final specific rotation, [α]ω, meaning that the property does not change
with the size of the system).

On the other hand, the use of a linear perturbed wavefunction expansion does not alter
the expression for the perturbed wavefunctions themselves given in Eq. (23.28). Thus, the
identification of the eigenvalues and eigenfunctions of H 0 with excited states described in
the previous section still holds for EOM-CC. Indeed, the resulting excitation energies and
wavefunctions are identical between EOM-CC and linear response methods. However,
since transition properties are determined as the residues of the response function, the
resulting rotational strengths obtained from G′(ω) will differ somewhat between the two
formulations, and the EOM-CC rotational strength will not be size-intensive as in the
exact theory. Crawford and Sekino [110] recently investigated a modified approach that
corrects the lack of size extensivity of the EOM-CC G′(ω) tensor but still avoids the
expensive quadratic terms. This method, which is based on an earlier idea of Sekino and
Bartlett [109], was termed EOM-CCL (the subscript L stands for “linearized”) and was
found to reduce the computational cost relative to that of the full linear response function
by up to 30% with no loss of accuracy.

23.3.3. Origin Invariance

A subtle but important problem that arises in computations of G′(ω) is that of origin
invariance. Specifically, a translation of the coordinate origin along an arbitrary vector, �a ,
alters the trace of G′(ω), which thus leads to an unphysical change in the value of [α]ω.
This problem can be understood in terms of the linear response function by first noting that
the origin shift changes the coordinate, linear momentum, and angular momentum vectors
as �r ′ = �r − �a , �p ′ = �p, and �r ′ × �p ′ = �r × �p − �a × �p, respectively. Using the expressions
for �μ and �m given above, the corresponding linear-response tensor at the new origin may
then be written as

〈〈�r ′; �r ′ × �p ′〉〉ω = 〈〈�r; �r × �p〉〉ω − 〈〈�r; �a × �p〉〉ω. (23.38)

The provenance of the origin dependence is clearly the second term on the right-hand
side of the equation, whose trace may be written in terms of its Cartesian components as

Tr〈〈�r; �a × �p〉〉ω = ax
[〈〈rz ; py 〉〉ω − 〈〈ry ; pz 〉〉ω

] + ay
[〈〈rx ; pz 〉〉ω − 〈〈rz ; px 〉〉ω

]
+ az

[〈〈ry ; px 〉〉ω − 〈〈rx ; py 〉〉ω
]
. (23.39)

A lesson learned from computations of NMR chemical shieldings [111–113], which
exhibit related origin-dependence problems, is that the use of gauge-including atomic
orbitals (GIAOs) or London atomic orbitals (LAOs) [114, 115] can overcome the origin
dependence of many magnetic-field-dependent properties. GIAOs may be defined as

χν(�B; �Rν; �r) = exp

(
− i

2
(�B × �Rν) · �r

)
χ(0; �Rν; �r), (23.40)

where �Rν is the coordinate of the nucleus on which the νth basis function resides and
χ(0; �Rν; �r) is the original (Gaussian) basis function. However, in order for GIAOs to
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resolve the origin dependence issue in optical rotation computations, the electronic struc-
ture model used to compute 〈〈�r; �p〉〉ω must satisfy the corresponding equation-of-motion
of the response function [116],

ω〈〈�r; �r〉〉ω = 〈[�r , �r]〉0 + 〈〈�r; [�r , Ĥ ]〉〉ω. (23.41)

In that case, when GIAOs are employed, the response function 〈〈�r; �p〉〉ω whose cartesian
components appear in Eq. (23.39) is replaced naturally by 〈〈�r; [�r , H ]〉〉ω, which, by Eq.
(23.41), is equal to −iω〈〈�r; �r〉〉ω [31, 117].2 As a result, the trace in Eq. (23.39) becomes
zero because each response function on the right-hand side will involve only components
of �r . Unfortunately, the above equation of motion is not generally satisfied by coupled
cluster methods [86, 90], even in a complete basis set. Thus GIAOs, while effective for
NMR properties, which may be formulated as simple analytic energy derivatives, do not
solve the origin problem for coupled cluster theory.

An alternative approach advocated by Grimme et al. [118] and by Pedersen et al.
[119] is to use the velocity representation of the electric dipole operator, namely,

Tr〈〈�r; �r × �p〉〉ω = 1

ω
Tr〈〈�p; �r × �p〉〉ω. (23.42)

In this case, the trace on the right-hand side of this equation is inherently origin-
independent because of the resulting appearance of the symmetric response function
〈〈�p; �p〉〉ω in the analogy to Eq. (23.39), thus forcing the trace to zero. However, the
resulting coupled cluster response function does not decay to zero in the static limit as it
does in the length representation. Pedersen and co-workers recommended an approach to
circumvent this problem by shifting 〈〈�p; �r × �p〉〉ω by its static-limit value, 〈〈�p; �r × �p〉〉0,
to account for this error. While this approach adds somewhat to the computational cost
because of the need to solve an additional set of six perturbed wavefunction equations,
the result is a well-behaved, origin-invariant expression for the optical rotation. This
method applies equally well to DFT and coupled cluster theory.

23.4. PERFORMANCE

At present, there are two publicly available quantum chemistry program packages capable
of computing optical rotation and circular dichroism spectra using coupled cluster theory:
DALTON [120] and PSI [121]. The first implementation of coupled cluster optical rota-
tions was reported by Ruud and Helgaker [122] in DALTON in 2002 in an application to
H2O2 and H2S2 as model systems. In 2003, Ruud et al. [9] carried out a larger study of 13
chiral organic molecules for comparison of CC2 and CCSD values of [α]D to solution-
phase experimental data. Our own entry into the field began in 2004 with an independent
implementation of the coupled cluster linear response function within the PSI3 package
and initial applications to (S )-methyloxirane [10] and (P )-[4]triangulane [13]. The first

2 This relationship depends on the use of the commutator relationship

[�r , Ĥ ] = i �p,

which holds in the limit of a complete basis set.
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coupled cluster computations of circular dichroism spectra appeared earlier in 1999 with
an application to the ethylene chromophore of (−)-trans-cyclooctene [89]. We have car-
ried out our own efforts in this regard with applications to (S )-2-chloropropionitrile [21],
(S )-methylthiirane [22], and others [123, 124].

Since these first steps, numerous computations of coupled cluster level optical rota-
tion and circular dichroism have appeared in the literature. One of the most systematic
studies to date was reported by Crawford and Stephens in 2008 [15], who examined
12 paradigmatic chiral molecules—including cis-pinane, α- and β-pinene, nopinone, 2-
brendanone, and more. The molecules were chosen because their experimental sodium
D-line specific rotations are well established, but also because Stephens et al. had
observed that B3LYP [28, 125, 126] yields incorrect signs for half of the molecules
in the set [127]. The coupled cluster computations for these relatively large molecules
consumed roughly two years of CPU time and yielded a rather disappointing result: The
average absolute errors between DFT and CCSD were nearly the same, and both were
poor [28.4 and 25.4 deg dm−1(g/mL)−1, respectively]. While several sources of error
were considered, including basis sets, electron correlation, and vibrational effects, the
most significant missing ingredient in the quantum chemical models was the lack of
solvent, which is well known to strongly perturb specific rotations and other chiroptical
properties in many cases [128, 129].

Therefore, the most robust studies of optical rotation to date have compared coupled
cluster predictions to new gas-phase data from ultrasensitive cavity ring-down polarimetry
(CRDP) measurements pioneered by the Vaccaro group at Yale [130, 131]. In a 2006 study
[21] of (S )-2-chloropropionitrile (Figure 23.1a), Kowalczyk et al. found that CCSD-level
optical rotations (with the modified velocity gauge) with large basis sets compare superbly
to newly published CRDP data across the entire range of wavelengths. B3LYP, on the
other hand, gives rotations too large by approximately a factor of two due to its tendency
both to underestimate the key excitation energies appearing in the the denominator of
Eq. (23.18) and to overestimate the corresponding rotational strengths in the numerator,
as made clear by the simulated circular dichroism spectra in Figure 23.1b.

A 2004 study of (S )-methyloxirane by Tam et al. revealed some additional pitfalls to
accurate predictions of optical rotation in small molecules. As summarized in Figure 23.2,
B3LYP and CCSD optical rotations were found to differ significantly, with the former
exhibiting a much earlier zero-crossing than the latter as the wavelength of the incident
light is decreased towards the lowest excited state. However, although the DFT value
for the 355 nm rotation is positive and thus in qualitative agreement with the experi-
mental value of +7.5 deg/[dm (g/mL)] [131], the good comparison occurs only because
of the B3LYP model’s concomitant underestimation of the lowest Rydberg excitation
energy of methyloxirane, yielding too small of a numerator in Eq. (23.18) (just as for
2-chloropropionitrile). On the other hand, while the CCSD approach gives the correct
excitation energy, the shape of the optical rotation pole is clearly underestimated, leading
to an incorrect sign of the rotation at 355 nm. Subsequent studies by Ruud and Zanasi
[132] and by Kongsted et al. [133] demonstrated that incorporation of both vibrational
corrections and higher levels of electron correlation shift the coupled cluster rotation at
355 nm to within the experimental error bars, giving the one of first indications of the
potential importance of molecular vibrations on optical rotation.

Conformational flexibility presents even greater challenges. The most common
approach is to carry out a simple Boltzmann average over the property of interest
computed at the equilibrium structure of each relevant conformer, using weighting
factors obtained from theoretical or experimental estimates of the conformer populations
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Figure 23.1. (a) Theoretical and experimental

gas-phase optical rotatory dispersion spectra and

(b) theoretical circular dichroism spectra of

(S)-(−)-2-chloropropionitrile. Experimental data

taken from ref. 131 and theoretical data taken

from reference 21.

at the desired temperature. This method is often used for electronic absorption or
vibrational spectra, where the transition energies and strengths do not typically vary
substantially between conformers. However, this is not the case for circular dichroism
spectra or specific rotation, for which numerous studies have demonstrated their high
degree of sensitivity to even small changes in key torsional angles. Polavarapu and co-
workers [134, 135] examined this sensitivity in their analysis of H2O2, H2S2, allene, and
dichloroallene, while Wiberg et al. [136–138] and Crawford and co-workers [123, 139]
have explored such dihedral-angle dependence of specific rotation in substituted butanes,
butenes, and epichlohydrin in comparison to gas-phase CRDP data. All such studies
report dramatic differences in chiroptical response between conformers, including
differences of sign leading to cancellation in the Boltzmann averaging procedure.

For example, in a comparison of CCSD-specific rotations to new gas-phase data
for 3-chloro-1-butene (see Figure 23.3), Crawford and co-workers [123] obtained
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Figure 23.2. Theoretical optical rotatory

dispersion curves of (S)-methyloxirane.

Experimental data at 355 and 633 nm are

indicated by closed, black circles.

Experimental data were taken from

reference 131 and theoretical data from
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Figure 23.3. Carbon backbone torsional potential

of and associated vibrational energy-level structure

3-chloro-1-butene (left-hand axis);

CCSD/aug-cc-pVDZ optical rotation of the

(R)-enantiomer as a function of the torsional

coordinate (right-hand axis). The modified velocity

gauge representation was used to compute the

specific rotations. Data taken from reference 142.

theoretical estimates of the relative Gibbs free energies of its three competing
conformers using the G3 composite method [140] and complete-basis-set extrapolations
of CCSD(T) energies [141]. Wilson et al. [131] reported gas-phase specific rotations for
(S )-3-chloro-1-butene of [α]633 = 53.3 ± 1.0 deg dm−1(g/mL)−1 and [α]355 = 259.4 ±
1.0 deg dm−1(g/mL)−1. CCSD computations with a triple-zeta basis set on the
nonhydrogen atoms and the modified velocity gauge representation yield corresponding
rotations of 51.0 and 248.1 deg dm−1(g/mL)−1, respectively, in excellent agreement with
experiment. CCSD length gauge representation results are poorer at 72.5 and 336.1 deg
dm−1(g/mL)−1, while B3LYP disagrees further at 86.5 and 469.9 deg dm−1(g/mL)−1.

However, the question as to the fundamental validity of the simple Boltzmann
approach used above was considered by Crawford and Allen [142]. The Boltzmann
averaging technique requires three principal assumptions: (1) The vibrational wavefunc-
tions are localized within each conformer’s potential well; (2) the specific rotation does
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not vary with vibrational quantum number; and (3) the vibrational partition functions
for the conformers are identical. Using (R)-3-chloro-1-butene as a model, Crawford and
Allen constructed an analytic torsional potential for the carbon backbone using a Fourier
series fit to the zero-point vibrationally corrected intrinsic reaction coordinate, and solved
the corresponding one-dimensional vibrational Schrödinger equation (Figure 23.3). They
then used the resulting vibrational wavefunctions to compute a more rigorous vibra-
tional Boltzmann average. They found that, while the two approaches compared well
over a fairly wide range of temperatures, the success of the simple Boltzmann approach
is greatly aided by a favorable cancellation of errors between the three approximations.
Only further studies will reveal if this cancellation is reliable.

A more systematic comparison to gas phase data was reported recently by Pedersen
et al. [143], who examined the impact of basis sets, electron correlation, and molecu-
lar vibrations on optical rotation in both rigid and conformationally flexible molecules,
including cis-pinane, α- and β-pinenes, fenchone, 2-chloropropionitrile, limonene, and
3-chloro-1-butene. In particular, they confirmed that coupled cluster linear-response meth-
ods provide the best available comparison to experimental gas-phase specific rotations
with an average absolute error of 29% (standard deviation of 11%) versus an average
absolute error of 111% for B3LYP (standard deviation of 30%), though the sample size
of only seven molecules is likely too small to consider the results statistically significant.
In addition, zero-point vibrational effects, while important for some compounds, are not
as substantial a contributor to the total rotations as electron correlation. Furthermore, they
reported that DFT methods can provide a reasonable estimate of vibrational corrections to
coupled-cluster-level equilibrium specific rotations, thus yielding a more computationally
efficient approach.

While coupled cluster predictions have been found to perform well relative to
gas-phase chiroptical measurements in most cases, there are still mysteries to be con-
sidered. For example, Vaccaro and co-workers have obtained a CRDP measurements of
[α]355 = 180.3 deg dm−1(g/mL)−1 for the bicyclic ketone, (1S,4R)-fenchone. However,
quantum chemical studies carried out by Pedersen et al. [143] differ substantially with
experiment, yet agree with each other, with B3LYP, CC2, and CCSD yielding values
of 452.7, 419.4, and 455.5 deg dm−1(g/mL)−1, respectively. The discrepancy does not
appear to be related to basis set or vibrational effects, because B3LYP-based harmonic
vibrational corrections using double- and triple-zeta basis sets are only 22.6 and 19.6 deg
dm−1(g/mL)−1, respectively.

Another bicyclic ketone that challenges theory is (1S,4S )-norbornenone. As noted
originally by Ruud et al. [9], DFT (specifically B3LYP) yields a specific rotation of
[α]D = −1216 deg dm−1(g/mL)−1, rather close to the (liquid phase) experimental value
of −1146 deg dm−1(g/mL)−1, but CCSD (using the origin-dependent length gauge) fails
dramatically, giving [α]D = −741 deg dm−1(g/mL)−1. Our later studies have shown
that use of the origin-independent modified velocity gauge with CCSD only worsens the
discrepancy, giving −558 deg dm−1(g/mL)−1 [15]. Mort and Autschbach reported [144]
that DFT-based vibrational corrections shift the computed values only by approximately
−53 deg dm−1(g/mL)−1, and our own unpublished computations using larger basis sets
(as well as incrementing the number and type of functions on the carbonyl and alkene
moieties) have shown no significant changes. The remaining sources of the discrepancy
include higher-level correlation effects (triples and higher), as well as the possibility
of large differences between gas- and liquid-phase rotations. Additional theoretical and
experimental studies currently underway may help to explain the disagreement and inform
the development of improved computational methods.
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23.5. FUTURE DIRECTIONS

While the above studies demonstrate that, apart from select problem cases such as fen-
chone, the coupled cluster linear response method is currently the most accurate and
reliable approach for predicting electronic chiroptical properties in the gas-phase, clearly
the missing piece of the puzzle is a correspondingly accurate and reliable model of such
properties in liquids. A number of important analyses of solvent effects on optical rotation
have been carried out using DFT, starting with the work by Mennucci et al. [145], who
developed a combination of the polarizable continuum model (PCM) with B3LYP. They
reported sodium D-line specific rotations in reasonable agreement with corresponding
measurements in cyclohexane, acetone, methanol, and acetonitrile, but significant errors
appeared for others, such as CCl4, benzene, and CHCl3. Given the inherent limitations in
their model, they attributed the discrepancies to nonelectrostatic effects, and the role of
the exchange-correlation functional in the errors they observed remains unknown. Pecul
et al. [146] reported analogous DFT-based PCM studies of electronic circular dichro-
ism in 2005 for methyloxirane, camphor, norbornenone, and fenchone. They found that
the reliability of their predictions depended not only on the shortcomings of available
exchange-correlation functionals, but also on the type of transition in question, with
Rydberg-type excitations and the n → π∗ transitions of norcamphor and norbornenone
indicated as especially problematic, perhaps due to specific solute–solvent interactions.

Kongsted et al. [133, 147] published extensive coupled cluster analyses for the opti-
cal rotation of (S )-methyloxirane under solvated conditions, simulated using a continuum
dielectric medium surrounding a spherical solute cavity [147]. Despite the inclusion of
very high levels of electron correlation (including estimates of connected triple excita-
tions [70, 71]), this approach failed to reproduce experimental trends, yielding specific
rotations at 355 nm with the wrong sign as compared to measurements in cyclohexane.
More recently, Kongsted and Ruud [148] carried out a DFT-PCM/B3LYP analysis of
methyloxirane specific rotations that included both solvent and zero-point vibrational
effects. They found reasonable agreement in solvent shifts for cyclohexane, but not for
acetonitrile and water, which they again attributed to specific molecular interactions not
described by continuum-based models.

In 2008, Wiberg et al. examined the remarkable difference between vapor- and liquid-
phase optical rotation in 2,3-pentadiene and 2,3-hexadiene [124]. Vapor-phase cavity-
ring-down polarimetry (CRDP) measurements yielded rotations a factor of two larger
than those in the liquid-phase, which vary little with the choice of solvent (or even the
neat state). While coupled cluster computations agree well with the vapor-phase data
(Figure 23.4), Wiberg et al. speculated that torsional deformation of the solute in a
condensed medium could lead to a shift in the specific rotation. However, Monte Carlo
simulations of the neat liquid yielded no evidence of such a structural change. Existing
theoretical models were not capable of assessing the direct impact of the medium on the
chiroptical response of the solute, and thus no final conclusions were possible as to the
detailed reason(s) for the divergence between the vapor- and condensed-phase results.

Dynamic effects were considered by Beratan and co-workers [149, 150], who carried
out ground-breaking combined continuum and molecular dynamics (MD) simulations of
methyloxirane in clusters of water [149] and of benzene [150], obtaining DFT specific
rotations as averages over snapshots taken along the MD trajectories. They obtained
very good qualitative agreement with experiment in both cases and found that, while the
chiroptical response of the solute molecule was found to dominate in water, the solvent
cavity contributed at least as much to the optical rotation in benzene. However, given
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Figure 23.4. Experimental and theoretical

optical rotatory dispersion spectra of

(P)-(+)-2,3-pentadiene (dimethylallene). The

specific rotation in the neat liquid (and

numerous polar and nonpolar solvents) is

roughly half that of the vapor-phase, and the

latter is reproduced faithfully by coupled cluster

theory. All data taken from reference 124.

that DFT has been shown to provide fortuitous agreement with gas-phase experimental
data in the case of methyloxirane [10, 132, 147, 148], the reliability of this approach
remains in doubt.

These studies suggest that the path forward requires systematic combination of cou-
pled cluster treatments with both explicit and implicit solvent models. The QM/MM
approach under development by Christiansen, Kongsted, Mikkelsen, and co-workers [151,
152] is certainly promising, and perhaps with additional coupling to the effective frag-
ment potential approach of Gordon and co-workers [153, 154] will provide an improved
description of the solvent. Clearly, much work remains before we can finally achieve the
ultimate goal of a reliable computational tool for the prediction of optical rotation and
circular dichroism spectra in condensed phases.
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49. F. Coester, H. Kümmel, Nucl. Phys . 1960, 17 , 477–485.
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24
AB INITIO METHODS FOR VIBRATIONAL

CIRCULAR DICHROISM AND RAMAN
OPTICAL ACTIVITY

Kenneth Ruud

24.1. INTRODUCTION

Despite the fact that the first observations of vibrational chiroptical responses were made
less than 40 years ago [1–5], vibrational chiroptical spectroscopies have matured to
become an important method for the determination of absolute configurations of chi-
ral molecules [6, 7], as well as a tool in the study of secondary and tertiary structures
of biomolecules [8–13]. Indeed, vibrational circular dichroism (VCD) in combination
with reliable ab initio calculations has been shown to be a reliable tool for determining
the absolute configuration of chiral compounds, and in a few cases even leading to a
reassignment of previous structure determinations done using circular dichroism (CD)
[14] or X-ray spectroscopy [15]. This is an impressive achievement for an experimen-
tal technique that was first observed in 1974 [1–3] and for which the formal quantum
mechanical theory was derived in 1985 [16] and for which a reliable computational pro-
tocol was only made available approximately 15 years ago [17, 18]. Today, commercial
VCD instruments are available, and several computational chemistry programs [19–21]
offer the possibility to calculate the atomic axial and polar tensors that determine the
VCD rotational strengths [16].

As for other chiroptical spectroscopic techniques, such as electronic circular dichro-
ism (CD) [22, 23] and optical rotation (OR) [24, 25], the vibrational chiroptical spectro-
scopies give information about the stereochemistry of the molecule, but in addition they
also provide fingerprinting information from the molecular vibrations. Vibrational chirop-
tical spectroscopies thus provide the stereochemical information of CD and OR with the

Comprehensive Chiroptical Spectroscopy, Volume 1: Instrumentation, Methodologies, and Theoretical
Simulations, First Edition. Edited by N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody.
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detailed level of information provided by vibrational spectrocopies. However, the added
information content of VCD and vibrational Raman optical activity (ROA) also makes
it more difficult to analyze the observed spectra. Neither for VCD nor for ROA do there
currently exist simple rules-of-thumb for relating observed rotatory strengths or circular
intensity differences for specific vibrational bands to a specific stereochemical structure,
comparable to for instance the octant rule used to analyze CD rotatory strengths [26, 27].

Although specific vibrational bands are used both in VCD and ROA for analyzing
secondary structures of biomolecules [28–30], the improvements in the design of exper-
imental VCD and ROA spectrometers have been accompanied by a corresponding rapid
development in ab initio methodology for calculating the molecular property tensors that
determine the VCD and ROA spectra, contributing to the development and use of these
experimental techniques. It is today possible to perform calculations on systems contain-
ing more than 200 atoms [31–33], comparing the spectrum calculated using ab initio
methods directly to the experimentally observed spectrum, and from this directly deduce
the absolute configuration of a chiral species. However, there are a number of factors that
need to be considered in such a procedure, such as conformational averaging [34–37],
the treatment of specific interactions and solvent effects [38–43], and the level of theory
used [44–48], and this is treated in different chapters of this book. However, the basic
working equations for calculating vibrational chiroptical spectra are today well-developed
and are expected to remain state of the art for some time to come.

In this chapter I will give a basic introduction to the working equations that define
vibrational circular dichroism and Raman optical activity, highlighting the intrinsic
molecular property tensors that define the observable rotatory strengths (VCD) or
circular intensity differences (ROA). I will also give the basic strategy used in most
programs that calculate these property tensors, illustrating that the cost of calculating
the chiroptical properties are in general much less than the cost of determining the
vibrational force field. Some emphasis will also be given to the problem of ensuring
that the calculated results are independent of the choice of molecular gauge origin, an
obstacle that for a long time prevented the routine application of ab initio theory to the
calculation of vibrational chiroptical responses.

The remainder of this chapter is divided into three main parts. In Section 24.2, an
outline of the principles behind energy derivative theory is given, with the purpose of
giving a qualitative understanding of the methodology used when doing an ab initio VCD
or ROA calculation. The main purpose of this section is to provide a fairly nontechnical
introduction to the general principles of the methodologies, as well as introduce some
of the concepts and challenges that are often discussed in the literature in relation to
the calculation of vibrational chiroptical spectra. In Section 24.3, a brief summary of the
theory of VCD and ROA is given, primarily with the aim of introducing the tensors that
determine VCD and ROA spectra. Some comments on different methodologies introduced
to calculate VCD and ROA spectra are also given in this section. In Section 24.4, I
present the working equations for ab initio calculations of VCD and ROA spectra for the
specific case of a Hartree–Fock wavefunction. This section is more technical, and it may
be skipped by users of VCD and ROA calculations not interested in all details of an ab
initio VCD or ROA calculation. Finally, in Section 24.5 I give some concluding remarks
and give some comments on remaining challenges in the calculation of VCD and ROA
spectra. Applications of the computational methodologies and different approximations
to these equations are not considered in this chapter, and the reader is referred to other
chapters for more information on these practical aspects of VCD and ROA calculations.
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24.2. ENERGY DERIVATIVE THEORY AND PERTURBATION-DEPENDENT
BASIS SETS

It is useful to outline in very general terms the principles behind energy derivative theory,
in order to illustrate the salient features of the approach without being hampered by the
complicated equations that appear once an explicit parameterization of the wavefunction
is considered, and without considering the explicit form of the Hamiltonian. This will
allow us to illustrate important features of calculations of VCD and ROA spectra without
too complicated equations. The discussion of energy derivative theory will be restricted
to variational wavefunctions—that is, wavefunctions that are fully optimized with respect
to all the parameters λ that define the wavefunction

∂E (λ, x∗)
∂λ

∣∣∣∣
λ=λ∗

= 0 ∀x∗, (24.1)

where E denotes the molecular energy, x∗ denotes an external perturbation at some
reference perturbational strength, and λ∗ the optimized wave function parameters in the
absence of the applied perturbation. We have here explicitly indicated that the molecular
energy depends both on the wavefunction parameters λ and on the applied external
perturbation x . Hartree–Fock (HF) theory and Kohn–Sham density-functional theory
(KS-DFT) both fall into the class of variational wavefunctions, and in both these cases the
wavefunctions are parameterized in terms of the molecular orbital coefficients. We note
that any nonvariational wavefunction can be cast into a variational form through the use
of Lagrangian multipliers [49, 50], allowing the (quasi)energy derivative methodology
also to be used for nonvariational wavefunctions [51]. Let us now apply an external
perturbation to our molecular system, and consider how the variational condition in Eq.
(24.1) changes to first order. We will then get two contributions

∂2E (λ, x)

∂λ∂x

∣∣∣∣
λ=λ∗,x=x∗

+ ∂2E (λ, x)

∂λ2

∣∣∣∣
λ=λ∗,x=x∗

∂λ

∂x

∣∣∣∣
λ=λ∗,x=x∗

= 0, (24.2)

where we have utilized the chain rule for differentiation since the wavefunction parame-
ters λ will change in the presence of the applied perturbation. In this expression, ∂2E/∂λ2

is often referred to as the electronic Hessian, ∂2E/∂λ∂x as the property gradient, and
∂λ/∂x the response vector containing the perturbed wavefunction parameters. In the case
of conventional molecular orbital-based theories, ∂λ/∂x corresponds to the perturbed
molecular orbital coefficients. The response vector is the key quantity when determining
a molecular property, and it can in principle can be obtained from the equation

∂λ

∂x
= −

(
∂2E (λ, x)

∂λ2

)−1
∂2E (λ, x)

∂λ∂x
, (24.3)

where we have not explicitly indicated that the derivatives are to be evaluated at λ =
λ∗, x = x∗ for ease of notation. The number of wavefunction parameters can in many
cases grow to be very large, making it neither attractive nor feasible to explicitly construct
and invert the electronic Hessian. For this reason, Eq. (24.3) is often reformulated in terms
of a linear response equation [52, 53](

∂2E (λ, x)

∂λ2

)
σ = ∂2E (λ, x)

∂λ∂x
, (24.4)
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which is solved iteratively [53, 54]. σ is referred to as the trial vector, and convergence
is reached when the difference between the electronic Hessian multiplied with the trial
vector equals the property gradient on the right-hand side to within a predefined conver-
gence threshold. At convergence, the trial vector represents, to within the convergence
threshold, the response vector ∂λ/∂x [see Eq. (24.2)]. In the context of static energy
derivatives of Hartree–Fock theory or Kohn–Sham DFT, Eq. (24.4) is the conventional
coupled-perturbed Hartree–Fock or coupled-perturbed Kohn–Sham equations, respec-
tively [55, 56]. Equation (24.4) may give the impression that the electronic Hessian must
be constructed explicitly, but it can be shown that one can construct directly the vector
arising from multiplying the electronic Hessian with the trial vector [53]. Strategies for
solving the linear response equation have been discussed for instance by Jørgensen and
co-workers on both a molecular orbital basis [53, 57] and an atomic orbital basis [54, 58].

With an approach for obtaining perturbed wavefunction parameters at hand, we are
now in a position to consider molecular properties that can be expressed as (quasi-)energy
derivatives. Let us start by considering the first-order energy correction due to an applied
perturbation x . Keeping in mind the implicit dependence of λ on the perturbation x , we
have

dE (λ, x)

dx
= ∂E (λ, x)

∂x
+ ∂E (λ, x)

∂λ

∂λ

∂x
= ∂E (λ, x)

∂x
, (24.5)

where the last equality follows from the fact that we are only considering variational
wavefunctions [see Eq. 1 )]. The partial derivative with respect to the applied perturbation
in Eq. (24.5), ∂E/∂x , indicates that we only include the contributions that have an explicit
dependence on the applied perturbation, either through our interaction Hamiltonian or
through the basis set (vide infra), whereas the implicit dependence, the changes in the
molecular orbitals due to the perturbation, is given by ∂λ/∂x and is determined by Eq.
(24.2). Equation (24.5) embodies the Hellmann–Feynman theorem, which states that for
variationally optimized wavefunctions, first-order molecular properties can be calculated
as expectation values of the interaction Hamiltonian (since this is the only part of the
Hamiltonian that will depend on the applied perturbation x ), and first-order properties
are thus determined by the unperturbed electron density only.

Second derivatives can now be obtained by differentiating Eq. (24.5), using Eq.
(24.3), where we also for ease of notation do not indicate the explicit dependence of the
energy on the perturbations x and y and the wavefunction parameters λ

d2E

dxdy
= ∂2E

∂x∂y
+ ∂2E

∂x∂λ

∂λ

∂y
+ ∂2E

∂y∂λ

∂λ

∂x
+ ∂λ

∂x

∂2E

∂λ2

∂λ

∂y
+ ∂E

∂λ

∂2λ

∂x∂y

= ∂2E

∂x∂y
−

(
∂2E

∂x∂λ

)(
∂2E

∂λ2

)−1 (
∂2E

∂y∂λ

)
. (24.6)

The contribution from the second-order perturbed wavefunction parameters ∂2λ/∂x∂y
do not contribute due to the variational nature of the wavefunction [see Eq. (24.1).

Equation (24.6) allows us to comment on two general features of energy-derivative
theory. The first of these is the so-called interchange theorem of Dalgarno and Stewart
[59, 60]. We note from the linear equations in Eq. (24.4) that we can rewrite the second
derivative of the molecular energy with respect to the two perturbations x and y in two
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equivalent manners:

d2E

dxdy
= ∂2E

∂x∂y
+ ∂2E

∂x∂λ

∂λ

∂y
= ∂2E

∂x∂y
+ ∂2E

∂y∂λ

∂λ

∂x
. (24.7)

We can thus choose whether we would like to obtain wavefunctions perturbed with respect
to perturbation x or perturbation y . From a physical point of view, this corresponds to
whether we choose to measure how a property x interacts with a density perturbed by
the perturbation y , or vice versa, which of course are equivalent ways of obtaining the
same physical response. In many cases, it does not matter which of these perturbed
wavefunctions we determine. If, however, we consider a property such as the electric
dipole gradient appearing in the calculation of vibrational circular dichroism (vide infra),
which is the second derivative of the energy with respect to an external electric field and
nuclear displacements, then the choice we make regarding which perturbed wavefunctions
we determine becomes crucial. If we decide to determine the wavefunctions perturbed by
the applied electric field, then we would have to determine three perturbed wavefunctions,
corresponding to the three Cartesian components of the electric field. If we instead choose
to determine the wavefunctions perturbed by the nuclear displacements, we instead need
to determine 3N perturbed wavefunctions, corresponding to the displacements in the
three Cartesian directions of all the N nuclei in the molecule. Clearly it is in this case
advantageous to determine the wavefunction perturbed by the electric field, because we
then only need to solve three linear response equations, independent of the size of the
molecular system.

Secondly, we can also use Eq. (24.6) to introduce the so-called n + 1 and 2n + 1
rules [57, 61], which state that an energy correction to order n + 1 or 2n + 1, respec-
tively, can be determined from the perturbed wavefunction to order n . For second-order
properties, both these rules show that only the first-order perturbed wavefunction needs
to be determined using the linear set of equations [Eq. (24.4).] However, for third-order
molecular properties, which occur in the calculation of the property gradients that deter-
mine vibrational Raman optical activity, the n + 1 rule requires the determination of the
second-order perturbed wavefunction, whereas the 2n + 1 rule allows us to use only first-
order perturbed wavefunctions. It may at first appear that the 2n + 1 rule would be the
method of choice. However, we recall from Eq. (24.7) that we do not need determine the
perturbed wavefunction for one of the applied perturbations in the case of a straightfor-
ward differentiation of the molecular energy corresponding to the n + 1 rule. The 2n + 1
rule, on the other hand, would eliminate the second-order perturbed wavefunction param-
eters by introducing an additional first-order perturbed equation [61, 62]. Thus, if we are
for instance interested in the polarizability gradient contribution to Raman and ROA spec-
tra (vide infra) dα/dR = d3E/dF 2dR, then the n + 1 rule would require us to determine
nine perturbed equations independent of the molecular size (three first-order perturbed
wavefunctions with respect to the electric field, and six second-order perturbed wave-
functions with respect to the square of the electric field), whereas the 2n + 1 rule would
require us to solve 3 + 3N equations (three first-order perturbed wavefunctions for the
electric field and 3N first-order perturbed wavefunctions for the nuclear displacements),
making in this case the n + 1 rule the method of choice.

It is instructive to relate the above very schematic description of energy derivative
theory that forms the foundations for the modern implementations of VCD and ROA
in quantum chemistry programs to the exact-state expression. This will illustrate the
connection between energy derivative theory and the expressions we are used to seeing
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for the relevant VCD and ROA tensors using sum-over-states expressions. For exact
states, we can represent the property gradient and molecular Hessians as, respectively,

∂2E

∂λn∂x
=

〈
0

∣∣∣∣∣∂Ĥ

∂x

∣∣∣∣∣ n

〉
| n〉 , (24.8)

∂2E

∂λm∂λn
= (

E 0
n − E 0

0

) |n〉〈n|δnm , (24.9)

where E 0
n denotes the energy of the nth excited state of the unperturbed system. Here and

in the remainder of the chapter, atomic units have been used. From Eq. (24.6), (24.8),
and (24.9), we see that we can express the dipole gradient for exact states as

d2E

dFαdRK ,β
=

〈
0

∣∣∣∣∣ ∂2Ĥ

∂Fα∂Rβ

∣∣∣∣∣ 0

〉
−

∑
n �=0

〈
0
∣∣∣ ∂Ĥ
∂Fα

∣∣∣ n
〉 〈

n
∣∣∣ ∂Ĥ
∂RK ,β

∣∣∣ 0
〉

E 0
n − E 0

0

, (24.10)

where Fα denotes the α component of the external electric field, and RK ,β denotes a
distortion of nucleus K in the β Cartesian direction. The molecular Hamiltonian in the
presence of a static electric field F can be written as (using atomic units here and
throughout the chapter)

Ĥ =
∑

i

(
− 1

2∇2
i − ∑

K
ZK

|RK −ri |
)

+ 1
2

∑
i �=j

1
|ri −rj | + 1

2

∑
K �=L

ZK ZL
|RK −RL| − μF, (24.11)

where ZK is the nuclear charge, summations of i and j run over all electrons and sum-
mations of K and L run over all nuclei. We have here also introduced the molecular
dipole moment operator

μ̂α =
∑

K

ZK RK ,α −
∑

i

ri ,α. (24.12)

Inserting this Hamiltonian into the expression for the electric field gradient in Eq. (24.10),
we get the final expression for the electric field gradient

d2E

dFαdRK ,β
= ZK −

∑
n �=0

〈
0
∣∣∑

i ri ,α
∣∣ n

〉 〈
n
∣∣∣∑i

ZK (RK ,β−ri ,β)
|RK −ri |3

∣∣∣ 0
〉

E 0
n − E 0

0

. (24.13)

As already noted, for exact wavefunctions, the sum-over-states expression for the molec-
ular property is equivalent to the energy-derivative expression in Eq. (24.6). From a
computational point of view, Eq. (24.6) is much more advantageous, because it does not
require the determination of an explicit representation of all excited states in the molecule,
as required by Eq. (24.10). The linear sets of equations in Eq. (24.6) can furthermore
be a useful starting point for determining the perturbed wavefunction for any choice of
wavefunction. The explicit expressions for the electronic Hessian and property gradients
will differ depending on the exact parameterization of the wavefunction, but the general
structure of the expressions for the second-order properties will remain the same.

In this general presentation of energy derivative theory, we have not considered
frequency-dependent perturbations. However, using the quasi-energy formalism, we can
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see that we can continue to utilize the framework of energy-derivative theory, but now
instead considering derivatives of the quasi-energy [51, 62]. However, the overall struc-
ture of the formalism remains largely the same as that presented here, and we defer the
discussion of the differences related to static molecular properties to Section 24.4, where
we discuss the explicit expressions for the polarizability gradients appearing in the ab
initio calculation of ROA spectra.

Before proceeding to a more detailed discussion of the expressions for VCD and
ROA spectra, we must also consider the concept of perturbation-dependent basis sets
(PDBS), and the complications they introduce in the calculation of vibrational chiroptical
properties. In relation to VCD and ROA, there are two different sets of PDBS that may
arise: One is related to the geometrical distortions of the nuclei occurring during the
vibrational motion, and the other is related to the magnetic component of the applied
electromagnetic fields in case London atomic orbitals are used [63].

Let us first consider the dependence on the molecular geometry. In a conventional
molecular electronic structure calculation, the electronic structure of the molecules is rep-
resented in terms of molecular or Kohn–Sham orbitals ψMO

i , which in turn are represented
as linear combinations of basis functions centered on the atomic nuclei

ψMO
i =

∑
μ

Ciμχμ (RK ) ; (24.14)

here χμ(RK ) represents the atomic-centered basis functions, which are normally repre-
sented in terms of Cartesian or spherical Gaussian basis functions. A Cartesian Gaussian
can be written as

χ k
μ(RK ) = Nμrk

K exp(−aR2
K ), (24.15)

where Nμ is a normalization constant, k is a vector containing the order of the polynomial
in the different Cartesian directions, and a is the orbital exponent. We have explicitly
indicated the dependence of the basis functions on the position of the nucleus K to which
they are attached.

If the position of the nuclei change, the atom-centered basis functions will also
change due to the explicit dependence on the nuclear positions. More specifically, we
will represent changes in the molecular geometries as derivatives of the nuclear coor-
dinates. Due to the explicit dependence of the atom-centered basis functions on the
positions of the nuclei, a perturbation due to changes in the molecular geometry will
have two consequences for our calculations of molecular properties: (1) We will get
new, differentiated atomic integrals, where the new contributions arise from the explicit
dependence of the basis functions on the nuclear positions, and (2) the molecular orbitals
will no longer be orthonormal. Let us consider the consequences of these two additional
contributions in some more detail.

A change in the nuclear geometry can be decribed by considering a Taylor expan-
sion of the energy with respect to the nuclear displacements, and the changes can thus be
described as derivatives with respect to nuclear displacements. For computational sim-
plicity, these derivatives are calculated in the Cartesian basis. Considering the integral
of a one-electron operator Ô (RC ), which may depend on one or more centers C as is
the case for the nuclear attraction operator, the first-order geometric derivative of this
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integral can be written as

d
dRK

〈
χμ (RA)

∣∣∣Ô (RC )

∣∣∣χν (RB )
〉
= δAK

〈
dχμ(RA)

dRK

∣∣∣Ô (RC )

∣∣∣χν (RB )
〉

+ δCK

〈
χμ (RA)

∣∣∣ dÔ(RC )
dRK

∣∣∣χν (RB )
〉

+ δBK

〈
χμ (RA)

∣∣∣Ô (RC )

∣∣∣ dχν(RB )

dRK

〉
, (24.16)

which has a more complicated structure than a regular one-electron interaction operator
such as the dipole moment operator, which would only contain the middle term in Eq.
(24.16). However, the evaluation of geometrical derivatives of one-electron integrals
is fairly straightforward [64]. The largest complication in terms of integral evaluations
arises from the fact that also the two-electron repulsion integrals are dependent on the
nuclear positions, and we will therefore always have to evaluate differentiated two-
electron integrals when perturbation-dependent basis sets are involved [65, 66], increasing
both the computational complexity and the computational costs.

The second complication that arises when perturbation-dependent basis sets are
involved is that the unperturbed reference orbitals will no longer remain orthonormal
due to the dependence of the basis functions on the applied perturbation. These orbitals
are thus no longer suited as reference orbitals when calculating the perturbed wavefunc-
tions. To be more explicit, let us consider the optimized wavefunction of our system
in the absence of the applied perturbation. The self-consistent optimization procedure is
then normally designed such that the optimized molecular orbitals (MOs) constitute an
orthonormal set that we can express as

ψUMO
i

(
x = x∗) =

∑
μ

C (0)
iμ χμ

(
x = x∗) , (24.17)

where
〈
ψUMO

i (x = x∗) | ψUMO
i (x = x∗)

〉 = δij . As we change the external perturbation
(x �= x∗), these unmodified molecular orbitals (UMO) will no longer be orthonormal since
the molecular orbital coefficients remain unchanged while the atomic basis functions
change:

〈
ψUMO

i (x) | ψUMO
i (x)

〉 �= δij , ψUMO
i (x) =

∑
μ

C (0)
iμ χμ (x) . (24.18)

In the literature, this problem has been solved in two different manners. The most common
approach is that the equations that determine the perturbed MO coefficients are defined
subject to the constraint that the reference molecular orbitals should remain orthonormal
[18, 62, 67, 68]. In the first analytic implementation of VCD and ROA spectra using
London atomic orbitals [17, 69], a slightly different approach was used. These imple-
mentations were derived using second quantization [70], and it was therefore important
that the reference orbitals remained orthonormal at any perturbation strength, and a set of
orthonormal MOs were therefore introduced such that

〈
φOMO

i (x) | φOMO
i (x)

〉 = δij . The
OMOs were related to the UMOs through a transformation with a unitary matrix [71]

φOMO
i (x) =

∑
j

Tij (x)ψUMO
j (x). (24.19)
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Tij (x) is not uniquely defined, and care must be exercised in choosing a form for the
connection matrix Tij (x) that allows for a meaningful definition of the orthonormal
molecular orbitals [71, 72].

Let us finally note that in both VCD and ROA, we will be concerned with the
magnetic component of the electromagnetic field applied to the sample. However, when
representing an external magnetic field in our molecular Hamiltonian, this is normally
done in terms of a magnetic vector potential A (riO ) defined such that

B = ∇ × A (riO ) . (24.20)

We note that the magnetic vector potential does not uniquely define the external magnetic
field, because we can add the gradient of any scalar function to the magnetic vector
potential and still obtain the same magnetic field:

B′ = ∇ × (A + ∇f ) = ∇ × A + ∇ × ∇f = ∇ × A = B. (24.21)

We thus have a gauge freedom in our definition of the magnetic vector potential. In
quantum chemical calculations, it is customary to assume the Coulomb gauge (∇ · A = 0),
in which case we can represent the magnetic vector potential as

A = 1

2
B × riO , (24.22)

and the gauge freedom is reduced to a freedom in the choice of gauge origin O. Although
calculated quantities in principle should be independent of the choice of gauge origin,
this is not the case in approximate calculations. For variational methods, gauge origin
independence can be achieved in the limit of a complete basis set, whereas for methods
such as truncated coupled cluster theory, gauge origin independence is not achieved even
in the limit of a complete basis set [73, 74].

The problem of gauge origin dependence of calculated VCD and ROA parameters
is a critical one, as the results in practice will depend on the location of the molecule
in space, and several early attempts using distributed origins were introduced in the
calculation of VCD spectra to overcome this problem [75–78]. In 1993, London atomic
orbitals [63] were introduced in the calculation of VCD spectra by Helgaker, Jørgensen
and co-workers [17], and in 1995 the same groups also introduced the use of London
orbitals for the tensors that determine ROA spectra [69], providing a very efficient way
of ensuring that the calculated results were origin-independent and at the same time
also ensured fast basis set convergence. These works lay much of the foundation for
the development of efficient ab initio methods for calculating VCD and ROA spectral
parameters (vide infra). Today, all methods in use for the calculation of VCD spectra,
and many calculations of ROA spectra, use London atomic orbitals.

London atomic orbitals [63], also commonly referred to as Gauge-Including Atomic
Orbitals (GIAOs) [79], are defined by multiplying each individual atomic basis function
by a magnetic-field-dependent phase factor

ωμ(B) = exp (−iAKO · r) χμ (RK ) . (24.23)

The effect of the magnetic vector potential appearing in the complex phase factor

AKO = 1

2
B × RKO (24.24)
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is to move the global gauge origin O to the “best” local gauge origin for each individual
basis function, which is chosen to be the center to which the basis function is attached.
It can be shown that this choice of local gauge origin is optimal in the sense that for a
one-electron, one-center system, the London orbital is correct to first order in the external
magnetic field, whereas the conventional Gaussian basis function is only correct to zeroth
order [17].

24.3. THE THEORY OF VIBRATIONAL CIRCULAR DICHROISM
AND RAMAN OPTICAL ACTIVITY

24.3.1. Vibrational Circular Dichroism

Vibrational circular dichroism is the vibrational analog of CD, corresponding to the dif-
ferential absorption of left- and right-circularly polarized light in the infrared wavelength
region, thus corresponding to excitations in the vibrational manifold rather than between
different electronic states. Phenomenologically, we can therefore write the rotational
strength for a transition between two different vibrational states i and j for normal mode
k (νk

i and νk
j ) as [16]

Rk;ij
αβ = 	

(〈
νk

i |μα| νk
j

〉 〈
νk

i

∣∣mβ

∣∣ νk
j

〉)
, (24.25)

where we have introduced the operator for the molecular electric dipole moment in Eq.
(24.12) and the magnetic dipole operator

m̂α = −
∑

i

1

2
li ,α = −1

2

∑
βγ

εαβγ

∑
i

ri ,βpi ,γ , (24.26)

where we have introduced the linear momentum operator of each particle pi = −ı�∇i

and the orbital angular momentum lj = (rj × pj ) and where εαβγ is an element of the
Levi–Civita antisymmetric tensor.

Using harmonic oscillator wavefunctions as basis functions for the vibrational wave-
functions νk

i and doing a Taylor expansion of the dependence of the electric and magnetic
dipole moments with respect to the nuclear distortions, truncating the Taylor expansion
at linear order, the rotational strength can be shown to be given as [16]

Rk
αβ = 	

(〈
ν0

∣∣∣∣∣ ∂μα

∂Qk

∣∣∣∣
Re

Qk

∣∣∣∣∣ νk

〉 〈
νk

∣∣∣∣∣ ∂mβ

∂Qk

∣∣∣∣
Re

Qk

∣∣∣∣∣ ν0

〉)

= 1

2

∂μα

∂Qk

∣∣∣∣
Re

∂mβ

∂Qk

∣∣∣∣
Re

, (24.27)

where Qi denotes the i th mass-weighted vibrational normal mode of the molecule. All
derivatives are evalued at the molecular equilibrium geometry, indicated by the subscript
Re. We have assumed that only the vibrational ground state is sufficiently populated at
normal experimental conditions. The use of harmonic oscillator vibrational wavefunctions
and only the terms linear in the Taylor expansion with respect to nuclear displacements
is often referred to as the double-harmonic approximation or the Placzek approximation
[80]. Within this approximation, only transitions to the first vibrationally excited state is
possible for each vibrational normal mode.
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In the calculation of VCD spectra, the geometrical derivatives of the electric and
magnetic dipole moments in Eq. (24.27) are usually calculated with respect to the Carte-
sian displacements of the nuclei, followed by a transformation of these geometrically
differentiated tensors to the normal coordinate basis, defined in matrix form as

Q = L−1X, (24.28)

where X is a vector collecting the mass-weighted Cartesian coordinates of all the nuclei,
and L−1 is the transformation matrix from the mass-weighted Cartesian coordinates X
to the normal coordinate basis Q. L diagonalizes both the kinetic energy and harmonic
electronic potential energy of the nuclei.

The first term in Eq. (24.27), the gradient of the electric dipole moment, is referred
to as the atomic polar tensor due to the symmetry properties of the tensor [81], whereas
the gradient of the magnetic dipole moment operator in a similar manner is referred to
as the atomic axial tensor.

The rotatory strength is only nonzero when the molecule is vibrationally chiral. It
is important to realize that this means that we may have instances in which a molecule
is achiral with respect to the electron density, but may be vibrationally chiral. One of
the most striking examples of a vibrationally chiral system that has been synthesized and
stereochemically characterized is chirally deuterated neopentane [7].

We have already encounted the atomic polar tensor in Eq. (24.10) and noted that
it can be expressed as the second derivative of the electronic energy, once with respect
to the external electric field and once with respect to the nuclear distortions. The sum-
over-states expression for the dipole gradient was given in Eq. (24.13); and for easier
comparison with the atomic axial tensor, we note that we alternatively can write the exact
sum-over-states expression for the dipole gradient as

PK
αβ = ZK − 〈

�el
0

∣∣ μ̂α

∣∣∣∣∣ ∂�el
0

∂RK ,β

〉∣∣∣∣∣
Re,F=0

, (24.29)

that is, as the transition moment between the ground electronic state and the first-order
perturbed wavefunction due to the nuclear distortion. We note that the atomic polar tensor
also determines the intensities of regular infrared spectroscopy.

In contrast to the electric dipole gradient, the gradient of the magnetic dipole moment
is zero within the Born–Oppenheimer approximation. This is because the magnetic dipole
moment for a closed-shell molecule is quenched (since it corresponds to an expectation
value of an imaginary operator), making the rotational strength in Eq. (24.27) zero.

Stephens showed that by including also nonadiabatic effects, a vibrationally induced
magnetic moment can arise that will lead to a nonvanishing rotational strength [16].
Vibrational circular dichroism is thus an example of a nonadiabatic effect in a similar
manner as properties such as the nuclear spin-rotation constant or the rotational g tensor
[82, 83].

Following Stephens [16], we can write the vibronic wavefunction as a combination
of a pure Born–Oppenheimer zeroth-order wavefunction and the first-order perturbed
wavefunction due to the nonadiabatic coupling matrix elements as

�
pert
Ii = �

(0)
Ii +

∑
(J ,j )�=(0,0)

〈
�

(0)
Ii

∣∣∣Ĥ el + T̂K

∣∣∣�(0)
Jj

〉
EIi − EJj

∣∣∣�(0)
Jj

〉
(24.30)
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where �
(0)
Ii denotes a vibronic wavefunction corresponding to the i th vibrational level of

the I th electronic state, Ĥ el represents the electronic Hamiltonian [see Eq. (24.11)], and
T̂K is the operator for the kinetic energy of the nuclei [16]. We do not go into the details
of the derivation here, referring the interested reader instead to the original work of
Stephens [16], but note that the atomic axial tensors as evaluated using this nonadiabatic
wavefunction can, to leading order in the geometry dependence, be expressed as the
overlap of the magnetic field-perturbed and geometry-perturbed wavefunctions

MK ,αβ = IK ,αβ + JK ,αβ , (24.31)

IK ,αβ =
〈

∂�el
0

∂RK ,α

∣∣∣∣∣∂�el
0

∂Bβ

〉 ∣∣∣∣∣
Re ,B=0

, (24.32)

JK ,αβ = i

4
εαβγ ZK RKγ . (24.33)

The sum-over-states expression for the atomic axial tensor is given as [16]

I K
αβ = −

∑
n �=0

〈
0
∣∣∣ ∂Ĥ
∂RK ,α

∣∣∣ n
〉 〈

n
∣∣∣ ∂Ĥ
∂Bβ

∣∣∣ 0
〉

(
E 0

n − E 0
0

)2 . (24.34)

We note that the atomic axial tensor cannot be expressed directly as an energy derivative
since it involves the overlap over two perturbed wavefunctions. However, comparing
with the expression for the atomic polar tensor, we note that we could calculate the
atomic axial tensors as the product of two perturbed wavefunctions, once perturbed with
respect to the external magnetic field and once with respect to the nuclear distortions.
This approach forms the basis for all the early implementations of the atomic axial tensors
[17, 18, 67].

Recently, Coriani et al. made the observation that the linear response function
(second-order frequency-dependent quasi-energy derivative) corresponding to a mixed
perturbation due to geometrical distortions and magnetic perturbations at a frequency ω

of the applied perturbations is given as [68]

〈〈
∂Ĥ

∂RK ,α
; ∂Ĥ

∂Bβ

〉〉
ω

=
∑
n �=0

2ω(
E 0

n − E 0
0

)2

〈
0

∣∣∣∣∣ ∂Ĥ

∂RK ,α

∣∣∣∣∣ n

〉 〈
n

∣∣∣∣∣ ∂Ĥ

∂Bβ

∣∣∣∣∣ 0

〉
, (24.35)

which means that we can define the AATs as the frequency derivative of the linear
response equation in Eq. (24.35) evaluated at zero frequency, that is,

I K
αβ = 1

2
d

dω

〈〈
∂H

∂RK ,α
; ∂H

∂Bβ

〉〉
ω

∣∣∣
ω=0

. (24.36)

The development of theoretical methods for the calculation of VCD spectra has been
reviewed on several occasions [37, 84]. We here only note that two major breakthroughs
were necessary for making the calculations reliable and routine: (1) the introduction of
London atomic orbitals for ensuring that the results were independent of the choice of
the global gauge origin and for ensuring fast basis set convergence [17]; and (2) the use
of density functional theory for calculating the force field and rotational strengths [18].
Stephens et al. have in several studies demonstrated the powers of this computational
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approach (see reference 37 and references therein) and how the combined use of exper-
imental VCD spectra with ab initio calculations is a very efficient and reliable approach
for determining the absolute configurations of chiral molecules [44–46]. It is particularly
noteworthy that VCD has also been shown to lead to a reassessment of earlier determi-
nations of the absolute configuration of chiral molecules based on CD [14] as well as
X-ray crystallography [15]. Density-functional theory has been the dominating correlated
approach for calculating VCD spectra, and the only other fully correlated approach we
are aware of for calculating the atomic axial and polar tensors is the multiconfigurational
self-consistent-field approach of Bak et al. [17].

In the original implementations [17, 18, 67], the cost of a VCD calculation is of the
same order of magnitude as that of determining the force field itself, and indeed there
is very little computational overhead relative to a force-field calculation (three response
equations due to the external magnetic field induction need to be solved in addition to
the 3N equations that need to be solved for the nuclear distortions). However, basis set
requirements for the atomic axial and polar tensors may differ from that of the force
field, potentially leading to a higher computational cost than the force field alone if the
perturbed densities for the nuclear displacements need to be recalculated with a different
basis set. However, Stephens et al. have demonstrated that basis sets of TZ2P or cc-pVTZ
quality in combination with hybrid density functionals such as B3LYP and B3PW91 gives
results of an accuracy sufficiently high to unambigously assign experimental spectra,
both for the force field and the rotational strengths [37]. We note that in case a different
computational level is desired for the force field and the APT and AAT tensors, the
approach of Coriani et al. [68] is particularly well-suited for such calculations, because
this reduces the number of perturbed densities that must be determined to six.

Extensions of the basic VCD calculations to also decribe solvent effects have been
presented by Cappelli et al. [85], including also nonequilibrium effects in the solvent due
to the vibrational excitations in the solute. Although solvent effects have been shown to
be non-negligible, these methods have not been much utilized, largely because only very
rarely does the solvent as modeled by a dielectric continuum model lead to a reversal of
the sign of the VCD rotational strengths. The use of the continuum model is therefore
in general not important in terms of determining the absolute configuration of chiral
molecules in solution. An instance where more elaborate models may be required, is
when specific interactions such as hydrogen bonding are important for the calculated
spectra [38, 39] or when molecules aggregate in the solvent [40, 42].

24.3.2. Raman Optical Activity

In ROA, the key quantity is the differential scattering of right- and left-circularly polarized
light. The general expression of scattered circular polarization experiments for a scattering
angle ξ are given by the expression [81]

I R
SCP (ξ) − I L

SCP (ξ) = 1

90c

(
ω2μo

4π

)2
�

2ωi

[
90aG ′

i + 26β2
Gi

− 2β2
Ai

+ cos (ξ)
(
180aG ′

i − 20β2
Gi

− 12β2
Ai

)
+ cos2 (ξ)

(
90aG ′

i + 2β2
Gi

+ 6β2
Ap

)]
. (24.37)

The corresponding expressions for specific experimental setups, both for Raman and
ROA experiments, can be found in references 86 and 87.
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In Eq. (24.37), we have introduced a number of Raman and ROA invariants, defined
respectively as

a2
i = 1

9

(
∂ααα

∂Qi

)∣∣∣∣
Re

(
∂αββ

∂Qi

)∣∣∣∣
Re

, (24.38)

β2
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2

[
3

(
∂ααβ

∂Qi

)∣∣∣∣
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(
∂ααβ

∂Qi

)∣∣∣∣
Re

−
(

∂ααα

∂Qi

)∣∣∣∣
Re

(
∂αββ

∂Qi

)∣∣∣∣
Re

]
, (24.39)

aG ′
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(
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∂Qi

)∣∣∣∣
Re

(
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ββ

∂Qi

)∣∣∣∣∣
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, (24.40)
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= 1
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∂Qi
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, (24.41)

β2
Ai

= ω

2

[(
∂ααβ

∂Qi

)∣∣∣∣
Re

(
εαγ δ∂Aγ ,δβ

∂Qi

)∣∣∣∣
Re

]
(24.42)

where ωi is the frequency corresponding to the vibrational excitation of the i th vibrational
mode, and implicit summation over repeated Greek indices has been used in all equations
above.

ααβ , G ′
αβ , and Aγ ,δβ are, respectively, the electric dipole–electric dipole, electric

dipole–magnetic dipole, and electric dipole–electric quadrupole polarizabilities, defined
in terms of sum-over-states expressions for exact wave functions as [81]

ααβ = 2
∑
n �=0

ωn0

〈
0
∣∣μ̂α

∣∣ n
〉 〈

n
∣∣μ̂β

∣∣ 0
〉

ω2
n0 − ω2

, (24.43)

G ′
αβ = −2ω

∑
n �=0

Im

〈
0
∣∣μ̂α

∣∣ n
〉 〈

n
∣∣m̂β

∣∣ 0
〉

ω2
n0 − ω2

, (24.44)

Aα,βγ = 2
∑
n �=0

ωn0

〈
0
∣∣μ̂α

∣∣ n
〉 〈

n
∣∣∣�̂βγ

∣∣∣ 0
〉

ω2
n0 − ω2

, (24.45)

The electric and magnetic dipole moment operators μ̂ and m̂ were defined in Eqs. (24.12)
and (24.26), respectively. �̂ is the traceless electric quadrupole operator defined as

�̂αβ = 1

2

∑
K

ZK

[
RK ,αrK ,β − 1

3
δαβRK ,γ RK ,γ

]
− 1

2

∑
i

[
ri ,αri ,β − 1

3
δαβri ,γ ri ,γ

]
.

We note that G ′ will vanish in the limit of a static field (ω = 0), as can be easily seen
from Eq. (24.44).

The first full ab initio ROA spectra presented in the literature were computed at the
Hartree–Fock level of approximation by Polavarapu and co-workers in 1990 [88, 89].
These calculations utilized the observation and implementation by Amos [90] that even
though the mixed electric dipole–magnetic dipole polarizability in Eq. (24.44) vanishes
in the limit of a static field, (1/ω)G ′(ω) does have a static limit.
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The decoupling of the calculation of the force field from the ROA CIDs opens for the
obvious possibility of calculating the force field that determines the normal coordinates at
a different, and in general a much higher, level of theory than the more computationally
expensive polarizability gradients. This combination of different computational levels are
the dominating mode of operation in ROA calculations, to a large extent motivated by
the somewhat stronger importance of the quality of the force field in obtaining reliable
ROA spectra compared to the quality of the polarizability gradients (although the number
of thorough investigations of basis set requirements and correlation effects on the polar-
izability gradients are limited [47, 48, 69, 91, 92]). This hybrid computational approach
was also used in early studies of vibrational circular dichroism (VCD); see, for example,
reference 93.

In the calculation of the mixed electric dipole–magnetic dipole polarizability in the
work of Polavarapu and co-workers [88, 89], conventional basis sets were used. In 1995,
Helgaker et al. presented the first gauge-origin-independent calculations of ROA spectra
at the Hartree–Fock and multiconfigurational self-consistent field (MCSCF) level of
theory [69]. Gauge-origin independence was ensured through the use of London atomic
orbitals [63].

Another extension introduced in the work of Helgaker et al. relative to that of
Polavarapu and co-workers is that the static-limit approximation was lifted, the differ-
ent mixed polarizabilities now being calculated from response functions [51, 52, 70,
94] solved at the frequency of the applied laser light. Interestingly, reference 69 also
represents (to date) one out of only two studies [92] of ROA CIDs using correlated
wavefunctions (excluding DFT).

An important step forward in terms of improving the quality of calculated ROA
CIDs was made in 2001, when Ruud, Helgaker, and Bouř presented the first calculations
of ROA CIDs at the DFT level of theory [91]. This is an extention of the approach
presented in reference 69, building on the implementation of linear response theory at
the DFT level [95, 96] and the corresponding extension of the calculation of optical
rotations to the DFT level using London atomic orbitals [97, 98]. Within a Kohn–Sham
formalism, the implementation of ROA CIDs at the DFT level represents a rather minor
modification of an existing TDHF code, assuming that routines for numerical integration
of the relevant exchange-correlation kernels are present.

Luber and Reiher implemented the mixed electric dipole–electric quadrupole polar-
izability into the Turbomole program [99] enabling faster calculations of ROA spectra by
utilizing the efficiency of the Turbomole integral package. Hess, Reiher and co-workers
have introduced a numerical approach in which only selected vibrational modes are tar-
geted, or only vibrations in a specific frequency window [100]; and although applicable
to both VCD and ROA calculations, it has largely been used for ROA calculations in
the domain of vibrational chiroptical spectroscopy [31, 33]. The approach can start from
trial modes and obtain the true normal modes using Davidson diagonalization techniques
[101]. These normal modes can then be used to determine the polarizability derivatives
numerically without ever having to construct the full quantum-mechanical force field.
For very large molecules, this has obvious advantages, because characteristic vibrational
frequencies can be targeted, or only the relevant vibrational frequencies within the fre-
quency window accessible to the ROA spectrometer. The method has allowed for ROA
calculations on very large systems, involving more than 400 atoms in the largest calcula-
tions [33]. The combination of a local-mode optimization with analytical calculations of
the ROA CIDs may prove to be a computationally very efficient approach for the study
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of ROA spectra of large molecules, as well as for VCD when used in conjunction with
the recent developments of Coriani et al. [68].

Jensen et al. have utilized the complex polarization propagator approach [102, 103]
to calculate resonance Raman optical activity spectra [104]. The necessary geometry
derivatives of the different mixed polarizabilities were also in this approach obtained
using numerical differentiation.

The first analytic implementations of ROA CIDs have started to appear very recently
[86, 105, 106]. The first of these, and the only one published to date [105], used the
2n + 1 rule to calculate ROA CIDs at the Hartree–Fock level of theory, thus requiring
the solution 3N + 12 response equations. In this implementation, London orbitals were
furthermore not included. More recent implementations utilize the n + 1 rule, reducing
the number of response equations to be determined to 45, independent of the size of the
molecule [86, 106]. One of these implementations [106] include also contributions from
the exchange-correlation functionals to allow for calculations at the DFT level of theory,
as well as the use of London atomic orbitals, and is distributed as part of the Gaussian
program [20].

A somewhat different set of developments are the description of the effects of a
solvent on the calculation of ROA spectra. Whereas the polarizable continuum model
(PCM) is routinely used to include solvent effects on the vibrational frequencies, the
only study in which the PCM has been applied to all quantities determining the ROA
spectrum is the study by Pecul et al., [107], in which a nonequilibrium scheme for the
interaction between the solvent and the solute is included also in the calculation of the
ROA CIDs. The study also takes into account local field effects on the interaction tensors
[108, 109].

24.4. THE AB INITIO THEORY OF VIBRATIONAL CIRCULAR DICHROISM
AND RAMAN OPTICAL ACTIVITY

We described in Section 24.2 the basic principles of energy-derivative theory in a rather
general fashion, in order to illustrate the general principles behind these kinds of cal-
culations without having to introduce a specific wave function parameterization and
without having to introduce a complicated formalism that would distract from the essen-
tial features of the approach. In this section, in contrast, we will present the working
equations for calculating the tensors that determine the intensities of VCD and ROA
spectra. Although there exist several independent implementations of VCD and ROA in
the literature, they all follow the same computational strategy and are thus covered by
the presentation. We will, however, in the case of VCD, focus on a new formulation
of the atomic axial tensors that was recently introduced by Coriani et al. [68], which
not only provides a derivation of the atomic axial tensors that are much closer to the
regular energy-derivative scheme, but also holds promise for reducing the computational
cost of AAT calculations. The approaches used to calculate force fields can be found
elsewhere and will not be discussed here [110–112]. Let us also note that some of the
details presented here in the context of ROA has already been discussed in some detail
in a recent mini-review [86].

Compared to many other molecular properties, the number of theoretical develop-
ments of ab initio methods for the calculation of VCD and ROA spectra, and correspond-
ing implementations, is rather limited. The reason for this is in part due to the limited
experimental activity using this spectroscopic tool, but also the computational complex-
ity of the relevant molecular properties that are needed for determining the VCD and
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ROA spectra. As described in the previous section, several different implementations of
ab initio methods for VCD and ROA calculations have been published in recent years,
and an increasing number of ab initio programs can calculate VCD and ROA spectra,
most notably the Dalton [19], Gaussian [20], ADF [21] (VCD only), and Turbomole
[99, 113] (ROA only, in combination with SNF [114]) programs, but also the CADPAC
program [115], with which the first ab initio ROA calculations were done [88, 89].

We will first introduce the starting point for our formalism, before focussing on the
specific equations for the tensors that determine the VCD and ROA intensities.

24.4.1. Quasi-energy Derivative Theory in the Atomic Orbital Basis

The formalism we will utilize here is based on the a framework derived for an atomic
orbital-based response theory, in which the basis functions can be both time- and
perturbation-dependent [62, 66]. The formulation uses the elements of the density matrix
as the basic parameters. By working in the atomic-orbital basis without explicitly using
molecular orbitals, the approach is designed with modern linear-scaling methods in
mind [54, 116–118].

Our starting point is the molecular gradient of the quasi-energy Qg defined for
an atomic orbital basis which is time-dependent and which depends explicitly on the
externally applied perturbation g (in this case corresponding to a change of the nuclear
positions: g = R − Re) [119]:

Qg = dQ

dg
=

{
∂Ẽ (D)

∂g
− Tr Sg W

}
t

. (24.46)

In this equation, {. . .}t indicates that we have performed a time averaging over a full
period of the applied electromagnetic field. We have also introduced the density matrix D
in the atomic orbital basis, the generalized (time-dependent) self-consistent field (SCF)
energy of the system, Ẽ (D), defined as

Ẽ (D) = hnuc + vnuc

+ Tr (h − i
2 T + V)D

+ Tr 1
2 G(D)D. (24.47)

The expression for the quasi-energy gradient is then

Qg =
{

hg
nuc + vg

nuc

+ Tr (hg − i
2 Tg + Vg )D

+ Tr 1
2 Gg (D)D − Tr Sg W

}
t
, (24.48)

where we have defined an antisymmetric time-differentiated overlap matrix

Tμν = 〈χμ|χ̇ν〉 − 〈χ̇μ|χν〉, χ̇μ = d

dt
χμ, (24.49)
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and the nuclear repulsion energy hnuc. h is the conventional one-electron operator integral,
containing the kinetic energy and nuclear attraction contributions [see also Eq. (24.11)]

hμν =
〈
χμ

∣∣∣∣ − 1
2∇2 − ∑

K

ZK
|RK −r |

∣∣∣∣χν

〉
, (24.50)

and G(D) is the two-electron interaction, which in the atomic orbital basis can be writ-
ten as

Gμν(D) =
∑
ρσ

Dσρ(gμνρσ − gμσρν), (24.51)

with the two-electron integrals being defined as

gμνρσ =
∫ ∫

χ∗
μ(x1)χν(x1)

1

r12
χ∗

ρ (x2)χσ (x2) dx1dx2, (24.52)

where xi comprises a spin coordinate and a spatial coordinate. vnuc in Eq. (24.47) is the
potential energy between the nuclei and the external fields, while V describes the interac-
tion between the electrons and the external fields. In the specific case of ROA, using the
electric quadrupole approximation, the field-molecule interation operator entering into
our Hamiltonian is given by

V̂ (t) = −F (t) μ̂ − Q(t) �̂ − B(t)m̂

= −(
f exp(−iωt) + f ∗ exp(iωt)

)
μ̂

−(
q exp(−iωt) + q∗ exp(iωt)

)
�̂

−(−ib exp(−iωt) + ib∗ exp(iωt)
)
m̂ , (24.53)

in which the monochromatic electromagnetic wave is represented as an oscillating inho-
mogeneous electric field and an oscillating homogeneous magnetic field

Fα(r, t) = Fα(t) + Qαβ(t)rβ , Bα(r, t) = Bα(t), (24.54)

which in turn are expressed in terms of complex-valued frequency component vectors f ,
q , and b:

f = {fx , fy , fz }, (24.55)

q = {qxx , qxy , qyy , qxz , qyz , qzz }, (24.56)

b = {bx , by , bz }, (24.57)

which we treat as perturbations (perturbation strengths). These are determined by the
direction, intensity, phase, and polarization of the applied radiation. Since the mag-
netic moment operator m̂ carries an imaginary phase factor, −i has been extracted from
b to avoid imaginary perturbed integrals Vb = (d/db)V and properties (quasi-energy
derivatives).
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In the expression for the quasi-energy gradient Eq. (24.46), we have also introduced
the derivative of the overlap matrix

S g
μν = ∂Sμν

∂g
= ∂

∂g
〈χμ|χν〉, (24.58)

and the energy-frequency-weighted density matrix

W = DF̃D + i
2 ḊSD − i

2 DSḊ, (24.59)

where we have introduced the generalized (time-dependent) Fock matrix in the AO basis
F̃ defined as the partial derivative of the generalized SCF energy in Eq. (24.47) with
respect to the density matrix transposed:

F̃ = ∂Ẽ (D)

∂DT
= h + V − i

2 T + G(D). (24.60)

The gradient defined in Eq. (24.46) can be considered as a generalization to time-
dependent basis sets of the expression for the conventional geometrical gradient of a
molecular system as introduced by Pulay [120].

As shown in references 62 and 119, we can obtain higher-order, static, and frequency-
dependent molecular properties by term-by-term differentiation of Eq. (24.48), following
the principles of energy-derivative theory as outlined in Section 24.2, and we will use
this to formulate the working expressions for the tensors that determine the VCD and
ROA intensities. We will consider these two spectroscopies separately in the next two
subsections.

24.4.2. Ab Initio Calculation of Vibrational Circular Dichroism

The VCD spectrum is determined by the product of the (static) atomic polar tensor [the
electric dipole gradient; see Eq. (24.29)], and the atomic axial tensor in Eq. (24.32).
Starting with the dipole gradient, this can be obtained by differentiating the quasi-energy
gradient for the geometrical energy gradient with respect to the external electric field. In
doing so, we note that since the electric field f only appear in the operator V̂ (which
gives rise to vnuc and V), and not in the atomic orbitals, derivatives of hnuc, h, G, and S
involving these perturbations will vanish.

Qgf ∗ = dQg

df ∗ =
{

vgf ∗
nuc + Tr Vgf ∗

D

+ Tr
(
hg + Vg − i

2
Tg + Gg (D)

)
Df ∗ − Tr Sg Wf ∗}

t
, (24.61)

where we have used that Tr Gg (Df )D=Tr Gg (D)Df . Note that we consider f and
f ∗ as being independent perturbations when differentiating. When perturbing a
time-independent system, this greatly simplifies the equations since all derivatives will
be of the form

Dab... = exp (−i (ωa + ωb . . .)t) M, (24.62)
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with M being time-independent. However, the dipole gradient only involves a static
external electric field, in which case the matrix T vanishes, reducing the expression for
the dipole gradient in Eq. (24.61) to

Qgf = dQg

df
= vgf

nuc + Tr Vgf D

+ Tr
(
hg + Vg + Gg (D)

)
Df − Tr Sg

(
DF̃D

)f
. (24.63)

We note that this equation only requires us to determine three perturbed densities, corre-
sponding to the three Cartesian components of the electric field, independent of the size of
the molecular system. We will not go into the details on how to determine the perturbed
densities, because this will take us too far off our main focus on how to obtain suitable
expressions for ab initio calculations of VCD and ROA spectra. Suffice it to note here
that the determination of the perturbed densities constitutes a significant fraction of the
computational time needed for calculating the properties that determine VCD and ROA
intensities. The perturbed densities are determined by iteratively solving a set of linear
equations as discussed in Section 24.2 and schematically illustrated in Eq. (24.4). More
information on the determination of the perturbed densities by solving linear response
equations can be found in the Appendix, as well as in the literature (see, e.g., references
53 and 54).

Let us now turn our attention to the atomic axial tensor. We note from Eq. (24.32)
that this tensor is the dot product of two perturbed wavefunctions, and thus not directly
expressible as an energy derivative. An alternative formulation as presented by Coriani
et al. [68] is to express the AAT as the frequency derivative of the linear response
function corresponding to perturbations due to an external magnetic field and nuclear
discplacements, as illustrated in Eq. (24.35), and this is the approach we will also be
considering here.

Instead of differentiating the quasi-energy gradient with respect to an electric field,
let us differentiate it with respect to a frequency-dependent magnetic field, including also
contributions from the London atomic orbitals

Qgb∗ = dQg

db∗ =
{

Tr

(
hgb∗ + Vgb∗ − i

2
Tgb∗ + Ggb∗

(D)

)
D

+ Tr
(
hg + Vg − i

2
Tg + Gg (D)

)
Db∗ − Tr Sg Wb∗}

t
. (24.64)

Following Eq. (24.35), we differentiate the magnetic dipole gradient in Eq. (24.64) with
respect to the frequency ω, setting the frequency to zero, which gives [68]

d

dω
Qgb

∣∣∣∣
ω=0

= − i

2
Tr

[
Tgbω + DTgωDb] + Tr Sg Wbω

+ Tr

{[
hg + Vg − i

2
Tg + Gg (D)

]
Db∗ω

}
. (24.65)

We thus note that we can calculate the AATs without determining the perturbed wave-
function parameters with respect to the geometrical distortions, as has normally been
done in the implementations presented in the literature to date [17, 18, 67]. Indeed,
this formulation only requires the determination of six perturbed densities, namely the
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magnetic-field-perturbed densities evaluated at zero frequency, Db , and the second-order
perturbed densities, Dbω, of which there are also only three components. It is beyond
the scope of this chapter to discuss in detail how these latter perturbed densities are
determined, and we only note that they are determined using the regular linear response
solver with a modified right-hand side. For more details, the interested reader is referred
to the work of Coriani et al. [68].

24.4.3. Ab Initio Calculation of Raman Optical Activity

We recall that the quantities that determine the circular intensity difference in ROA
are the isotropic and anisotropic invariants of gradients of the electric dipole polariz-
ability, the mixed electric dipole–magnetic dipole polarizability, and the mixed electric
dipole–electric quadrupole polarizability, see Eqs. (24.38–24.42). Focusing first on the
electric dipole polarizability and the mixed electric dipole–electric quadrupole polar-
izability, we can obtain the working expressions for these polarizability gradients by
differentiating the expression for the dipole gradient in Eq. (24.61) a second time, with
respect to f or q , respectively,

dα

dg
= Qgf ∗f =

{
Tr Vgf ∗

Df + Tr Vgf Df ∗

+ Tr
(
hg + Gg (D)

)
Df ∗f

+ Tr Gg (Df ∗
)Df − Tr Sg Wf ∗f

}
t
, (24.66)

dA

dg
= Qgf ∗q =

{
Tr Vgf ∗

Dq + TrVgq Df ∗

+ Tr
(
hg + Gg (D)

)
Df ∗q

+ TrGg (Dq )Df ∗ − Tr Sg Wf ∗q
}

t
, (24.67)

where we have used that f and q only appear linearly in vnuc and V.
Similarly, the formula for the gradient of the G ′ tensor, Qgf ∗b= − (d/dg)G ′, is

obtained by differentiating Eq. (24.61) with respect to b:

Qgf ∗b =
{

Tr Vgf ∗
Db

+Tr
(
hgb + Vgb − i

2 Tgb + Ggb(D)
)
Df ∗

+Tr
(
hg + Gg (D)

)
Df ∗b

+Tr Gg (Db)Df ∗

−Tr SgbWf ∗ − Tr Sg Wf ∗b
}

t
. (24.68)

Compared to Eqs. (24.66) and (24.67), this formula has six additional contributions,
which are all due to the fact that the integrals depend on b through the London atomic
orbitals. We do not discuss these equations in more detail here, noting only that these
equations allow us to calculate ROA CIDs solving only 45 response equations; thus no
perturbed densities due to the geometrical distortions are needed [86, 106].
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24.5. CONCLUDING REMARKS AND OUTLOOK

In this chapter, an overview of the general principles that apply when calculating vibra-
tional chiroptical properties have been given in terms of energy derivative theory. The
complications that arise because the basis functions used in ab initio calculations of
molecular properties depend explicitly on both the nuclear positions and the external
magnetic field perturbation when London atomic orbitals are used have been given spe-
cial attention. The working equations for the calculation of VCD and ROA spectra have
been given for the specific case of a Hartree–Fock wavefunction, focusing on the most
recent derivation of the working equations in which the elements of the density matrix
in the atomic-orbital basis has been used as variational parameters [62]. We have, in
particular, highlighted a recent derivation of the atomic axial tensors that enter into the
calculation of VCD spectra by Coriani et al. [68] that allows the AATs to be deter-
mined by solving only six linear response equations, a significant improvement over the
conventional 3N + 3 response equations that normally have to be solved in convential
implementations. VCD calculations are in this formulation comparable in cost to ROA
calculations using the n + 1 rule [86].

As of today, Kohn–Sham density functional theory is the dominating method of
choice for calculating VCD spectra [37]. In the case of ROA, DFT has until recently
been more sparingly used, and often DFT force fields have been used in combination
with Hartree–Fock calculations of ROA CIDs [47, 121]. However, with the introduction
of analytic calculations of ROA CIDs with London orbitals at the Kohn–Sham DFT
level of theory [86, 106], it is expected that there will be an increasing number of ROA
studies all carried out at the DFT level of theory. In the case of VCD, Stephens and
co-workers have done a number of studies to determine the level of theory required for
the reliable calculation of VCD spectra [18, 44–46]. The number of benchmark studies
for ROA CIDs are much more limited [47, 48, 69, 91, 92]. These benchmark studies
have to a large extent been based on a qualitative comparison with experimental spectra,
ignoring in most cases the effects of the solvent, even though solvent effects can be
expected to be significant. As such, there is a need for accurate benchmark calculations,
for instance at the coupled-cluster level of theory, in order to assess the reliability of the
more approximate DFT calculations. Except for a few very early studies at the MCSCF
level of theory [17, 69, 92], no correlated ab initio studies of VCD and ROA spectra
have been presented to date if we here do not consider DFT as a correlated ab initio
method. However, due to the low symmetry of chiral molecules and the general high
computational costs of correlated ab initio calculations, these methods are not expected
to become routine, and they will primarily serve as benchmarks for more approximate
methods.

An important future development will be the inclusion of anharmonic effects in
VCD and ROA spectra. An early study of anharmonic effects was presented by Bak
and co-workers [122], and there is also some recent work by Danecek et al. [123]
However, these methods are still hampered by the lack of analytic methods that would
allow anharmonic effects to be included in a routine manner. The development of very
general approaches for calculating molecular properties of arbitrary order for time- and
perturbation-dependent basis sets may help rectify this situation in the future [62].

The majority of VCD and ROA studies have focused on organic molecules. A few
studies have, however, also considered chiral complexes involving metal atoms [99,
124–126]. If VCD and ROA show promise as a structural tool also for such compounds,
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there will in the future be a need for considering also relativistic effects on VCD and
ROA spectra.

Although not directly a methodological concern, the development of suitable models
for describing solvent effects are much needed. Both for ROA and VCD, there has
been presented implementations of the polarizable continuum model for the inclusion of
solvent effects in an approximate manner [85, 107]. Whereas such implicit solvent models
may be suitable in many cases for VCD due to the nonpolar solvents that are normally
employed, such implicit solvent models can be expected to be much less satisfactory for
ROA, because water is often the solvent of choice. At the same time, water will lead
to strong specific interactions with the solute through hydrogen bonding, and a reliable
consideration of these effects will require the use of more sophisticated solvent models.
The cost of ROA calculations have until recently prevented systematic studies of the
accuracy and reliability of different implicit and explicit solvent effects on the calculated
ROA spectra [43]. Related to these effects are also aggregation effects (dimerization),
for instance, induced by the solvent [40–42].

The recent developments of analytic ab initio methods for the calculation VCD and
ROA spectra have made a significant impact on the development of these spectrocopic
techniques, and theoretical calculations are in many cases an integral part of vibrational
chiroptical studies. Although further methodological developments are needed, in part to
include anharmonicites, relativistic effects, and solvent effects, as well as to extend the
methods to increasingly larger molecules [33], current ab initio theory provides results
of an accuracy that in many cases are sufficient for a detailed analysis of experimental
spectra. The major challenges are currently the development of reliable computational
protocols, in particular in relation to conformationally flexible molecules. This remains
a major challenge in which theory and experiment will have to continue to collaborate
in order to further our understanding of the many computational parameters and models
that affect a calculated VCD or ROA spectrum.
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APPENDIX: DETERMINATION OF THE PERTURBED DENSITY MATRICES

For completeness, we summarize here the determination of the perturbed densities
from solving the linear response equation [Eq. (24.4)] in the atomic-orbital basis for a
Hartree–Fock wavefunction. The presentation follows that already given in reference
86, and it is based on the derivation in reference 62.

The required first- and second-order perturbed densities Df =(Df ∗
)T , Dq , Db , Df ∗f ,

Df ∗q , and Df ∗b can be determined by solving the corresponding derivatives of the time-
dependent SCF equation and idempotency constraint [62]

F̃DS − i
2 S(DS)

• = SDF̃ + i
2 (SD)

•S, (24.69)

DSD = D, (24.70)

where the time-dependent Fock matrix F̃ is given by Eq. (24.60) and (DS)
•=(d/dt)DS.
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Eqs. (24.69) and (24.70) have been derived previously [62], and this derivation will
not be repeated here and we focus on determining derivatives of Eqs. (24.69) and (24.70).

In the first step of the procedure, all known (lower-order) terms are collected in a
right-hand-side N, and from the perturbed idempotency constraint a set of equations are
obtained for the higher-order perturbed densities, which can then be evaluated. For a
second-order equation for Df ∗b , this is

Df ∗bSD + DSDf ∗b − Df ∗b = N, (24.71)

N = −
⎛
⎝ DbSf ∗

D + DbSDf ∗ + DSbDf ∗

+DSf ∗
Db + Df ∗

SDb + Df ∗
SbD

+DSf ∗bD

⎞
⎠, (24.72)

in which perturbed overlap matrices Sf ∗
and Sf ∗b are zero since the basis set is independent

of the electric field. An equation of the form of Eq. (24.71) has the general solution

Df ∗b = NSD + DSN − N + Df ∗b
hom

= Df ∗b
par + Df ∗b

hom, (24.73)

where we call Df ∗b
par the “particular” component of the solution, and the “homogeneous”

component Df ∗b
hom can be any solution of the corresponding homogeneous equation

Df ∗b
homSD + DSDf ∗b

hom − Df ∗b
hom = 0, (24.74)

which must be determined by the corresponding perturbed time-dependent self-consistent
field (TDSCF) equation.

If transformed to a basis of Hartree–Fock molecular orbitals C, the particular compo-
nent has occupied–occupied and virtual–virtual blocks only, whereas the homogeneous
component only has virtual–occupied and occupied–virtual blocks.

In the second step of the procedure, all known terms (lower-order and Df ∗b
par) in the

perturbed TDSCF equation are collected on the right-hand side as M, which can be
evaluated. For instance, the equation for Df ∗b

hom is given by

G
(
Df ∗b

hom

)
DS − SDG

(
Df ∗b

hom

) + FDf ∗b
homS − SDf ∗b

homF − (ωf ∗ + ωb)SDf ∗b
homS = M, (24.75)

M = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F̃f ∗b
parDS − SDF̃f ∗b

par

+(
F̃b − ωf ∗

2 Sb
)
(Df ∗

S + DSf ∗
)

−(Sf ∗
D + SDf ∗

)
(
F̃b + ωf ∗

2 Sb
)

+(
F̃f ∗ − ωb

2 Sf ∗)
(DbS + DSb)

−(SbD + SDb)
(
F̃f ∗ + ωb

2 Sf ∗)
+(

F − ωf ∗+ωb

2 S
)(

Df ∗b
parS+

DbSf ∗ + Df ∗
Sb + DSf ∗b

)
−(

Sf ∗bD + SbDf ∗ + Sf ∗
Db+

SDf ∗b
par

)(
F + ωf ∗+ωb

2 S
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (24.76)

F̃f ∗b
par = hf ∗b − i

2 Tf ∗b + Vf ∗b + Gf ∗b(D)

+ Gb(Df ∗
) + Gf ∗

(Db) + G(Df ∗b
par), (24.77)
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where again, since the basis set is independent of f ∗, the following are all zero: Sf ∗b , Sf ∗
,

hf ∗b , Tf ∗b , Vf ∗b , Gf ∗b , and Gf ∗
. In addition, in the case of ROA CIDs, ωb = −ωf ∗ = ω,

thus ωf ∗+ωb is also zero.
To bring Eq. (24.75) to the more familiar form of an SCF response equation in

the AO basis [127, 54], Df ∗b
hom can be expressed in terms of another matrix X as an

S-commutator [X, D]S

Df ∗b
hom = XSD − DSX = [X, D]S, (24.78)

which brings Eq. (24.75) to the form(
E[2] − (ωf ∗ + ωb)S[2]

)
(X) = M, (24.79)

E[2](X) = G
(
[X, D]S

)
DS − SDG

(
[X, D]S

)
+ F[X, D]SS − S[X, D]SF, (24.80)

S[2](X) = S[X, D]SS, (24.81)

where E[2] and S[2] are the generalized electronic Hessian and metric operators. Equation
(24.79) is then solved iteratively, either in the AO basis [54] or after transformation to
the MO basis [52, 53]:

X = C
[

0 Y
Z 0

]
CT , CT MC =

[
0 K
L 0

]
. (24.82)

We note that the structure of Eq. (24.79) corresponds to the general form of the linear
response function given in Eq. (24.4).
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Lett . 2006, 425 , 267–272.

110. T. U. Helgaker, in Geometrical Derivatives of Energy Surfaces and Molecular Properties , P.
Jørgensen and J. Simons, eds., Reidel. Dordrecht, 1986, pp. 1–6.
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MODELING OF SOLVATION EFFECTS
ON CHIROPTICAL SPECTRA

Magdalena Pecul

25.1. INTRODUCTION

One of the main reasons for calculations of chiroptical spectra is to establish the unknown
absolute configuration of an optically active molecule by comparison of the calculated
spectrum and the experimental one. The other leading motivation is to derive informa-
tion about the conformations of a flexible molecule. However, the chiroptical spectra are
notoriously very sensitive to solvent effects—for example, significant changes of a basic
chiroptical observable, natural optical rotation (OR), with a change of a solvent are a
common occurence, even to the extent of the optical rotation changing its sign [1, 2].
The same is true of the other chiroptical phenomena, such as electronic circular dichro-
ism (which we will refer to as circular dichroism, CD), vibrational circular dichroism
(VCD), and vibrational Raman optical activity (ROA). Therefore, modeling of the solvent
influence is of paramount importance in the calculations of the chiroptical spectra.

This chapter is focused on the discussion of solvent models and their applications
in computational chiroptical spectroscopy. First, a short overview of the solvent mod-
els applied in computational chemistry in general is presented. Next, we discuss their
applications to modeling of (a) specific electronic chiroptical phenomena (electronic cir-
cular dichroism and optical rotation including optical rotatory dispersion) and (b) the
vibrational optical activity (VOA) phenomena (vibrational circular dichroism and vibra-
tional Raman optical activity). Discussion of simulation of solvent effects in each kind
of chiroptical spectroscopy is preceded by a very brief description of the theory of a
given chiroptical phenomenon. For a more extensive discussion we refer the reader to

Comprehensive Chiroptical Spectroscopy, Volume 1: Instrumentation, Methodologies, and Theoretical
Simulations, First Edition. Edited by N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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the other chapters in this volume (Chapters 21–24). Theoretical studies of solvent effects
on optical rotation and electronic circular dichroism completed before 2006 have been
reviewed in reference [3], so we will focus now on the more recent developments.

25.2. SOLVENT MODELS

There are two main approaches used for evaluating the effects that a solvent surrounding
an optically active molecule has on its chiroptical properties: (a) those where only the
solute molecule is treated quantum mechanically and the solvent is treated as a source
of potential and (b) those where both the solute molecule and the solvent molecules are
treated at the same level. In the first approach, the solvent can be modeled as either (a) a
macroscopic continuum dielectric medium (assumed homogeneous and isotropic) char-
acterized by a scalar dielectric constant (the polarizable continuum models, PCM) or (b)
an essembly of discrete charges, usually obtained from molecular dynamics simulations.
Molecular dynamics can also be used in the second approach, where both the solute
molecule and some neighboring molecules of the solvent are explicitly included in the
quantum chemical calculations (supermolecular approach). The solute–solvent clusters
can be also generated by geometry optimization. Below, we present a short description
of both approaches.

25.2.1. Polarizable Continuum Models

All polarizable continuum models are based on a concept that the interactions between
a solute molecule and a solvent can be approximated by assuming that a solvent is a
uniform polarizable medium (dielectric or conductive) and a solute molecule is placed
in a cavity cut in the medium. In contemporary computational applications of the polar-
izable continuum models the solute molecule is treated quantum mechanically, and the
appropriate terms describing its interactions with uniform polarizable medium are added
to the Hamiltonian. Computational techniques based on the polarizable continuum model
have been developed independently by several groups. They differ mainly in the cavity
shape and in the way the charge interaction with the medium is calculated. The cavity
is defined as a sphere, an ellipsoid, or a more complicated shape following the surface
of the molecule.

To compute the electrostatic component of the solvation free energy, this model
requires the solution of a classical electrostatic Poisson problem. Nowadays, one of the
most popular methods of solving this problem is a polarized continuum model developed
primarily by the group of Tomasi and co-workers [4–6]. In this approach, the cavity is
made from spheres centered on nuclei in the solute molecule, and the cavity surface is
divided into a number of small surface elements, where the reaction field is modeled
by distributing charges onto the surface elements—that is, by creating apparent surface
charges [7–10]. The electrostatic part of the solvent–solute interaction represented by
the charge density spread over the cavity surface (apparent surface charges , ASC) gives
rise to an operator to be added to the Hamiltonian of the isolated system in order to
obtain the final effective Hamiltonian and the related free energy functional.

ASC-PCM calculations [5, 6] can be carried out in different ways. The most
widespread approach is the IEF-PCM method (Integral Equation Formalism ) by Cancés,
Mennucci, and Tomasi [9], which uses a molecule-shaped cavity to define the boundary
between the solute and the solvent. Amovilli and Mennucci have also described an
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approach where repulsion and dispersion terms are computed self-consistently as part of
the reaction field operator [11]. A related implementation of PCM is the self-consistent
isodensity polarizable continuum (SCI-PCM) model of Foresman et al. [12], in which
the cavity is constructed on the basis of an isosurface of the total electron density of
the solute (calculated at the same level of theory as used for further quantum chemical
calculations). Scalmani and Frisch [13] have recently published a new variation of
ASC-PCM model (based on IEF-PCM and the continous charge approach proposed
by York and Karplus [14]), where the free energy in solution (and its first and second
derivatives) is a continuous function of all the parameters involved in the definition of
the model, including the position of the atoms of the solute and the presence of external
perturbing electric and/or magnetic fields.

Another widespread approach is the COSMO method (COnductorlike Screening
MOdel ) by Klamt [15–17] in which the surrounding medium is modeled as a con-
ductor instead of a dielectric (that is, it uses scaled conductor boundary condition instead
of the dielectric boundary condition for the calculation of the polarization charges of a
molecule in a continuum). A variation on the COSMO model is C-PCM [18], in which
construction of a cavity and treatment of reaction field is based on the IEF-PCM approach.
Other polarizable-continuum model-based methods, like the MPE (multipole expansion
method ) by Rivail and Rinaldi [19, 20] and by Mikkelsen et al. [21, 22] with a spherical
cavity, are less widespread, but also applied to the calculations of molecular properties.

Various models based on the concept of polarizable continuum are available for
calculations of chiroptical properties in Gaussian 09 [23], Dalton [24], and ADF [25, 26],
and, for calculations of electronic CD spectra, in ORCA [27].

25.2.2. Supermolecular Approach

An altenative way to model solvent effects is to treat solvent molecules explicitly, at the
same footing as the solute. The quantum chemical calculations are carried out for the
cluster of the solute with a certain number of solvent molecules, and the solvent effects
are estimated as a difference between the results obtained for such complex and for
an isolated solute molecule. The number of solvent molecules to be taken into account
is necessarily limited by available computational resources, and as a rule only the first
solvation shell is treated in this fashion. Thus, the supermolecular approach takes into
account only the short-range solvent effects. Long-range solvent effects can be accounted
for by combining supermolecular approach and one of the PCM models by placing the
solute–solvent cluster in the cavity in a dielectric medium.

The geometries of the solute–solvent cluster are usually generated either by means
of geometry optimization or from single configuration (snapshots) of a classical MD
simulation trajectory. The first approach does not require any additional programing, but
is difficult to automatize and therefore is labor-intensive. It can also introduce unphys-
ical bias by neglecting thermal motion and taking into account only stable structures.
Both these shortcomings can be rectified by employing molecular dynamics (classical
or quantum) or Monte Carlo simulations to generate the structures of the solute–solvent
clusters.

25.2.3. Molecular Dynamics

Molecular dynamics simulations, in the form of either classical molecular dynamics or
CPMD (Carr–Parrinello Molecular Dynamics), can be used to generate solute–solvent
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clusters as MD “snapshots” to be transfered to a quantum mechanical program where the
property in question is implemented. An alternative way of employing MD for modeling
solvent effects is to use it to generate electric field surrounding the solute by putting
charges in the positions of solvent atoms (an example of this approach for chiroptical
properties in presented in reference 28). This leads to a solvent model similar to PCM,
but with discrete charges. Yet another use of MD is possible in calculations of vibrational
properties. In this case, one can employ MD directly and can simulate vibrational spectra
from MD trajectories (as done, for example, in references 29 and 30). However, the
majority of application of MD for modeling of chiroptical properties in solution employ
MD to generate solute–solvent clusters for supermolecular calculations.

25.3. SOLVENT EFFECTS ON ELECTRONIC CIRCULAR DICHROISM
AND NATURAL OPTICAL ROTATION

25.3.1. Theoretical Description of OR and CD

25.3.1.1. Optical Rotation. The specific optical rotation, characterizing natural
optical rotation, is related to the trace of the mixed electric dipole–magnetic dipole
polarizability G ′

αβ [31]:

[α]ω = 288 · 10−30 π2NAa4
0ω2

M

1

3
Tr(ω−1G ′

αβ(ω)), (25.1)

In these equations, NA is Avogadro’s number, a0 is the Bohr radius, M is the molar mass
of the molecule in g·mol−1, and ω the frequency of the light in atomic units. G ′

αβ is also
expressed in atomic units. The units of [α]ω are deg cm3 · g−1 · dm−1.

Using response theory [32], the mixed electric dipole–magnetic dipole polarizability
can be expressed as

G ′
αβ = Im〈〈μ̂α; m̂β〉〉ω, (25.2)

The mixed electric dipole–electric quadrupole polarizability, which contributes to
the optical rotation of oriented samples (and to ROA, see below) can be expressed as

Aαβγ = −Re〈〈μ̂α; Q̂βγ 〉〉ω. (25.3)

Expressions 〈〈A; B〉〉ω in the above equations denote linear response functions.
The dipole moment operator μ̂α can be expressed either in the length gauge for-

malism (using the position operator r̂α) or in the velocity gauge formalism (using the
momentum operator p̂α), although application of the latter to the calculations of OR
require some additional manipulation of the formula (see reference 33). For more details
see Chapter 21.

25.3.1.2. Circular Dichroism. Circular dichroism, the differential absorption
of left-and right-circularly polarized light by a sample of one enantiomer, is usually
expressed as the difference between the molar extinction coefficients for left- and
right-circularly polarized light: εL(λ) − εR(λ). This quantity is related to the rotatory
strength nR of the transition between the ground state 0 and the nth excited state
(electronic states for electronic CD, vibrational states for VCD). The rotatory strength
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nR was derived from quantum mechanical theory by Rosenfeld [31]; and it was shown
for isotropic samples to be given as the product of the electric dipole and magnetic
dipole transition moments, which in atomic units can be written as

nR = 〈0|μ|n〉 · 〈n|m|0〉. (25.4)

For oriented samples, there is also a contribution from interactions with the electronic
quadrupole moment [34]

nRQ
αβ = 3

4
ωn0εαγ δ〈0|μ̂γ |n〉〈n

∣∣∣Q̂δβ

∣∣∣ 0〉. (25.5)

This contribution is purely anisotropic, and thus it vanishes upon orientational averaging
and does not contribute in the case of isotropic samples such as a liquid.

In linear response theory, the scalar rotatory strength is calculated as a residue of
the linear response function [32, 35]. For a transition from the ground state |0〉 to an
excited state |n〉, it is in the velocity and length gauges given by, respectively,

nRv = 1

2ωn
〈0|p|n〉 · 〈n|L|0〉 = 1

2ωn
Tr{limω→ωn (ω − ωn)〈〈p; L〉〉ω}, (25.6)

nRr = − i

2
〈0|r|n〉 · 〈n|L|0〉 = Tr{limω→ωn (ω − ωn)〈〈r; L〉〉ω}. (25.7)

In these expressions, r, p, and L are the electronic position, momentum, and orbital
angular-momentum operators, respectively; �ωn is the excitation energy of the nth elec-
tronic transition.

The response theory was applied to the study of optical rotation in 1998 [36], building
on the implementation for Raman optical activity presented in 1994 [37]. The first calcu-
lations of rotatory strengths based on this general linear response formalism appeared in
1994 [35]. Time-dependent density functional theory (TDDFT) implementations for OR
and ECD have been presented by a number of groups [38–43], and those are methods
that are usually applied nowadays in calculations of natural optical activity.

25.3.2. Modeling of Solvent Effects on OR and ECD: General Aspects

It is possible to carry out gas-phase measurements of CD and OR [1, 44], but this kind
of experiment is limited to small molecules, and therefore most of the measurements
are carried out in solutions. Moreover, a particularly important field of CD application
is structural investigation of molecules of biological importance (mostly peptides) in
aqueous environment. Thus, modeling of the solvent effects is an indispensable aspect
of calculations of CD and ORD (optical rotatory dispersion) spectra.

OR and CD have for a long time been recognized as being very sensitive to the
molecular environment, and very early there have been attempts to account for solvent
effects. Solvent effects on the optical rotation are traditionally accounted for using the
Lorentz effective field approximation [45], in which the optical rotation is multiplied by
a local field factor

γLF = εs(ω) + 2

3
, (25.8)
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where εs(ω) is the frequency-dependent dielectric constant of the solvent. This relation,
which results in an increase of the optical rotation with increasing solvent polarity for
all solvated molecules, has been shown many times not to describe properly the actual
effects [46, 47], and more sophisticated models (PCM or explicit solvent) are required.

In the case of optical rotation the supermolecular calculations (both rigid models
and molecular dynamics) present a certain problem: The G ′ tensor, and consequently
the optical rotation, is an extensive property (similarly as, for example, electric dipole
polarizability) and supermolecular calculations result in optical rotation of the cluster
composed of the solute and solvent molecules, not in optical rotation of the solute. It is
not certain to what extent this is physically grounded. On the one hand, one can argue
that there is a contribution to the optical rotation from the chiral arrangement of solvent
molecules induced by a chiral solute. On the other hand, the size of such cluster, which
influences the final result, is chosen arbitrarily and can introduce unphysical effects. This
problem is less important in the calculations of CD spectra: The contribution from the
solvent can usually be extracted by analyzing the type of electron excitation and can be
considered separately. The vibrational spectroscopies are not problematic in this respect,
since vibrations are essentially localized and can be ascribed to the solute, solvent, or
low-frequency solute–solvent intermolecular modes.

25.3.3. Modeling of Solvent Effects on OR and ECD:
Specific Applications

25.3.3.1. Optical Activity of Peptides and Amino Acids. Most of the cal-
culations of CD spectra for peptides or peptide models (such as N -methylacetamide,
NMA) are carried out accounting for the presence of the aqueous environments. Šebek,
Kejı́k, and Bouř [48] modeled the conformational dependence of NMA electronic CD
spectra, simulating the presence of water by means of COSMO and molecular dynamics.
NMA was also used as a model system by Jiang et al. [49], who used it to construct
an effective electronic Hamiltonian, which they employed to reproduce CD spectra of
proteins on the basis of MD simulation of protein folding in aqueous environment. A
similar model system, N -methyl-acetamide, has been studied by Cappelli and Mennucci
[50], with hydration effects of CD spectra and OR simulated by means of IEF-PCM.
These publications were focused on simulations of electronic transitions in amide chro-
mophore, but a similar methodology was employed also for modeling of CD of coupled
tryptophane chromophores: They have been approximated by indole rings, and aqueous
environment was modeled by means of IEF-PCM [51]. The CD spectrum (both one- and
two-photon) of tryptophane monomer was calculated by Guillaume et al. [52], and the
solvent effects were also simulated by means of the IEF-PCM model.

As already mentioned above, molecular dynamics can also be used to generate point
charges used to mimic solvent influence on the solute. This method has been applied for
modeling influence of aqueous environment on the optical rotation and rotatory strengths
of alanine and glycine by Kundrat and Autschbach [28]. The authors found it superior to
the continuum model (COSMO variety). In the follow-up work [53], the same authors
used molecular dynamics (with explicit water molecules) to study optical rotation and
rotatory strengths also of phenylalanine and proline. They interpreted the observed opti-
cal rotations (including solvent shifts) in terms of sector rules, rationalizing them by a
presence (or lack) of a perturbing group in a given sector.

The publications focused on the solvent effects on the CD spectra of amino acids
and peptides are, as discussed above, numerous. The building blocks of nucleic acids
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also attracted some attention in this respect: The CD spectra have been computed for
adenine–guanine stacked dimers, with the aqueous solution modeled by means of linear
response DFT and the state-specific polarizable continuum model [54].

25.3.3.2. Optical Activity of Other Organic Molecules. One of the favorite
molecules in the theoretical studies of optical rotation is propylene oxide (methyloxirane).
The reason for this is twofold: small size of propylene oxide, allowing for the use of
highly accurate models of electronic structure, and remarkable sensitivity of its OR to the
presence of a solvent (it is one of the cases when solvation changes a sign of OR [1]).
There have been many attempts to reproduce the solvent effects on OR of propylene
oxide, first by Kongsted et al. [55], who found that the single-center multipole-based
spherical cavity dielectric continuum model used in conjunction with coupled cluster
solute electronic structure model [56] is inadequate for the purpose. IEF-PCM model at
the DFT computational level, with accounting for vibrational corrections on OR, was
found to be more succesful [57]. This was somewhat in contradiction to the works
of Mukhopadhyay et al. [58, 59], who performed molecular dynamics simulations for
propylene oxide dissolved in water [58] and in benzene [59] and compared the results
for optical rotatory dispersion with those obtained using the continuum COSMO model
of the solution. They have concluded that the use of explicit solvent model is essential
to render the optical rotation in agreement with experiment, since the contribution to OR
from a dissymmetric solvent around the chiral solute (solvent imprint) can exceed the
OR contribution of the solute itself. The molecular dynamics simulation of the propylene
oxide–water mixture were repeated by Losada, Nguien, and Xu [60], who also calculated
optical rotation of the propylene oxide–water clusters with up to three water molecules.

Optical rotation and circular dichroism of molecules structurally related to propy-
lene oxide have also been calculated with accounting for solvent effects (usually using
continuum models). Wilson et al. [61] employed a self-consistent isodensity polarizable
continuum model (SCI-PCM) [12] to calculate optical rotatory dispersion of epichloro-
hydrin and epifluorohydrin (propylene oxide with one of the methyl group hydrogen
atoms substituted by a chlorine or fluorine atom, respectively). They have found that,
although the sign of the optical rotation at a given optical frequency may be rendered
wrong by DFT calculations with the SCI-PCM model, the shape of the ORD curve is ren-
dered correctly. IEF-PCM calculations of vibrational corrections on the optical rotation
on fluoro-oxirane (which may be treated as propylene oxide derivative with the methyl
group replaced by the fluorine atom) were carried out by Pedersen et al. [62], as the
continuation of the work of the same group on propylene oxide [57].

Supermolecular method is also the method of choice in calculations of self-
aggregation effects. Yang and Xu [63] used glycidol as a model system to study
self-aggregation effects on optical rotation by means of ORD measurements in glycidol/
CDCl3 solutions of different concentrations and DFT calculations for the glycidol
monomer, dimer, and trimer. They concluded on the basis of VCD spectra (see below)
that at high concentration (3.5 M) contributions from the dimer are dominant, but they had
problems with reproducing the experimental ORD curves. Mori, Inoue, and Grimme [64]
calculated the effects of dimer conformation on optical rotation and circular dichroism
of a chiral donor–acceptor dyad (N -(((S)-1-methylpropyloxy)-2-naphthoxypropyl)-4-
cyanopyridinium), also employing the COSMO model to account for solvent influence
on the conformational equilibrium.

The concept of ”solvent inprint” [59]—that is, contribution to chiroptical response
from a normally achiral solvent due to chirality induced by a chiral solute (chirality
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transfer)—has been the subject of the paper by Wang and Cann [65], who performed
molecular dynamics simulations for two solvents (ethanol and benzyl alcohol) and
three chiral solutes (styrene oxide, acenaphthenol, and n-(1-(4-bromophenyl)ethyl)
pivalamide). They have discussed the results in terms of chirality indexes.

Continuum models (mostly IEF-PCM and COSMO) have been used, with varying
degree of success, in numerous density functional calculations of CD and OR for organic
molecules [61, 62, 64, 66–74]. Capelli et al. [66] used IEF-PCM to simulate the effects of
methanol solution on the CD spectrum of (2R,3S,4R)-(+)-3,3′,4,4′,7-flavanpentol, which
improved somewhat the agreement of the calculated spectrum with experiment. The same
work reports on the calculations (employing MD) of the CD spectrum of the flavonoid
in the presence of explicit water molecules and peptide fragments. IEF-PCM was used to
simulate solvent effects on other flexible molecules, including γ -methyl paraconic acid
[67] and its derivatives [69], with good results. In the case of another paraconic acid
derivative, 4,4-dimethyl-5-oxo-tetrahydrofuran-3-carboxylic acid [74], the use of IEF-
PCM reversed the sign of the computed specific rotation, which led to assignment of
the absolute configuration in agreement with that from the CD spectrum. Calculations of
solvent effects on optical rotation by means of IEF-PCM led Mennucci et al. [70] to the
conclusion that the absolute configuration of two out of six natural cyclohexene oxides
they have studied is incorrectly assigned in the literature. Another group which used
IEF-PCM model in quantum chemical calculations of optical rotation and CD spectra
for the purpose of establishing the absolute configuration was Kwit et al. [73], who
reassigned on this basis the absolute configuration of a trans-diastereomer of the natural
cytokine modulator cytoxazone. The IEF-PCM calculations of solvent effects on the
optical rotation were less sucessful in the case of α-R-methylbenzylamine studied by
Fischer, Compton, and Pagni [68]. The authors attributed this fact to the forming of
the hydrogen bonds by the solute, not accounted for by means of the PCM model.
Poor performance of IEF-PCM for solvent effects on the CD spectrum was observed by
Pedersen et al. [62] for 3-methyl-cyclopentanone, probably because of the same reason.
It is worth noting that solvent effects also on two-photon circular dichroism of 3-methyl-
cyclopentanone have been simulated by the authors.

25.3.3.3. Optical Activity of Metal Complexes. CD is used not only in the
studies of organic molecules, but also in inorganic chemistry, and solvent effects play an
important role also in this field. Jensen et al. [75] used a discrete reaction field (DRF)
model (modeling solvent by means of with point charges in positions obtained from MD
simulations) to study the circular dichroism spectrum of [Co(ethylenediamine)3]3+ com-
plex in water, and they compared the results with COSMO simulations. They concluded
that neither model leads to perfect agreement with experiment, since both tend to overes-
timate CD intensities. These studies were extended later to the chiral chelate complexes of
chromium(III), with the aqueous environment modeled by means of COSMO [76]. Other
examples of calculations of CD and OR for chiral inorganic complexes with accounting
for solvent effects can be found in the review by Autschbach [77] and in Chapter 21.

25.4. SOLVENT EFFECTS ON VIBRATIONAL CIRCULAR DICHROISM
AND RAMAN OPTICAL ACTIVITY

25.4.1. Theoretical Description of VCD and ROA

25.4.1.1. Vibrational Circular Dichroism. The intensity of vibrational circular
dichroism (the difference between absorption coefficients for left- and right-polarized
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light for a given vibrational transition) is determined, like its electronic counterpart, by
a rotatory strength, the imaginary part of the scalar product of the electric and magnetic
transition dipole moments [see Eq. (25.4)], the only difference being that the transition
moments involve (in Born–Oppenheimer approximation) the vibrational wavefunctions
instead of the electronic ones. However, the evaluation of the vibrational rotatory strength
was found to be less straightforward than the electronic rotatory strength, since the
electronic contribution to the magnetic dipole moment vanishes for a vibrational transition
in Born–Oppenheimer approximation. The solution to this was proposed by Stephens
[78], who, by considering the first-order correction to the BO wavefunction, obtained
the leading nonvanishing contribution to the electronic part of the magnetic moment and
presented a working formula for VCD intensities. This treatment relates the vibrational
rotatory strength of the fundamental transition in the i th normal mode to atomic polar
and atomic axial tensors:

Ri = �
2Im[Pλ

i · M λ
i ], (25.9)

where

Pλ
iβ =

∑
α

Pλ
αβSλα,i , M λ

iβ =
∑

α

M λ
αβSλα,i . (25.10)

Pλ
iβ and M λ

αβ are atomic polar tensors and atomic axial tensors, respectively, and Sλα,i

transforms normal coordinates into Cartesian coordinates. λ is the nucleus number, and
α and β are Cartesian coordinates. This approach has been implemented by Cheeseman
et al. [79] for density functional theory [79] and most of the contemporary calculations
of VCD spectra employ it.

25.4.1.2. Raman Optical Activity. Raman optical activity is described by means
of the absolute difference between intensities of the scattered light with the incident
light circularly polarized left and right, I R

k − I L
k , where I L,R

k are the scattered intensities
with linear k polarization for right- (R) and left- (L) circularly polarized incident light,
and k denotes the Cartesian component (Incident Circular Polarization Raman Optical
Activity, ICP-ROA). Alternatively, ROA can be measured as a small circularly polarized
component in the scattered light using incident light of fixed polarization, including
unpolarized light (Scattered Circular Polarization Raman Optical Activity, SCP-ROA).
These two approaches are equivalent in the far-from resonance limit. The differential
scattering intensity between right- and left-circularly polarized light for the backward
scattering is given by [80, 81]

I R − I L(180) = 24β(G ′)2 + 8β(A)2, (25.11)

where

β(G ′)2 = 3αv
ki G

′v
ki − αv

kk G ′v
ii

2
, (25.12)

β(A)2 = 1

2
ωradαv

ki εkjl A
v
jli , (25.13)

Here ωrad is the radiation angular frequency, and εkjl is the unit third rank antisymmetric
tensor.

Within the double harmonic approximation (employed in most calculations of the
ROA spectra), the other quantities in Equations (25.12) and (25.13), defined as products
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of vibrational transition moments, can be described by means of geometric derivatives
of optical tensors.

αv
ki G

′v
ki =< 0|αki |1 > < 1|G ′

ki |0 > ≈ 1

2ω

(
∂αki

∂Q

)
0

(
∂G ′

ki

∂Q

)
0

, (25.14)

αv
ki εkjl A

v
jli =< 0|αki |1 > < 1|εkjl Ajli |0 > ≈ 1

2ω

(
∂αki

∂Q

)
0
εkjl

(
∂Ajli

∂Q

)
0
. (25.15)

The tensors in Eqs. (25.15) and (25.15) are the electric dipole–electric dipole polarizabil-
ity α, the imaginary part of the electric dipole–magnetic dipole polarizability G′ [see Eq.
(25.2)], and the real part of the electric dipole–electric quadrupole polarizability A [see
Eq. (25.3)] [81]. Q is the normal coordinate of the vibration under study. The subscript
0 indicates that the quantities are calculated at the equilibrium geometry.

25.4.2. Modeling of Solvent Effects on Vibrational Optical Activity:
General Aspects

Matrix isolation (first reported in 1982 [82]) and gas-phase VCD measurements are
becoming more and more popular nowadays, but the majority of VCD spectra are taken
in solution. Thus, taking into account the influence of a solvent on VCD spectra is
an important element of computational VCD spectroscopy. This aspect is even more
essential in the case of ROA spectra, since the first gas-phase measurements have been
reported only recently [83] and the possibility of matrix isolation measurements of ROA
is at present rather limited on account of low sensitivity of this spectroscopic method.
Most of the ROA measurements are carried out either in neat liquids or in aqueous
solutions; thus for a meaningful comparison with experimental spectra, simulations of
the solvent (or self-aggregation effects) are essential.

Solvent effects on VCD and ROA spectra are usually modeled using either MD
or one of the variations of PCM. The MD simulations of the vibrational spectra (both
VCD and ROA) employing the standard harmonic approximation encounter a certain
problem not present for electronic properties: The transformation of geometric hessian
to normal coordinates in the harmonic approximation is strictly correct only when the
energy gradient with respect to geometric coordinates vanishes—that is, in the geometry
minimum (or at least a stationary point). Therefore a MD “snaphot” should not be used
directly for VOA calculations. Using directly the MD “snaphots” leads to a very large
number of imaginary frequencies and unphysical artifacts in the simulated spectra. This is
avoided when the solute–solvent structures obtained from MD simulations are subjected
to geometry optimization. However, this procedure is not only time-consuming, but also
contrary to the purpose of MD, which is to probe a range of structures the solute–solvent
assembly assumes at a given temperature and pressure—geometry optimization brings
it back to the situation when thermal effects are not accounted for. One possible solu-
tion to this dilemma is to use some scheme of partial optimization, separating low-
and high-frequency modes and allowing for calculations of the intensities for vibrational
transitions in the high-frequency spectral region (low-frequency modes are often inacces-
sible experimentally and thus of less interest). Such a scheme—that is, partial geometry
optimization in normal coordinates—was proposed by Bouř and Keiderling [84].

Another mode of use of molecular dynamics (or more precisely MD combined with
quantum chemical calculations) is to simulate VCD spectra from MD trajectories, as
presented by Yang and Cho [29]. They propose to simulate directly the VCD spectra
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by Fourier transforming the cross-correlation function of the time-dependent electric
and magnetic dipole moments, which are evaluated using the atomic partial charges,
the coordinates, and velocities of the constituent atoms of the solute molecule at each
time step of the QM/MM MD simulation. This approach was used to simulate the VCD
spectum of the aqueous solution of alanine dipeptide analogue (CH3)CO-Ala-NH(CH3),
with the peptide analogue molecule treated at the Hartree–Fock level [29]. A similar
idea has been presented before in the group of Bouř [30], although, as far as we know,
not used for prediction of VCD (or ROA) spectra.

Most PCM calculations of solvent effects on VOA employ either IEF-PCM or
COSMO. As already mentioned, Scalmani and Frisch [13] have recently published a
new variation of ASC-PCM model, a continuous surface charge (CSC) approach, and
demonstrated its numerical performance for the ROA spectrum of alanine decapeptide.
It is likely to become another popular polarizable continuum model for the studies of
vibrational chiroptical properties.

25.4.3. Modeling of Solvent Effects on VOA: Specific Applications

25.4.3.1. Solvent Effects on VOA of Amino Acids and Peptides. The main
area of applications of VCD and ROA is structural investigation of amino acids, peptides,
and proteins, and thus it is not suprising that most of the modeling of solvent effects
(predominantly aqueous environment) has been carried out in this area. Extensive studies
on hydration of the simplest amino acid, alanine, and N -acetyl L-alanine N ′-methyl amide
(alanine dipeptide) have been carried by Jalkanen et al. [85] by means of supermolecular
calculations and the hybrid model (supermolecular calculations combined with PCM).
The authors compare the results obtained by means of Born–Oppenheimer molecular
dynamics simulations with 20 solvating water molecules and the rest of the solvent
modeled by means of various polarizable continuum models, with the previous results
obtained by the same group employing simpler aqueous environment models (four water
molecules in reference 86). The authors conclude that the hybrid model is the best
approach currently available, and they advocate its use for further studies of amino acids
and peptides. Calculations of the ROA spectra for the same dipeptide have been presented
by Mukhopadhyay, Zuber, and Beratan [87]. In this case, Monte Carlo simulations in
a water environment have been used to obtain the structures. Molecular dynamics with
two different force fields have been run by Lee et al. [88] for hydrated N -acetylproline
amide, and the VCD spectra have been calculated by means of DFT from amide I local
mode frequencies, vibrational coupling constant, dipole strength, and rotational strength
obtained as functions of the two backbone dihedral angles ψ and φ.

The use of a hybrid model (explicit solvent molecules for the first solvation shell and
polarizable continuum model for the remaining part of the solvent) seems to be the best
approach to simulate the solvent effects on VOA spectrum of a peptide. However, it has
been suggested, on the basis of the results obtained for several models of tight β-turns in
peptides, that if for computational reasons it is not feasible, even the use of a continuum
model (COSMO in this case) alone is advantageous [89]. Comparison of performance of
nuclear magnetic resonance and ROA spectroscopy in conformational analysis for model
proline-containing dipeptides (Pro-Gly, Gly-Pro, Pro-Ala, and Ala-Pro) has been carried
out by Buděšı́ský et al. [90], with the COSMO model of the aqueous environment. They
also have found that even in the case of hydrated hydrogen-bond forming molecules, the
use of polarizable continuum model alone significantly improves the agreement of the
calculated vibrational chiroptical spectra with experiment. This finding was confirmed



740 COMPREHENSIVE CHIROPTICAL SPECTROSCOPY, VOLUME 1

by the calculations carried out by Pecul et al. [91] for ROA spectra of hydroxyproline
in zwitterion, anionic and cationic forms.

Explicit solvation of helical dipeptides (up to 21 amide groups) was modeled by
Kubelka et al. [92] by peforming geometry optimization of peptide with two water
molecules added to each amide CO group and one added to each amide NH group. They
concluded that this approach performs quite well, reproducing for example the (−,+,−)-
shaped amide I′ band for N-deuterated α-helical peptides. The subject was revisited later
[93] and the VCD spectra of 15-amide alanine α-helices were simulated by means of
DFT calculations combined with the property transfer method, again with explicit solvent
molecules. The influence of degree of solvation was studied, and it was found to affect
primarily the frequency shifts of the unsolvated amide group vibrations.

Substantial solvent effects have been found on the VCD bands of the β-hairpin
structures by Bouř and Keiderling [94], who modeled them by performing moleular
dynamics and then adding electrostatic field-based parameterization correction to the
force field and intensity tensors to compensate for the solvent electrostatic field. The
β-hairpin structure has been further studied by this group using a larger peptide model
and MD solvent simulations [95], but only the IR spectrum was calculated. The VCD
spectrum of a β-sheet hairpin has been calculated before by Hilario et al. [96], but only
the most tightly bonded water molecules were used to model solvent effects.

Würtz, Jürgensen and Jalkanen [97] have simulated the VCD and ROA spectra of
tri-L-serine in neutral, zwitterion, anionic, and cationic forms in aqueous solution and
compared the results with experimental spectra taken at different pH values. They have
accounted for the aqueous environment by using explicit water molecules, IEF-PCM
model (also using a hybrid approach with both explicit water molecules and a dielectric
continuum) and a simple Onsager model with a spherical cavity. In the conclusions, the
authors stressed the necessity of having explicit water molecules present in the model
when simulating chiroptical spectra of a peptide, suggesting that formation of hydrogen
bonds between water molecules in the first solvation shell and polar parts of the peptide
is of critical importance for the VOA response.

Šebek et al. [98] have studied the pH effects on the ROA spectrum of the L-alanyl-
L-alanine dipeptide by means of MD calculations on the dipeptide–water clusters (for
the zwitterion, anion, and cation forms of the dipeptide), followed by normal mode
optimization and DFT calculations of the ROA spectra for the MD snapshots, with
the bulk solvent effects simulated by means of C-PCM. They have used the calculated
spectra to extract conformational ratios from the experimental spectra, obtaining results
in agreement with nuclear magnetic resonance analysis. Both MD simulations and the
COSMO model were also used to simulate the effects of aqueous environment on the
VCD spectrum of a cyclic hexapeptide (Phe-DPro-Gly-Arg-Gly-Asp) [99].

25.4.3.2. Solvent Effects on VOA of Other Organic Molecules. Apart from
the studies on peptides and amino acids, the solvent-induced changes on ROA and VCD
have been studied in a number of organic molecules. Propylene oxide, one of the small-
est stable chiral organic molecules, has been chosen as a model system by Losada,
Nguyen, and Xu [60] to study solvent effects not only on optical rotation (as already
mentioned), but also on VCD spectra. They have calculated VCD spectra of propylene
oxide interacting with one, two, and three water molecules and compared them with the
experimental spectrum, concluding that the binary PO–H2O complex is the dominating
species in aqueous solution at room temperature. They have also observed, in both exper-
iment and theoretical calculations, the phenomenon of so-called chirality transfer in VCD
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spectra: vibrational optical activity of a normally achiral molecule (here water) induced
by the presence of a chiral partner (propylene oxide).

Similarly as in the case of electronic chiroptical spectra, modeling of VOA often
requires accounting for self-aggregation effects, and recently there have been several
papers describing such calculations. Yang and Xu [63], already mentioned, calculated
dimerization effects also on the VCD spectrum of glycidol, and they compared the
results with measurements for glycidol dissolved in CDCl3. They found that in order
to simulate the spectrum at high concentrations (1.1 M and higher) it is necessary to
take into account contributions from the glycidol dimer, which completely dominate the
spectrum at 3.5 M. A similar investigation has been carried out by Losada, Tran, and
Xu [100] for lactic acid in CDCl3, CH3OH, and H2O soluations. Binary and higher
aggregates of lactic acid were found to dominate the spectrum in CDCl3 at 1.0 M and
higher concentrations, while in the hydrogen-bond-forming solvents the best agreement
between theory and experiment was found for lactamide dimer with two (methanol)
and six (water) molecules attached. Shin-ya et al. [101] analyzed the VCD spectrum of
1-phenylethanol in Ar matrix, diluted CS2 solution, and neat liquid. They have found
that the neat liquid 1-phenylethanol spectrum can be reproduced by calculations for
1-phenylethanol dimers, while for diluted (0.1 M) CS2 solution the population-weighted
linear combination of the VCD spectra for the monomer and the dimers is in agreement
with experiment. Similar studies were also performed by Nicu et al. [102] for complexes
of benzoyl-benzoic acid with ammonia and lactic acid and methyl lactate with water.
Effects of explicit solvation by DMSO molecules and of forming a cyclodextrin complex
have also been studied for three dialkyl tartrates—dimethyl tartrate, diethyl tartrate, and
diisopropyl tartrate—by Zhang and Polavarapu [103].

An area very closely related to the computational studies of solvent effect on VCD
spectra is modeling of so-called chirality transfer in VCD spectra: vibrational optical
activity of a normally achiral molecule induced by the presence of a chiral environment.
Certain aspects of this phenomenon were studied in some of the works quoted above
[100, 102]; but since this has been discussed recently in the review paper by Sadlej,
Dobrowolski, and Rode [104], we are not going to examine it here.

Taking into account explicit solvation seems to be necessary to predict VCD spec-
trum of a solute forming hydrogen bonds with a solvent (that is, usually in the case of
an aqueous solvent and a polar solute). However, it has been shown that in the case
of solute and solvent of low polarity, the use of continuum model also improves sig-
nificantly the agreement of the calculated spectra with experiment [105]. This has been
demonstrated by Debie et al. [105] for pulegone (naturally occuring enone) in carbon
disulfhide and chloroform solutions. They have also shown that taking into account the
presence of solvent by including explicitly only one solvent molecule leads to worse
agreement with experiment than PCM calculations. On the other hand, there are cases
where the popular IEF-PCM model (as available in Gaussian 03) fails to render cor-
rectly the solvent effects on the VCD spectra, as shown by Polavarapu et al. [106] for
dibromo-1,1-binaphthol. The results for dibromo-1,1-binaphthol were improved by the
use of continuous charge approach variation of PCM [13], as mentioned by Polavarapu
et al. [107] in their work on the absolute configuration of garcinia acid, where they
applied the new PCM implementation to calculate solvent effects on VCD, CD, and
ORD spectra of garcinia acid dimethyl ester. It is also worth mentioning that calcula-
tions of CD without accounting for solvent effects yielded wrong absolute configuration
of garcinia acid dimethyl ester, and the use of the continuous charge approach PCM
rectified this.
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25.5. CONCLUDING REMARKS

There are two main groups of methods used for calculating the solvent-induced changes
on the chiroptical spectra: polarizable continuum models and supermolecular approach
with the solute–solvent clusters generated either by means of quantum chemical geometry
optimization or by molecular-dynamics-based methods. MD can also be used to create
trajectories used for calculations of vibrational optical activity spectra or to construct
discrete reaction field surrounding the solute molecule. The collected computational evi-
dence allows us to conclude that when there are hydrogen bonds formed between the
solute and the solvent (e.g., for peptides in aqueous environment), the best choice of the
solvent model is the use of molecular dynamics coupled with quantum chemical calcu-
lations for the solute–solvent clusters. The influence of the bulk solvent outside the first
solvation shell can be modeled by means of one of the polarizable continuum models.
The use of an explicit solvent model is not always possible due to high computational
cost of such procedure. In such cases the use of a polarizable contunuum model alone
is advantageous, since it is computationally inexpensive (the cost is little more than that
for an isolated solute molecule), and in most cases it reproduces correctly the solvent-
induced changes on chiroptical properties, allowing for example for correct assignment
of the absolute configuration. PCM models are particularly useful for solvents of low
polarity and for highly polar solvents but not for hydrogen-bond-forming ones. In the
case of hydrogen-bond-forming solvents, the performance of PCM is less predictable, but
in some cases it has been found to bring the results closer to experiment. New polarizable
continuum models are under developement, so it is likely to remain a popular method of
accounting for solvent effects.
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26
COMPLEXATION, SOLVATION,
AND CHIRALITY TRANSFER IN

VIBRATIONAL CIRCULAR DICHROISM
Valentin Paul Nicu and Evert Jan Baerends

26.1. INTRODUCTION

Accurate determination of the absolute configuration (AC) using VCD requires correct
interpretations of the VCD spectra. This in turn requires careful consideration of two
very important aspects:

1. The accuracy of the calculated VCD spectra . This is because on the one hand
when using VCD spectroscopy the absolute configuration (AC) of chiral com-
pounds is determined based on a comparison between experimental and calculated
VCD spectra, whereas on the other hand the calculated VCD spectra depend
sensitively on the choice of computational parameters used in calculations.

2. The effects induced in VCD spectra by the solvent . This is because most of
the time we compare experimental spectra measured in solution with computed
spectra obtained from calculations on a single molecule.

Both these aspects will be discussed in this chapter. First, in Section 26.2 we will
introduce the concept of robustness of the normal modes in a VCD spectrum. We will
show that this concept can be used to determine the stability of the calculated VCD signs
and, therefore, to assess the reliability of a VCD prediction. Then, in Section 26.3 we
will discuss the effects induced in VCD spectra by molecular complex formation—that
is, one of the most important sources of perturbations in solutions. The chapter will be
finalized with some concluding remarks and general guidelines for the interpretation of
VCD spectra.

Comprehensive Chiroptical Spectroscopy, Volume 1: Instrumentation, Methodologies, and Theoretical
Simulations, First Edition. Edited by N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody.
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All calculated VCD spectra presented in this chapter have been computed using the
VCD implementation [1] in the Amsterdam Density Functional (ADF) program package
[2–4] using the BP86 and OLYP exchange-correlation functionals and the ADF TZP basis
set. We note that the exchange-correlations functionals most often used for computing
VCD spectra are the B3LYP and B3PW91 hybrid functionals. However, as shown in
reference 1, the pure functionals BP86 and OLYP yield VCD spectra that reproduce the
experimental one at least as good as the spectra obtained using the hybrid functionals
mentioned above.

26.2. CONCEPT OF ROBUSTNESS IN VCD SPECTROSCOPY

26.2.1. Theory

As discussed in Chapter 24, the VCD intensity of the fundamental transition (|0〉 → |1〉)
of the i th vibrational mode is given by the rotational strength R(i ):

R(i ) = �E01(i )Im[ �M10(i )] = |�E01(i )||Im[ �M10(i )]| cos[ξ(i )], (26.1)

where �E01(i ) and Im[ �M10(i )] are the electric (EDTM) and magnetic (MDTM) transition
dipole moment vectors of the fundamental vibrational transition of the i th normal mode,
| �E01(i )| and |Im[ �M10(i )]| are the length of the vectors �E01(i ) and Im[ �M10(i )], respec-
tively, and ξ(i ) is the angle between these two vectors. (Note that Im[ �M10(i )] is a real
quantity because �M10(i ) is purely imaginary.)

As can be seen in Eq. (26.1), the sign of R(i ) is determined by the cosine of the
angle, ξ(i ), that is, R(i )>0 if ξ(i ) < 90◦, whereas if ξ(i )> 90◦, we have R(i )<0. From
Eq. (26.1) the cosine of the angle ξ(i ) can be written

cos[ξ(i )] =
�E01(i )Im[ �M10(i )]

| �E01(i )||Im[ �M10(i )]|
. (26.2)

Rotational strength has two important properties: (1) It is zero for achiral molecules,
and (2) for enantiomeric pairs it has equal magnitude but opposite sign. These two
properties can also be interpreted from the perspective of the ξ angles.

The first property implies that in achiral molecules the EDTM and MDTM associated
with a given vibrational transition are perpendicular; that is, because in general these
two vectors are not zero, they must be perpendicular in order to yield a zero rotational
strength:

| �E01(i )| �= 0, |Im[ �M10(i )]| �= 0, R(i ) = 0 ⇒ cos[ξ(i )] = 0 ⇔ ξ(i ) = 90◦
. (26.3)

The second property is equivalent to

RR(i ) = −RS (i ) ⇒ cos[ξR(i )] = − cos[ξS (i )] ⇔ ξR(i ) = 180◦ − ξS (i ), (26.4)

where the subscripts R and S label the two enantiomers of a chiral molecule.
From Eq. (26.4) it is clear that chiral molecules have, in general, angles ξ that are

different from 90◦. However, it should be noted that modes with angles ξ of 90◦ can be
encountered in chiral molecules because ξR(i ) = ξS (i ) = 90◦ is also a solution of Eq.
(26.4).
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Finally, we note that symmetry constraints can impose restrictions on the orientation
of the EDTM and MDTM of a given normal mode; that is, depending on the irreducible
representation to which a given normal mode i belongs, only certain values are permitted
for its associated angle ξ(i ) [5]. For example, in chiral molecules with C2 symmetry,
the EDTMs and MDTMs associated to the modes belonging to the A irreducible repre-
sentation are required to be along the C2 symmetry axis; that is, they are either parallel
(ξ = 0◦

) or antiparallel (ξ = 180◦
).

26.2.2. Distribution of the ξ Angles in Chiral Molecules

In this section we will investigate the distributions of the values taken by the angles ξ

in chiral molecules. The discussion is based on the results obtained in reference 5.
The distributions of the ξ angles of 28 chiral molecules calculated using the BP86

functional and the TZP basis set have been analyzed statistically by calculating for each
molecule the average value, ξ , and the standard deviation, σ(ξ). Schematic representa-
tions of the 28 test molecules are shown in Figure 26.1. As can be seen, our test molecules
consist of two chiral molecules with symmetry (i.e., molecules 1 and 2 in Figure 26.1),
and 26 chiral molecules without symmetry (i.e., molecules 3 to 28 in Figure 26.1), ranging
from very small (5 atoms) to relatively large molecules (48 atoms).

In the case of the nonsymmetric chiral molecules it was found [5] that the angles ξ

have a Gaussian distribution that is roughly centered on the 90◦ value, that is, ξ ∼= 90◦.
Depending on the molecule, the standard deviations, σ(ξ), vary between 10◦ and 40◦.
On the other hand, the angle distributions of the chiral molecules with symmetry have
peaks not only at 90◦ but also at 0◦ and 180◦. As discussed in the previous section, some
irreducible representations require the EDTM and MDTM to be along a certain symmetry
axis—that is, either parallel (ξ = 0◦

) or antiparallel (ξ = 180◦
). The peaks at 0◦ and

180◦ of the angle distribution are attributed to modes belonging to those irreducible
representations.

In the following, three suggestive molecules will be considered and their angle
distributions will be analyzed. The angle distributions of these molecules are shown in
Figure 26.2 as XY diagrams with the abscissa axis representing the angle interval from
0◦ to 180◦ (divided into 10◦ intervals) and the ordinate axis indicating the number of
normal modes in a given 10◦ interval.

First, we consider Tröger’s base—that is, molecule 1 in Figure 26.1. Tröger’s base
is a chiral molecule that has C2 symmetry. The angle distribution of Tröger’s base is
shown in the upper panel of Figure 26.2. As can be seen, the distribution has peaks near
0◦, 90◦, and 180◦. The peaks near 0◦ or 180◦ are due to the modes of A symmetry, which
have EDTMs and MDTMs along the C2 symmetry axis. The angles ξ of the modes of B
symmetry have a Gaussian distribution centered on 90◦; that is, there are no symmetry
restrictions for the orientation of the EDTMs and MDTMs in these modes.

The angle distribution of Tröger’s base has a standard deviation σ(�ξ) of 66.7◦. This
value is much larger then the typical values encountered for chiral molecules without
symmetry, that is, 10◦

< σ(ξ) < 40◦. Clearly, because of the peaks near 0◦ or 180◦,
chiral molecules with symmetry have more modes with angles ξ far from the 90◦ value
than chiral molecules without symmetry.

Next we will consider the Pulegone molecule—that is, molecule 14 in Figure 26.1.
The angle distribution of Pulegone is shown in the middle panel of Figure 26.2. The
distribution has a standard deviation σ(ξ) of 32.6◦. This means that approximately 35%
of the modes of Pulegone have ξ angles that differ from 90◦ by at least 32.6◦; that is,
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Figure 26.2. Distributions of the angles ξ of Tröger’s base

(upper panel), Pulegone (middle panel), and Cinchona

(lower panel). The abscissa axis gives the angle interval

from 0◦ to 180◦ divided into 10◦ intervals, whereas the

ordinate axis gives the number of modes in a given angle

interval.

approximately 65% of the members of a distribution are situated within the range of two
standard deviations. As can be seen in Figure 26.2 (middle panel), the distribution of the
angles ξ of Pulegone still has significant values outside the angle interval between 60◦

and 120◦.
The last example we consider is cinchona—that is, molecule 28 in Figure 26.1.

The angle distribution of Cinchona is shown in the lower panel of Figure 26.2. The
distribution has a standard deviation σ(ξ) of 12.5◦; and as can be seen, it is squeezed
around the 90◦ line. Only 12 out of the 132 modes of cinchona have values that differ
from 90◦ by 30◦ or more.

As will be shown in Section 26.2.4, this large variation among the angle distributions
of various molecules has very important implications in VCD spectroscopy. There is a
direct correlation between the spreading of the angle distribution around the 90◦ value
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and the agreement between calculation and experiment; that is, the larger the spread the
better the agreement.

Finally, it is worth mentioning that the angle distributions presented in Figure 26.2
have been obtained using all normal modes of a molecule, that is, 3N −6 (N being
the number of atoms of the considered molecule). However, as shown in reference 5,
very similar distributions are obtained also when considering only the normal modes in
the fingerprint region—that is, the frequency interval between 800 and 1800 cm−1 that
is usually considered in VCD spectroscopy. (Typically half of the normal modes of a
molecule are in the fingerprint region).

26.2.3. Dependence of ξ on Computational Parameters

We continue by investigating the dependence of the computed ξ angles on the compu-
tational parameters used in calculations. For this purpose, we monitor the differences
between the distributions of the angles ξ calculated with two different sets of com-
putational parameters. Such an investigation is not only of intrinsic interest but also
justified by the fact that a rather wide range of computational parameters (e.g., exchange-
correlation functionals and/or basis sets) is currently used for VCD calculations.

For a consistent evaluation of the differences between the ξ distributions of the same
molecule obtained from calculations with two different sets of computational parameters,
a one-to-one correspondence between the normal modes in the two calculations has to
be established first. Assuming that the relaxed structures obtained with the two sets of
computational parameters have the same orientation and represent the same conformation,
one can make a one-to-one correspondence between the modes of the two calculations by
calculating normal mode overlaps—that is, by calculating inner products between mass-
weighted Cartesian displacement vectors (i.e., the eigenvectors of the mass-weighted
Hessian) obtained from the two calculations. For more details on the calculation of
normal mode overlaps, the reader is referred to references 6 and 7. Here, we just note
that (1) two identical modes will have an overlap of 1, and (2) an overlap of 0.9 indicates
that the two modes are 81% similar, that is, 0.92 = 0.81.

Because the restrictions imposed by symmetry on the orientation of the EDTMs and
MDTMs are not affected by the choice of computational parameters, only the 26 non-
symmetric chiral molecules in Figure 26.1 (i.e., molecules 3 to 28), have been considered
for the present investigation. For each molecule the differences between the ξ angles of
two calculations have been analyzed as follows. After establishing a one-to-one mapping
between the modes of two calculations, only the pairs of modes whose modes have an
overlap of at least 0.9 have been selected for the analysis—that is, approximately 90% of
the modes of a molecule. Then, for each selected mode pair the difference �ξ between
the angles ξ of the modes in the pair is calculated. Finally, the distributions of the �ξ

values are analyzed separately for each molecule by calculating the mean value �ξ and
the standard deviations σ(�ξ).

First we will discuss the dependence of the ξ angles on the exchange-correlation
functionals (the rest of the computational parameters being identical in the two calcula-
tions). Two pure (i.e., nonhybrid) exchange-correlation functionals have been considered
for this purpose (i.e., BP86 versus OLYP).

Going from BP86 to OLYP represents the typical change of computational parameters
that one tests in order to improve the agreement between the calculated and experimen-
tal VCD spectra. The two functionals yield similar VCD spectra that reproduce the
experimental one quite well. However, based on the agreement between calculations
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and experiment, neither functional can be considered as being superior; that is, neither
yields VCD spectra that consistently reproduce the experiment better than the other one
[1, 5, 7, 8].

The analysis of the differences �ξ —that is, �ξ = ξBP86 − ξOLYP calculated for
the 26 nonsymmetric molecules in Figure 26.1,—has shown that for the modes with
significant VCD intensities (see below for more details), the differences �ξ for the
modes in a molecule have a Gaussian distribution. The �ξ distributions are centered
roughly on the 0◦ value, indicating that one functional does not have a systematic bias
toward larger or smaller ξ for all modes with respect to the other functional. Depending
on the molecule, the �ξ distributions have standard deviations, σ(�ξ), between 6◦ and
10◦. The maximum deviation, �ξmax, was found to be smaller than 30◦ —that is, slightly
more than three σ(�ξ).

Similar variations of �ξ distributions (i.e., �ξ ∼= 0◦, 6◦
< σ(�ξ)<10◦ and

�ξmax<30◦
) have been observed also when comparing (1) calculations with different

basis sets (e.g., DZP versus TZP, TZP versus TZ2P) and (2) vacuum calculations
to calculations where the effects of the solvent have been modeled using continuum
solvation models (e.g., COSMO).

Regarding the modes with weak VCD intensities—that is, modes with very small
EDTMs and/or MDTMs—it was found that these modes can exhibit very large varia-
tion of their angles (i.e., �ξ of 60◦ –70◦ are not uncommon), when going from one set
of computational parameters to another. To substantiate this affirmation, in the follow-
ing we consider the mode 52 of benzoyl-benzoic acid (BBA)—that is, molecule 22 in
Figure 26.1.

Table 26.1 lists the frequencies, rotational strengths, angles ξ , and the Cartesian
components of the EDTMs and MDTMs calculated with the BP86 and OLYP exchange-
correlation functionals for mode 52 of BBA. The overlap between the BP86 and OLYP
displacement vectors of mode 52 is also given in Table 26.1. As can be seen, the two
functionals have predicted very similar frequencies and nuclear displacement vectors for
the mode 52 of BBA; that is, the normal mode overlap is 0.99, but there are very different
values for the angles ξ , namely 49.9◦ in the free molecule (FM) versus 111.7◦ in the
molecular complex (MC).

TABLE 26.1. Comparison of the Frequencies (cm−1), Rotational Strengths (10−44 esu · cm), ξ

Angle, Electric Dipole Transition Moments (10−21 esu · cm), and Magnetic Dipole Transition
Moments (10−25 esu · cm) of the Normal Mode 52 of Benzoyl Benzoic Acid (Molecule 22 in
Figure 26.1) Calculated Using the BP86 and OLYP Functionals

Overlap: 0.99 �ξ = 61.8◦

Frequency R ξ

BP86: 1151.5 +1.3 49.9◦

OLYP: 1162.0 −1.0 111.7◦

�E01(i ) x y z

BP86: −1.7 +0.7 −2.2
OLYP: −3.1 +1.5 +1.3

Im[ �M01(i )] x y z

BP86: −14.6 −35.3 −54.6
OLYP: −12.3 −35.8 −61.1
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The origin of this large variation of ξ can be understood by comparing the Cartesian
components of the EDTMs and MDTMs calculated for this mode with the two function-
als. A look at the EDTMs of mode 52 reveals that (1) the magnitude of the EDTM of
this mode has a very small value (almost zero) in both BP86 and OLYP calculations and
(2) the two functionals have predicted very different Cartesian EDTM components for
this mode. On the other hand, when comparing the MDTMs of mode 52 we see that (1)
mode 52 has a relatively large MDTM and (2) the two functionals have predicted very
similar values for the Cartesian components of the MDTM of this mode.

The very large variation observed for the angle ξ of mode 52 when going from BP86
to OLYP is related to the different direction of the EDTM in the two calculations. This in
turn is a consequence of the fact that EDTM associated to the mode 52 is almost zero—a
value much smaller than the EDTMs of the rest of the modes of BBA. Since the two
functionals have predicted very similar values for the frequency, nuclear displacement
vectors, and MDTM of mode 52 (i.e., physical quantities with significant magnitudes),
it should be clear that the very small values of the EDTM of mode 52 depends too
sensitively on the exchange-correlation functional used in calculations (most likely on
other computational parameters too) and cannot be predicted accurately.

26.2.4. Criteria for Robustness

The study in Section 26.2.2 has shown that the ξ associated to the normal modes of a
chiral molecule have Gaussian distributions centered the 90◦ values. On the other hand,
the study in Section 26.2.3 has shown that the variations �ξ induced in ξ by the use of
different sets of computational parameters have a Gaussian distribution that is centered
on the 0◦ value and have standard deviation between 6◦ and 10◦.

These findings have two important consequences:

1. The use of different computational parameters can induce changes in the values
of the ξ angles across the 90◦ line for modes with angles ξ close to 90◦. That is,
normal modes obtained from calculations with different computational parameters,
which are otherwise almost identical, can have different VCD signs.

2. The use of different computational parameters is expected to induce no VCD
sign changes in normal modes that have ξ angles that differ from 90◦ by more
than 30◦. The specified threshold value (i.e. 30◦) represents a bit more than three
standard deviations and therefore is a very conservative criterion; that is, 99.7%
of the members of a distribution fall within the range of three standard deviations.

The two observations made above can be summed up by introducing the concept
of robustness of the normal modes in a VCD spectrum. That is, the modes in a VCD
spectrum can be classified as robust and nonrobust [5, 9]. The robust modes are char-
acterized by angles ξ that are far from 90◦ (i.e., by at least 30◦), and as a result their
VCD sign is not sensitive to small perturbations of computational or experimental nature.
Consequently, the VCD sign of the robust modes can be accurately predicted by calcu-
lations. The nonrobust modes, on the other hand, have angles ξ that are close to 90◦.
Because of this, even the smallest perturbation (e.g, the use of slightly different computa-
tional parameters; the use of different solvents) can affect the VCD sign of the nonrobust
modes. As a result, the VCD sign of nonrobust modes cannot be accurately predicted
from calculations and therefore should not be trusted.

Besides the modes that have angles ξ close to 90◦, also the modes with weak VCD
intensities (i.e., with very small EDTM or MDTM), should be assigned as nonrobust.
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As shown in the previous section, these modes can exhibit very large variation of their
ξ angles upon changing computational parameters, because the direction of the dipole
transition moments with small magnitude cannot be computed accurately. We note that
an absolute measure, valid for all molecules, to determine what should be considered
small in this context cannot be given. The magnitudes of the total EDTM and MDTM of
a normal mode depend on the type of mode and on the number of atoms involved in the
normal mode motion—that is, on the molecule. In reference 5, an unstable sign has been
found if for a given molecule, the EDTM/MDTM is less than 10% of the mean value
of the EDTMs/MDTMs of all the modes of the respective molecule. As a conservative
threshold, we recommend a magnitude of at least 30% of the mean value of the EDTM
(or MDTM) values of the molecule. However, more studies are needed for determining
an exact threshold.

26.2.5. Validation of the Concept of Robustness

26.2.5.1. Effects of Various Computational Parameters on VCD Spectra.
In this section we will investigate the relevance of the similarities/discrepancies induced
between experimental and calculated VCD spectra by the use of various computational
parameters. A very good example in this regard, which illustrates both the principle and
the usefulness of the robustness concept, is the combined computational–experimental
study of Pulegone (i.e., molecule 14 in Figure 26.1), presented in reference 7. Here, we
will summarize the most important conclusions of this study.

We start by comparing in Figure 26.3 (left panel) the experimental and calculated
(BP86/TZP) VCD spectra of Pulegone. As can be seen, apart from a few small discrep-
ancies (indicated by rectangles), there is a rather good agreement between calculation
and experiment.

We continue by evaluating the robustness of the modes in the calculated VCD spec-
trum of Pulegone in Figure 26.3. A convenient way to do this is by plotting the computed
values of the angles ξ as dots on top of the VCD spectra. This is illustrated in the right
panel of Figure 26.3. The baseline of the calculated VCD spectrum is the 90◦ line; the
y coordinate of each dot gives the magnitude of each ξ angle (see the vertical left axis),
while the x coordinate gives the frequency of the mode.

Figure 26.3. Comparison of the experimental and calculated (BP86/TZP) VCD spectra of Pulegone

(left panel). The most important discrepancies between calculations and experiment are indicated

by rectangles in the left panel. Right panel: Robust mode analysis for the calculated VCD spectrum

of Pulegone. The dots indicate the values of the ξ angles, whereas the arrows indicate the robust

modes. The experimental spectra were provided by Bultinck et al. [26].
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In the interval between 800 and 1800 cm−1, calculation 1 has predicted 38 modes for
Pulegone. Out of these 38 modes, only 10 have been identified as robust. In Figure 26.3
(right panel) the robust modes have been indicated with arrows. As can be seen, most
of the peaks that stand out in the experimental VCD spectrum of Pulegone correspond
to robust modes. Furthermore, except for the robust mode at 1442 cm−1, we have sign
agreement between calculation and experiment for all robust modes.

The sign discrepancy observed for robust mode at 1442 cm−1 —that is, mode 56
of Pulegone—could be attributed to mode mixing. That is, because calculation 1 has
predicted 9 modes within 50 cm−1 around mode 56 which can easily be mixed by small
perturbations (e.g., solvent effects), it is possible that the modes predicted by calculation
1 are not good representation of modes in experiment but rather linear combinations of
the real modes. Regarding the rest of the discrepancies, as can be seen, they are attributed
to nonrobust modes.

Therefore, for the comparison between the calculated and experimental VCD spectra
of Pulegone in Figure 26.3, we have on the one hand good sign agreement for 9 out
of the 10 modes whose VCD sign we can calculate accurately—that is, the robust
modes—and on the other hand sign discrepancies mostly for nonrobust modes—that is,
modes whose VCD sign cannot be predicted accurately form calculations. Consequently,
we can conclude that the agreement between calculations and experiment in Figure 26.3
is of sufficient quality to provide an accurate determination of the AC of Pulegone.

Having established that the AC of Pulegone can be determined accurately from a
simple vacuum calculation performed for the isolated molecule, we continue by investi-
gating the significance of the similarities/discrepancies obtained between the calculated
and experimental VCD spectra of Pulegone when using various computational parame-
ters. We will do this from the perspective of robustness by monitoring the dependence of
the calculated ξ angles of Pulegone on (1) exchange-correlation functionals (i.e., BP86
versus OLYP), (2) solvation model (i.e., vacuum versus COSMO, (3) criteria for geome-
try optimization [i.e., tight (10−6 hartree for the energy and 10−4 hartree/angstrom for the
gradients) versus the ADF default (10−4 hartree for the energy and 10−3 hartree/angstrom
for the gradients], and (4) molecular complex formation [i.e., calculations for the iso-
lated Pulegone molecule versus calculations performed for the molecular complex formed
between one Pulegone molecule and one solvent molecule (i.e. CDCl3)]. By combining
all these computational parameters, 16 different calculations have been performed for
Pulegone (labeled from 1 to 16). A list with the computational parameters used in each
of the 16 calculations is given in Table 26.2.

In Figure 26.4 (left panel) the values of the angles ξ predicted by the 16 calculations
in Table 26.2 have been plotted as dots (each calculation in a different gray nuance) on
top of the VCD spectrum (and angles) obtained from calculation 1 (i.e., our reference
calculation). As can be seen, the dots often exhibit very large vertical variations that in a
few situations cross the 90◦ line. This clearly indicates that the values calculated for the
ξ angles depend sensitively on the choice of computational parameters and that the 16
calculations in Table 26.2 predict different VCD signs for some of the modes of Pulegone.

To highlight the difference between robust and nonrobust modes, it is useful to
(a) plot the angles of the modes identified as nonrobust in the calculation 1 and their
homologous modes in the rest of the calculations using the same symbols and (b)
use a different symbol for the angles of the robust modes in calculation 1 and their
homologous modes in the rest of the calculations. This has been done in the right panel
of Figure 26.4 where black dots have been used for the non-robust modes and empty
circles for the robust modes.
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TABLE 26.2. Computational Parameters Used in the 16 Calculations
Performed for Pulegone

Calculation Computational Details

1 TZP, BP86, Vacuum, tight geometry, free molecule
2 TZP, BP86, Vacuum, tight geometry, molecular complex
3 TZP, BP86, Vacuum, default geometry, free molecule
4 TZP, BP86, Vacuum, default geometry, molecular complex
5 TZP, BP86, COSMO, tight geometry, free molecule
6 TZP, BP86, COSMO, tight geometry, molecular complex
7 TZP, BP86, COSMO, default geometry, free molecule
8 TZP, BP86, COSMO, default geometry, molecular complex
9 TZP, OLYP, Vacuum, tight geometry, free molecule
10 TZP, OLYP, Vacuum, tight geometry, molecular complex
11 TZP, OLYP, Vacuum, default geometry, free molecule
12 TZP, OLYP, Vacuum, default geometry, molecular complex
13 TZP, OLYP, COSMO, tight geometry, free molecule
14 TZP, OLYP, COSMO, tight geometry, molecular complex
15 TZP, OLYP, COSMO, default geometry, free molecule
16 TZP, OLYP, COSMO, default geometry, molecular complex

–
– –

–

Figure 26.4. Dependence of the calculated ξ angles of Pulegone on the computational param-

eters. The left panel shows the angles ξ obtained from the 16 calculations in Table 26.2 (each

calculation has a different gray nuance) plotted on top of the VCD spectrum obtained form

calculation 1. The right panel shows the variation of the values of the angles ξ of the robust

modes (circles) and of the nonrobust modes (black dots) in the 16 calculations.

The robust modes will be discussed first. As can be seen, even though the angles of
some of the robust modes exhibit rather large vertical variations, no VCD sign changes
(i.e., crossing of the 90◦ line), are observed for the robust modes. Since most of the
features that stand out in the VCD spectrum of Pulegone are associated to robust modes,
and since most of the robust modes identified in calculation 1 are also robust in the rest
of the calculations, it should be clear that all 16 calculations in Table 26.2 yield VCD
spectra that reproduce fairly well the experiment. Thus, any of these calculations can be
used to determine the AC of Pulegone.

Before discussing the nonrobust modes, we should also mention that mode 56—that
is, the robust mode at 1442 cm−1 that in calculation 1 had a different VCD sign than in
experiment—can be found in only 8 out of the 16 calculations (see the fewer number of
points associated with this mode in the right panel of Figure 26.4). As we have expected,
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this mode can indeed mix easily with its neighbors. Clearly, the fact that a mode is robust
is not an absolute guarantee of sign agreement between calculations and experiment.

Next we consider the nonrobust modes. A look at the clusters of points associated
with the nonrobust modes shows that, except for a few modes with very weak VCD
intensities that exhibit very large variations of their angles (e.g., the weak mode at
847 cm−1), the vertical variations of the dots are comparable to the ones observed for
the robust modes. However, unlike in the case of the robust modes, here we have some
modes that exhibit changes across the 90◦ line. That is, the use of different computational
parameters induces VCD sign changes for some of the normal modes.

One such example is the C = O stretching mode of Pulegone—that is, the mode
at 1675 cm−1. Since for this mode we have sign discrepancies between calculations
and experiment (see Figure 26.3), in the following, we will analyze it in more detail.
Figure 26.5 shows a comparison of the values predicted by the 16 calculations in
Table 26.2 for the angles ξ and rotational strengths of this mode. As can be seen,
all 16 calculations predict for the angle ξ of this mode values that are very close to
90◦. However, the calculated angles are both larger and smaller than 90◦; that is, some
of the calculations predict a positive VCD sign for this mode while others predict a
negative VCD sign. This might falsely suggest that the sign discrepancy observed in
Figure 26.3 for this mode can be corrected if one uses a different set of computational
parameters. However, because this mode is nonrobust, one should recognize that the sign
agreements/disagreements between calculations and experiment bear no relevance. For
example, even the use of different convergence criteria for the geometry optimization
(compare calculations 10 and 12 in Figure 26.5) has yielded rotational strengths of dif-
ferent signs for this mode. Clearly, the VCD sign calculated for this mode depends too
sensitively on the choice of computational parameters and cannot be predicted accurately
from calculations.

We can conclude that this study has not only demonstrated the usefulness of the
robustness concept introduced in Section 26.2.4, but has also revealed a very important
implication of this concept; that is, sign discrepancies between the calculated and exper-
imental VCD spectra should be of no concern if they are encountered for modes that are
non-robust.
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26.2.5.2. Reliability of VCD Predictions. In this section we will extend further
the ideas introduced in the previous section by showing that the robustness concept can
also be used to assess the reliability of a VCD prediction.

The first molecule we consider is Tröger’s base—that is, molecule 1 in Figure 26.1.
As can be seen in the left panel of Figure 26.6, where the calculated (BP86/TZP) and
“experimental” VCD spectra of Tröger’s base are compared, we have an almost perfect
agreement between the calculated and experimental VCD spectra of this molecule. There
are two important facts that are responsible for this very good agreement between cal-
culation and experiment. Firstly, approximately 60% of the modes of Tröger’s base in
the fingerprint region are robust. Furthermore, as can be seen in Figure 26.6, all intense
signals in the VCD spectrum of Tröger’s base are assigned to robust modes. Secondly,
Tröger’s base is a very rigid molecule that at room temperature has practically a single
conformation populated in solution [10].

The next molecule we consider is α-pinene—that is, molecule 20 in Figure 26.1.
As can be seen in the right panel of Figure 26.6, where a comparison of the calculated
(BP86/TZP) and “experimental” VCD spectra of α-pinene is shown, there is a rather
good agreement between calculation and experiment, but not as good as in the case of
Tröger’s base. We note that, like Tröger’s base, α-pinene is a rigid molecule that has a
single conformation populated at room temperature [11].

Compared to Tröger’s base, α-pinene has much fewer robust modes in the fingerprint
region—that is, only approximately 20% (8 out of 39). It should also be pointed out
that (1) all robust modes stand out in the VCD spectrum of α-pinene and have the same
signs in the calculated and the experimental spectra (see Figure 26.6), and (2) the few
sign discrepancies between calculations and experiment in Figure 26.6 are observed for
modes that are not robust.

The two examples considered in this section, and also in the study of Pulegone
(which is in the same category as α-pinene) in the previous section, suggest that there is
a direct correlation between the number of robust modes of a molecule and the agreement
between its experimental and calculated VCD spectra; that is, the greater the number of
robust modes, the better the agreement. As a result, the concept of robustness can also
be used to assess how reliable a VCD prediction of the AC is: The more robust modes
there are, the more likely that good agreement is not accidental.

Figure 26.6. Comparison of the experimental and calculated (BP86/TZP) VCD spectra for Tröger’s

base (left panel) and α-Pinene (right panel). The dots indicate the values of the ξ angles, whereas

the arrows indicate the robust modes. The ‘‘experimental’’ spectra were obtained by Lorentzian

broadening (with a half-width of 8 cm−1) of the experimental VCD intensities reported by

Stephens and co-workers [10, 11].
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Finally, we note that in the case of flexible molecules that have very few robust
modes one should not over interpret the superficial agreement between calculations and
experiment. Such situations are at the limit of applicability of VCD spectroscopy. This
is because not only we cannot trust the calculated VCD signs, but we are also unable to
calculate accurately the Boltzmann weights of the various conformations. The reason is
twofold. On one hand the accuracy of the calculated relative energies is, depending on
the level of theory, on the order of 2-3 kcal/mol, and on the other hand a relative energy
of 1 kcal/mol between two conformers will yield Boltzmann weights of approximately
84% and 16% for the two conformers. If VCD “predictions” of the AC are being made
in cases like this one, than they must be verified against predictions made with other
spectroscopic techniques, e.g. ROA, ECD, OR.

26.3. EFFECTS OF MOLECULAR COMPLEX FORMATION
IN VCD SPECTRA

Correct interpretation of VCD spectra required a good knowledge/understanding of the
effects induced by the solvent in VCD spectra. The reason is twofold. On one hand,
the measured VCD spectrum can depend sensitively on the solvent used, while on the
other hand most often one compares VCD spectra measured in solution to VCD spectra
obtained form calculations performed on isolated molecules.

For this reason, the number of studies investigating the solvent effects on VCD
spectra has increased rapidly in recent years [13–20]. These studies have shown that
long-range dielectric effects, as given by a polarizable continuum model for the solvent,
while sometime useful, are not sufficient to model the solvation effect on the spectra;
that is, explicit hydrogen bonding has to be taken into account. Since the formation of
a molecular complex between a solute molecule and a solvent molecule is indeed the
most important interaction causing perturbation of the VCD signals compared to the gas
phase, in this section we will investigate in detail the effects of complexation on the
VCD signals.

There are four main types of perturbations induced by molecular complex formation
that can affect the shape of the measured VCD spectra:

1. Perturbation of the conformational populations of the solute.

2. Perturbation of the normal modes of the solute.

3. Perturbation of the electronic structure of the solute.

4. Transfer of chirality.

In the following, each of these cases will be discussed in detail using a suggestive
example molecule. The effects induced in VCD spectra by these four perturbations will
also be analyzed from the perspective of robustness. This investigation will not only
provide a better understanding of the effects induced by complex formation on VCD
spectra, but will also help us better define the concept of robustness introduced in the
previous section. That is, according to the definition of robustness in Section 26.2.4, the
VCD sign of robust modes is not sensitive to small perturbations. As it will be shown,
the findings in the current study will shed some more light on what can be considered a
small/large perturbation.
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26.3.1. Perturbation of the Conformational Populations of the Solute

In the case of flexible chiral molecules that have more than one conformation populated
at room temperature, molecular complex formation between solute and solvent molecules
can result in changes of the Boltzmann populations of the various conformations of the
solute; that is, some conformations of the solute will be stabilized/destabilized by the asso-
ciation of the solvent. This can significantly affect the shape of the measured/calculated
VCD spectra as the various conformers of a chiral molecule have different VCD spectra.

As an example, we consider the binaphthol molecule—that is, a chiral molecule with
C2 symmetry that has three conformations [21]. The three conformers of binaphthol are
shown in Figure 26.7. As can be seen, they differ in the orientation of the two O—H
bonds.

The O and H atoms of the two O—H bonds can form intermolecular hydrogen bonds
with solvent molecules; that is, two solvent molecules can associate to one binaphthol
molecule (one at each O—H bond; see Figure 26.8).

To investigate the effects of molecular complex formation on the relative energies
of the three conformers of binaphthol, in the following we will consider molecular com-
plexes formed between the three conformations of binaphthol with two different solvents,
namely CH2Cl2 and DMSO.

Table 26.3 shows a comparison between the relative energies of the three conformers
in Figure 26.7 obtained from BP86/TZP calculations performed for the isolated conform-
ers (calculation A in Table 26.3) and for molecular complexes form with CH2Cl2 and
DMSO (calculations B and C, respectively, in Table 26.3). As can be seen, the calcula-
tions performed for the isolated molecule (A) and for the molecular complexes formed
with CH2Cl2 (B) predict conformation 1 as the most stable (thus dominant) conformation
of binaphthol, whereas the calculations performed for the molecular complexes formed
with DMSO (C) predicts conformations 2 and 3 as the most stable (thus dominant)
conformations.

Indeed, as can be seen in the left panel of Figure 26.9, the VCD spectra measured
in the CH2Cl2 and DMSO solvents are quite different. Moreover, the VCD spectrum
measured in CH2Cl2 is very well reproduced by the spectra obtained from calculations
performed for conformation 1 with or without associated CH2Cl2 molecules (see middle
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Figure 26.7. The three conformations of binaphthol.
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Figure 26.8. The most stable molecular complexes form between one binaphthol molecule and

two solvent molecules. Left panel shows the molecular complex formed using the conformer 1

of binaphthol and two CH2Cl2 solvent molecules (one at each OH bond). Right panel shows the

molecular complex formed using the conformer 3 of binaphthol and two DMSO solvent molecules

(one at each OH bond).

TABLE 26.3. Comparison of the Relative Energies (kcal/mol) of the Three Conformations
Calculated at BP86/TZP Level for the Isolated Binaphthol (A), the Molecular Complex Made
Between One Binaphthol Molecule and Two CH2Cl2 Molecules (B), and the Molecular Complex
Made Between One Binaphthol Molecule and Two DMSO Molecules (C)

Calculation A B C

Conformation 1 0.00 0.00 2.34
Conformation 2 3.90 2.49 0.08
Conformation 3 7.25 8.10 0.00

panel of Figure 26.9), whereas the spectrum measured in DMSO is rather well reproduced
by the spectrum obtained from calculations performed for conformation 3 with associated
DMSO molecules (see lower panel of Figure 26.9). We note that according to the rela-
tive energies given in Table 26.3, in order to reproduce the VCD spectrum measured in
DMSO, one should consider not only the VCD spectra of the molecular complex formed
between conformation 3 of binaphthol and two DMSO molecules, but also the spectrum
calculated for the molecular complex formed with conformation 2 of binaphthol. How-
ever, because all the peaks in the VCD spectrum of the MC formed with conformation
2 had very weak intensities, this spectrum was neglected.

Finally, it should be clear that a change in the relative populations of the vari-
ous conformations—that is, the contributions of the various conformation to the final
spectrum—will most likely result in a change of the number of robust modes in the fre-
quency interval of interest; that is, each conformations has a different number of robust
modes. The physical meaning of robustness will, of course, be unchanged.

26.3.2. Perturbation of the Normal Modes

The perturbation induced in the molecular systems forming a molecular complex can
cause some of the normal modes to mix. Mode mixing is not restricted to modes of the
same molecular system but can happen also between solute and solvent modes.
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Figure 26.9. VCD spectra of binaphthol.

Upper panel: Comparison between the

experimental VCD spectra measured in CH2Cl2
and DMSO solvents. Middle panel: Comparison

between experimental VCD spectrum measured

in CH2Cl2 and calculated (BP86/TZP) spectra for

conformation 1 of binaphthol (free molecule

continuos line, molecular complex dotted line).

Lower panel: Comparison between

experimental VCD spectrum measured in DMSO

and calculated (BP86/TZP) spectra for

conformation 3 of binaphthol (molecular

complex). Experimental spectra were provided

by Professor Polavarapu.

In this section we will consider only the modes of the solute. In particular, two very
general cases will be considered in this section: (1) the case of normal modes that are
unaffected by the molecular complex formation and (2) the case of the modes that are
(strongly) mixed by the molecular complex formation. The more particular case of the
modes that are not affected by the molecular complex formation even though they are
localized almost exclusively on the solute atoms involved in the intermolecular bonds
will be discussed in the next section. The case of the solvent modes (induced chirality)
will be discussed in Section 26.3.4.
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The percentage of the solute modes that mix, as well as the strength of the mixing,
depends sensitively on the shape, size, and relative orientation of the solute and solvent
molecules, as well as on the strength of the intermolecular bond. For example, the
association of a CDCl3 solvent molecule to the Pulegone molecule (the case studied in
Section 26.2.5.1) has caused approximately 20% of the fingerprint modes of Pulegone to
mix strongly. In the binaphthol molecule, on the other hand, the association of the two
CH2Cl2 solvent molecules to conformer 1 caused approximately 15% of the fingerprint
modes of this conformer to mix strongly, while the association of two DMSO molecules
to conformer 3 has caused approximately 45% of the fingerprint modes of this conformer
to mix strongly. (By strong mixing we mean that upon complex formation a mode of
the FM exhibits a change of more than 19%; that is, it has an overlap with a MC mode
smaller than 0.9.)

As an example, we will consider the molecular complex (MC) formed between one
1-amino–1-phenyl–pentanol molecule and one NCCH3 solvent molecule (see
Fig. 26.10). A normal mode analysis has shown that approximately 20% of the modes
of 1-amino–1-phenyl–pentanol mix upon the association of the NCCH3 molecule.

First we consider the case of the modes that are unaffected (or very little affected)
by molecular complex formation. Although not a rule, most often this is the case of the
modes localized far away from the intermolecular bonds. As an example we consider
mode 31 of FM. The mode is localized on the phenyl ring (i.e., far from the intermolecular
bond) and consists of (the phenyl) in plane movements of the H atoms. As can be
seen in Figure 26.10, the association of the NCCH3 solvent molecule leaves this mode
practically unchanged. Indeed, mode 31 of FM has an overlap of 0.99 with mode 39 of
the MC. Furthermore, as can be seen in Table 26.4, the two modes also have very similar
frequencies, EDTMs, MDTMs, dipole and rotational strengths, and ξ angles. It should
therefore be clear that the robustness of the modes that do not mix and are not localized
on the intermolecular bonds is not affected by molecular complex formation.

Next we discuss the case of mode mixing. Although not a rule, mode mixing is most
likely to occur among (1) modes that have similar frequencies and involve movements

31

Free molecule Molecular complex

39

O
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N

Figure 26.10. Example of a normal mode of

1-amino–1-phenyl–penthanol that is not

affected by complex formation with NCCH3:

Comparison of the mode 31 of FM with the

mode 39 of MC. The two modes have an

overlap of 0.99.
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TABLE 26.4. Mode Unaffected by Molecular Complex Formation.a

Overlap: 0.99 �ξ = 1.8◦

Molecule Frequency R ξ

FM: 750.8 −71.5 115.6◦

MC: 749.1 −65.4 117.3◦

�E01(i ) x y z

FM: +13.4 −0.60 +86.8
MC: +17.9 −2.80 +93.2

Im[ �M01(i )] x y z

FM: −36.8 +142.5 −68.6
MC: −38.1 +157.7 −65.0

a Comparisons of the frequencies (Frequency), rotational strengths (R), angles ξ , and Cartesian components
of the electric ( �E01) and magnetic (Im[ �M01]) dipole transition moments of modes 31 of FM (1-amino–1-
phenyl–penthanol) and 39 of MC (1-amino–1-phenyl–penthanol· · · NCCH3). Units: Frequency (cm−1), R
(10−44 esu2 · cm2), �E01(10−21 esu · cm), Im[ �M01](10−25 esu · cm).

of atoms or groups of atoms of the same type and (2) modes partially localized on the
intermolecular bonds.

As an example, we consider mode 70 of the MC. This mode does not have a corre-
sponding mode in the FM. As shown in Figure 26.11, this mode is a linear combination
of three modes of FM, namely modes 59, 60, and 61. As can be seen in Figure 26.11,
mode 70 of MC is very different from the modes of FM that mix to form it. That is,
mode 70 of MC is localized only on the pentanol moiety and consists of CH rocking
movements, whereas the modes 59, 60, and 61 of FM are localized also on the phenyl
and OH moieties. Consequently, the electric and magnetic dipole transition moments of
mode 70 of MC should be significantly different from those of the modes 59, 60, and 61
of FM. Indeed, as can be seen in Table 26.5, except for the mode frequencies, which are
very similar, the four modes have very different dipole strengths, rotational strengths,
and ξ angles—that is, very different EDTMs and MDTMs.

Regarding the robustness of the mixed modes, it should be clear that as a result of
mode mixing, new robust/nonrobust modes will be created; and at the same time, some

C C C
N

C

59 (31%) 60 (37%)

+ =–

61 (22%) 70

Free molecule Molecular complex

Figure 26.11. Normal modes of 1-amino–1-phenyl–penthanol that are mixed by molecular

complex formation.
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TABLE 26.5. Mode Mixing Cause by Molecular Complexationa

Molecule NM Overlap Frequency D R ξ

MC 70 — 1325.2 88.5 18.3 80.6
FM 59 −0.56 1315.6 33.8 +58.6 37.8◦

FM 60 +0.61 1330.8 25.1 −1.7 91.8◦

FM 61 −0.51 1335.2 115.3 −50.7 136.5◦

a Comparison of the frequencies (Frequency), dipole (D) and rotational (R) strengths, and ξ angles of mode
70 of MC (1-amino–1-phenyl–penthanol· · · NCCH3) and of modes 59, 60, and 61 of FM (1-amino–1-
phenyl–penthanol). Units: Frequency (cm−1), D (10−40 esu2 · cm2), R(10−44 esu2 · cm2).

of the robust/nonrobust modes of the solute will disappear. This will result in a change
(proportional to the percentage of modes that mix) in the number of robust/nonrobust
modes in the frequency interval of interest. As before, the physical meaning of robust-
ness is unchanged. It should also be clear that, because mode mixing can significantly
change the sign and magnitude of rotational strengths, VCD sign discrepancies can be
encountered between calculation and experiment for mixed modes assigned as robust, if
the mixed modes are not a good representation of the experimental mode (see discussion
of the mode 56 of Pulegone in Section 26.2.5.1).

There are two important conclusions. Firstly, the VCD spectra can be signif-
icantly affected by the mode mixing mechanism (triggered by molecular complex
formation)—especially in situations when a large percentage (e.g., 45%) of the modes
of the FM mix upon solvent association (see discussion in the previous section on the
effects induced by the DMSO and CH2Cl2 association on the modes of binaphthol).
Secondly, when molecular complex formation occurs, performing a normal mode
analysis (i.e., mapping of the FM and MC modes) is essential not only to provide a
good estimate for how significant the VCD spectra are affected by complexation, but
also for interpreting the results of a robust mode analysis.

26.3.3. Perturbation of the Electronic Structure

Molecular complex formation gives rise to donor–acceptor interactions between occupied
and virtual MOs localized on the solvent and solute moieties involved in the intermolec-
ular hydrogen bonds [8]. As will be shown in this section, the charge transfer resulting
from this interaction perturbs strongly the EDTMs and MDTMs of the modes localized
on the moieties involved in intermolecular bonds. This in turn will affect significantly
the IR and VCD intensities of these modes.

To illustrate the type of changes that can be induced in VCD spectra by charge
transfer, in the following we will consider the tris(ethylenediaminato)cobalt(III) complex,
[Co(en)3]3+, and we will investigate the changes induced in its VCD spectrum by chloride
association.

The [Co(en)3]3+ molecule is a chiral transition metal consisting of three ethylene-
diaminato (en) bidentate ligands coordinated to the Co metal center. The [Co(en)3]3+
molecule has four different conformations [22, 23]. However, after the association of the
Cl− ions, only one of these conformers is predominantly populated at room temperature;
that is, the conformer labeled as �–δδδ [23]. Therefore, in the following we will consider
only this conformation.
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The �–δδδ conformer of [Co(en)3]3+ has C3 symmetry, and it is depicted in the
upper panel of Figure 26.12. (In the left picture �–δδδ is viewed along the C3 symmetry
axis, whereas in the right picture �–δδδ is viewed along the C2 symmetry axis.)

The middle panel of Figure 26.12 shows a schematic representation of the N—H
bonds at each N atom of an ethylenediaminato ring. As can be seen, we can distinguish
between (a) N—H axial bonds that are almost parallel to the C3 axis and (b) N—H equato-
rial bonds that are almost perpendicular to the C3 axis (the Z axis). The N—H axial bonds
form two triads, one at the positive Z axis (hydrogens 26, 30, and 34 in Figure 26.12)
and one at the negative Z axis (hydrogens 28, 32, and 36 in Fig. 26.12), whereas the
equatorial N—H bonds form three dyads, namely, one at each C2 symmetry axis.

In solution with excess Cl− ions, the Cl− ions can associate to �–δδδ by forming
intermolecular hydrogen bonds with the N—H bonds. As shown in the lower panel of
Figure 26.12, five Cl− ions can associate to a single �–δδδ: two Cl− ions situated
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Figure 26.12. Optimized (BP86/TZP) structures

of the �–δδδ and �–δδδ · · · 5Cl−. Upper panel:

Isolated �–δδδ viewed along the C3 (left) and C2

(right) symmetry axis. Middle panel: Schematic
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along the C3 symmetry axis (one at each triad), and three Cl− ions situated along the C2

symmetry axes (one at each dyad).

26.3.3.1. Effects of Cl− Association on VCD Spectra. Figure 26.13 shows
comparisons between the VCD spectra calculated (BP86/TZP) for �–δδδ (FM) and
�–δδδ · · · 5Cl− (MC) for the frequency intervals between 1000 and 1800 cm−1 (left
panel) and between 2800 and 3600 cm−1 (right panel). The arrows in Figure 26.13
indicate the modes of the FM and of the MCs that are similar—that is, have an overlap
of at least 0.90.

First we look at the fingerprint spectra—that is, the left panel of Figure 26.13. As
indicated on the plot, six (i.e. half) of the peaks in the VCD spectrum of the FM are
associated with the modes that are practically unaffected by the association of the Cl−

ions; that is, the overlaps between the FM and MC modes are at least 0.96. However,
it is important to note that although the FM and MC modes are very similar, we have
VCD sign discrepancies between FM and MC for four of the six peaks.

The comparisons of the VCD spectra for the frequency interval between 2800 and
3600 cm−1 (see right panel of Figure 26.13) reveals an equally interesting phenomenon.
That is, the peaks in the VCD spectrum of �–δδδ · · · 5Cl− are approximately two orders
of magnitude more intense than the peaks in the �–δδδ spectrum. Clearly, the association
of the Cl− ions affects significantly the VCD spectrum of �–δδδ.

Visualization of the displacement vectors of the normal modes exhibiting VCD
sign changes and giant enhancements has revealed that without exception these modes
are localized predominantly on the atoms that are involved in intermolecular hydrogen
bonding with the associated Cl− ions. VCD sign changes are observed in the finger-
print region for bending modes—namely, N—H wagging, twisting, and scissoring modes
(these modes are not always pure)—whereas giant enhancements are observed for N—H
stretching modes.

Clearly, this is a first indication that the induced changes are related to the charge
transfer resulting from the donor–acceptor interactions between the Cl− ions as donors
and the N—H bonds as acceptors. However, to elucidate the mechanisms inducing the
VCD sign changes and giant enhancements, in the following sections we will investigate
in detail (1) the dependence of the charge transfer on the movements of the H atoms
(involved in hydrogen bonding) during stretching and bending modes and (2) the various

Figure 26.13. Comparison of the calculated (BP86/TZP) VCD spectra of �–δδδ and �–δδδ · · · 5Cl– .

Left panel: Frequency interval between 1000 and 1800 cm−1 that is, i.e. fingerprint region. Right

panel: Frequency interval between 2800 and 3600 cm−1, that is, the CH/NH stretching region.
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contributions to the electric and magnetic dipole transition moments (DTM) of the modes
exhibiting VCD sign changes and giant enhancements.

26.3.3.2. Theory. In this section we will introduce a few theoretical concepts that
are required for understanding the VCD sign-change and giant-enhancement mechanisms.

The total electric and magnetic dipole transition moments can be decomposed into
atomic contributions [24]:

�μ(i ) =
N∑

λ=1

�μλ(i ). (26.5)

In Eq. (26.5), �μ(i ) is either �E01(i ) or Im[ �M10(i )], �μλ(i ) is the atomic contribution
to �μ(i ) due to atom λ, and N is the total number of atoms of the molecule.

The atomic contributions, �μλ(i ), can be further decomposed into nuclear (nuc) and
electronic (el) components [24]:

�μλ(i ) = �μλ,nuc(i ) + �μλ,el (i ) (26.6)

The nuclear component, �μλ,nuc(i ), is determined by the movements of the λ nucleus
during the normal mode motion, whereas the electronic component, �μλ,el (i ), should be
attributed to the electrons dragged along by the λ nucleus. It is important to note here
that under normal circumstances (e.g., in isolated molecule) �μλ,nuc(i ) and �μλ,el (i ) have
opposite signs; that is, even though the nucleus and the dragged electrons move in the
same direction, they have opposite electric charges.

Finally, we note that in the molecular complex, because of the charge transfer, the
electronic contributions, �μλ,el (i ), can be decomposed into a contribution from the dragged
electrons, �μλ,el

drag (i ), and a charge transfer contribution, �μλ,el
CT (i ):

�μλ,el (i ) = �μλ,el
drag (i ) + �μλ,el

CT (i ). (26.7)

As will be shown in Section 26.3.3.5, the sign-change and giant-enhancement mech-
anisms can be explained by determining the relative orientation of the three components
of the DTMs, that is, �μλ,nuc(i ), �μλ,el

drag (i ), and �μλ,el
CT (i ).

26.3.3.3. Charge Displacements Determined by Nuclear Motion. The asso-
ciation of the Cl− ions gives rise to donor–acceptor interactions between the 3p occupied
orbitals of the Cl− ions as donors and σ ∗ virtual orbitals of �–δδδ localized on the N—H
bonds as acceptors [8]. The amount of charge transfer and the direction of the charge flow
are determined mostly by the energy of the acceptor orbitals, which in turn is determined
by the distances between the H atoms and the Cl− ions—that is, on the normal mode.

To determine the direction of the charge flow caused by the atomic movements in
a given normal mode, one should displace the atoms along the nuclear displacement
vectors of the respective normal mode and perform a single-point calculation for the
displaced (unrelaxed) geometry. Then, the direction of the transfer of charge can be
estimated by comparing the Mulliken charges of the Cl− ions in the equilibrium and
displaced geometries.

The calculations performed for all the modes of interest have shown that irrespective
of the type of normal mode (i.e., stretching, wagging, twisting, and scissoring), charge
flows from a Cl− into a N—H bond whenever the proton of the bond moves during
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the normal mode motion closer to a Cl− ion. When the proton moves away from the
Cl− ion, the opposite happens; that is, charge flows from the N—H bond onto the Cl−

ion. However, there are two significant differences between the stretching and bending
modes. Firstly, and most importantly, in stretching modes the charge-flow and the nuclear
displacement vector of the proton have opposite directions, whereas in a bending mode
the two have the same direction. These two situations are illustrated schematically in
Figure 26.14. Secondly, because during the stretching motion the proton moves much
closer (farther away) from the Cl− ions than in the bending modes, the amount of charge
flowing in (out of) the N—H bonds is much larger (i.e. typical by a factor of 10) in the
stretching mode than in the bending modes.

26.3.3.4. General Mechanism. Using the conclusions drawn in the previous two
sections, in this section we will elucidate the general mechanism responsible for inducing
sign changes and giant enhancement of the VCD intensities.

According to the discussion in Section 26.3.3.3, in stretching modes the charge
transfer and the proton move in opposite directions (see Figure 26.14). This means that
the dragged electrons and the charge transfer move in opposite directions. As a result, the
�μλ,el

drag (i ) and �μλ,el
CT (i ) components have opposite signs. This means that in the molecular

complex, because of charge transfer, the magnitude of the total electronic contributions
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to the DTMs of the stretching modes is, in general, decreased:

| �μλ,el (i )| = | �μλ,el
drag (i )| − | �μλ,el

CT (i )|. (26.8)

Depending on the amount of charge transferred, the magnitude of the electronic
contribution �μλ,el (i ) either (a) becomes very small and therefore will be unable to coun-
teract the nuclear contribution �μλ,nuc(i ) anymore or (b) will change sign and therefore
will reinforce �μλ,nuc(i ). In both cases, charge transfer is expected to increase significantly
the magnitudes of the atomic EDTMs and MDTMs in the molecular complex compared
to the free molecule. This clearly explains the origin of the giant enhancement of the
VCD intensities observed in the stretching modes. It should also be noted that since IR
intensities are determined by the EDTMs, the giant enhancement of the intensities occurs
also in the IR spectra [8]. A quantitative estimate, which confirms that the charge transfer
effects for typical nuclear displacements in the vibration explain the magnitude of the
effects, has been made in reference 9.

Next we consider the bending modes. Because in this case the charge transfer and the
displaced proton move in the same direction (see Figure 26.14), the �μλ,el

drag (i ) and �μλ,el
CT (i )

components have the same sign. Thus, in bending modes, charge transfer is expected to
increase the magnitude of the electronic components, �μλ,el (i ):

| �μλ,el (i )| = | �μλ,el
drag (i )| + | �μλ,el

CT (i )|. (26.9)

We note that because, as discussed in Section 26.3.3.3, bending modes induce a
much smaller flow of charge compared to a stretching mode, the increase of the �μλ,el (i )
component will not eclipse the nuclear component. Therefore, the intensities of the bend-
ing modes will not exhibit the giant enhancements observed in the stretching modes.

To understand how the charge transfer affects the sign of the VCD intensities, it
is necessary to analyze the relative magnitudes of the nuclear �μλ,nuc(i ) and electronic
�μλ,el (i ) components in the FM. There are four cases (two for each type of mode):

(A) Bending Modes of the FM with | �μλ,nuc(i )| > | �μλ,el (i )|. Because charge transfer
increases the magnitudes of the | �μλ,el (i )| components, it is possible that in
the molecular complex, | �μλ,el (i )| will overcome | �μλ,nuc(i )|; that is, in MC,
| �μλ,nuc(i )| < | �μλ,el (i )|. If this happens, the total atomic EDTMs and MDTMs
will exhibit a sign change. Furthermore, because as shown in reference 8, a
charge flow along the Z axis will induce large EDTMs in the Z direction, as
well as large MDTMs in the perpendicular plane (i.e., the XY plane), the sign
change will occur for different Cartesian components of the EDTM and of the
MDTM. This means that a charge flow along the Z axis will change the sign
of the Z component of the EDTM and of the X and Y components of MDTM.
Thus, in this situation, the charge transfer will induce a sign change of the
rotational strengths.

(B) Bending Modes of the FM with | �μλ,nuc(i )| < | �μλ,el (i )|. No sign changes will
occur in this case. In the FM the directions of the total atomic DTMs are
determined by the �μλ,el (i ) components. In the MC the magnitudes of the �μλ,el (i )
components increase because of charge transfer, while the magnitudes of the
�μλ,nuc(i ) components change very little compared to their values in the FM; that
is, �μλ,nuc(i ) is mostly determined by the nuclear displacement vectors (which
are very similar in the FM and MC). The net result will be an increase of the
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VCD (also IR) intensity. However, as already mentioned, the increase of the IR
and VCD intensities is nowhere near as spectacular as in the stretching modes.

(C) Stretching Modes of the FM with | �μλ,nuc(i )| > | �μλ,el (i )|. As already discussed,
in stretching modes the magnitudes of the | �μλ,el (i )| components decrease signif-
icantly, which will result in a giant enhancement of the IR and VCD intensities.
No sign changes are expected in this situation.

(D) Stretching Modes of the FM with | �μλ,nuc(i )| < | �μλ,el (i )|. In the FM the direc-
tions of the total atomic DTMs are determined by the �μλ,el (i ) components.
However, because in stretching modes the magnitudes of the �μλ,el (i ) compo-
nents decrease significantly (or can even change sign), it is very likely that in
the molecular complex the directions of the total atomic DTMs are determined
by the �μλ,nuc(i ) components. Thus, in this case, besides a giant enhancement
we will also have a VCD sign change.

Finally, we note that the conclusions obtained so far by analyzing the electronic
and nuclear components of the DTMs of a single atom hold true also when consider-
ing the total DTMs. This is because the hydrogen atoms involved in the intermolecu-
lar bonds have atomic DTMs that, on one hand, are very similar—a consequence of
symmetry—and, on the other hand, are much larger than the atomic DTMs of the rest of
the atoms; that is, in the modes of interest the H atoms in the intermolecular bonds move
during the normal mode motion with much larger amplitude than the rest of the atoms.

26.3.3.5. Validation. In this section we will validate the two mechanisms intro-
duced in the previous section by comparing the electronic and nuclear contributions of
the total EDTM and MDTM in the FM and in the MC for two suggestive normal modes:
(a) a bending mode whose VCD intensity was affected by the sign-change mechanism
and (b) a stretching mode whose VCD intensity was affected by the giant-enhancement
mechanism.

For clarity, the total DTMs will be decomposed in three contributions: (1) one from
all H atoms involved in intermolecular bonds (i.e., the axial and equatorial H atoms),
(2) one from all N atoms, and (3) one from the remaining atoms. Furthermore, when
comparing values taken by various physical quantities in FM and MC, we will omit the
units for convenience (the units can be found in the tables showing the respective data).

The Sign-Change Mechanism. To illustrate the sign-change mechanism, we have
chosen as an example the modes 60 of λ–δδδ and 75 of λ–δδδ · · · 5Cl−. The two modes
have A2 symmetry and are depicted in Figure 26.15. As can be seen, the two modes
are very similar and can be characterized as N—H waggings (though the axial H atoms
move with much larger amplitudes than the equatorial H atoms).

The frequencies, dipole, and rotational strengths and the various contributions to the
DTMs of these two modes are compared in Table 26.6. As can be seen, the association
of the Cl− ions has induced (1) a shift in the mode frequency from 1203.8 in FM to
1246.5 in MC, (2) an increase in the dipole strength (D) from 76.9 in FM to 123.9 in
MC, (3) a VCD sign change from +194.4 in FM to −170.9 in MC, and (4) a very large
variation of the angle ξ —that is, from 1.2◦ in FM to 179.1◦ in MC (�ξ = −177.9◦

).
Only the nuclear displacement vectors have been left unaffected by the association of
the Cl− ions; that is, two modes have an overlap of 0.98.

To understand these changes, we look at the electric and nuclear components of
the DTMs of these two modes. We note that since the modes have A2 symmetry, only
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TABLE 26.6. Sign-Change Mechanism Illustrated Using the Mode 60 of �–δδδ (FM) and
Mode 75 of �–δδδ · · · Cl5(MC)a

A Symmetry Overlap: 0.98 �ξ = −177.9◦

Molecule NM. Frequency D R ξ

FM: 60 1203.8 76.9 +194.4 1.2◦

MC: 75 1246.5 123.9 −170.9 179.1◦

( �E01)z ( �M01)z

FM nuc el nuc+el nuc el nuc + el

Hs in N–H: +343.7 −277.4 +66.3 +526.6 −371.6 +155.0
All Ns: −471.7 +482.0 +10.4 −178.1 +221.4 +43.3
REST: +464.6 −453.6 +11.0 −98.4 +121.7 +23.4

TOTAL: +336.7 −249.0 +87.7 +250.1 −-28.5 +221.6

( �E01)z ( �M01)z

MC nuc el nuc + el nuc el nuc+el

Hs in N–H: +539.2 −675.2 −136.0 +469.4 −357.5 +111.9
All Ns: −366.8 +382.3 +15.5 −176.3 +201.0 +24.7
REST: +324.4 −315.2 +9.3 −104.6 +121.4 +16.9

TOTAL: +496.8 −608.1 −111.3 +188.6 −35.1 +153.5

a Comparisons of the frequencies (Frequency), dipole (D) and rotational (R) strengths, angles ξ and Z Cartesian
components of the electric ( �E01) and magnetic (Im[ �M01]) dipole transition moments. Units: Frequency (cm−1),
D (10−40esu2 · cm2), R (10−44esu2 · cm2), �E01(10−21esu · cm), Im[ �M01](10−25esu · cm).
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the Z Cartesian components should be considered (the other two components are zero
by symmetry). It is also important to note that, as mentioned in Section 26.3.3.4, the
contributions to the total DTMs from the H atoms involved in intermolecular bonds are
much larger than the contributions from the rest of the atoms (compare the numbers in
the “nuc+el” columns in Table 26.6 for FM and MC).

A comparison of the nuclear (nuc) and electronic (el) contributions to the total
EDTMs shows that in the FM molecule the nuclear component is larger than the electronic
one (+336.7 versus −249.0), whereas in the MC the reverse happens; that is, the nuclear
contribution is smaller than the electronic one (+496.8 versus −608.1). Consequently,
the total EDTM has changed sign when going from λ–δδδ to λ–δδδ · · · 5Cl− (+87.7
versus −111.3).

The increase in magnitude of the electronic component of the EDTM in the MC
is brought about by the contribution from the H atoms involved in the intermolecular
bonds—that is, the “Hs in N–H” contribution in Table 26.6. In fact, the phenomenon
can be traced to the atomic EDTMs of the axial H atoms which exhibit exactly the same
behavior; that is, in FM the nuclear contributions to the Z Cartesian component of the
atomic EDTM of an axial H atom is larger than the electronic one, whereas in the MC
the opposite happens.

We continue by investigating the components of the MDTMs. As can be seen, the
Z Cartesian component of total MDTM does not change sign in MC with respect to the
FM (+221.6 versus +153.5). The nuclear components of the total MDTMs are larger
than the electronic ones in both FM and MC. Since the EDTM does change sign, this
clearly explains the observed VCD sign change.

The observed VCD sign change in mode 75 of MC with respect to mode 60 of FM
was caused by the mechanism described in Section 26.3.3.4 in case A. We note that
because in the two modes the displacement vectors of the axial hydrogens are much
larger than those of the equatorial hydrogens (see Figure 26.15), the transfer of charge
induced during the normal mode motion happens mostly along the C3 —that is, the Z
axis. As explained in Section 26.3.3.4 (see case A), this will change the sign of the Z
component of the EDTM (as seen) and of the X and Y components of MDTM. This is
why the Z Cartesian component of the MDTM did not change sign.

As mentioned, the sign-change (also giant-enhancement) mechanism can be traced
back to the atomic contributions. Thus, even though symmetry dictates that the X and Y
components of the total MDTMs of the two modes considered here are zero, one can still
verify that the transfer of charge induces a sign change in the MDTMs—that is, by look-
ing at the atomic MDTMs of the axial H atoms (which are not zero). As an example we
will consider the Y Cartesian component of the MDTM of one of the axial H atoms. In the
FM the nuclear and electronic contributions to the Y Cartesian component of the atomic
MDTM of an axial hydrogen are +20.9 and—13.5, respectively, whereas in the MC
the two components are +37.6 and—62.43, respectively. Thus, in the FM, the nuclear
component is larger than the electronic one, whereas in the MC we have the opposite
situation. Clearly, the Y Cartesian component of the atomic MDTM of an axial H28 atom
has changed sign in MC compared to FM. It should also be noted here that the symmetry
requirements (i.e., that the total DTMs have zero X and Y Cartesian components) are
fulfilled even though the X and Y Cartesian components of the atomic DTMs are not
zero—that is, via cancellation among the atomic DTMs of the symmetry-related atoms.

Finally, we note that the mode 60 of the FM is a robust mode. However, as shown
here, this is not enough to preserve its VCD sign. Clearly, charge transfer is a very strong
perturbation that can easily change the VCD sign of robust modes.
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The Giant-Enhancement Mechanism. The IR/VCD giant-enhancement mechanism
has been discussed in detail in reference 8. As an example, here we have considered
the modes 107 of �–δδδ and 124 of �–δδδ · · · 5Cl−. The two modes are depicted in
Figure 26.16. As can be seen, the modes have E symmetry and consist of stretchings of
the N–H axial and equatorial bonds. The frequencies, dipole and rotational strengths and
the various contributions to the DTMs of these two modes are compared in Table 26.7.
For brevity, only the Y Cartesian components of the electronic and nuclear components
of the DTMs are shown in Table 26.7. We note that because the considered modes have
E symmetry, the Z Cartesian components are zero, whereas the X and Y Cartesian
components behave very similarly.

As can be seen in Table 26.7, the association of the Cl− ions has induced a giant
enhancement of both IR (18.9 in FM versus 1157.8 in MC) and VCD (−69.0 in FM versus
−2062.1 in MC) intensities. On the other hand, the angles ξ and nuclear displacement
vectors have been affected only slightly; that is, the FM and MC modes have an overlap
of 0.93 while �ξ is 13.4◦.

This giant enhancement of the intensities is brought about by the mechanism
described in Section 26.3.3.4 in case C. Looking in Table 26.7 at the contributions from
the axial and equatorial atoms (i.e., “Hs in N–H” rows in Table 26.7), we see that in
the FM the nuclear and electronic contributions of both DTMs counteract each other
as they have opposite signs (EDTM: −384.5 versus +339.3; MDTM: +518.7 versus
−402.5). In the MC, however, the electronic component of the EDTMs of the hydrogens

TABLE 26.7. Giant-Enhancement Mechanism Illustrated Using the Mode 107 of �–δδδ (FM)
and Mode 124 of �–δδδ · · · Cl5 (MC)a

E symmetry Overlap: 0.93 �ξ = −13.4◦

Molecule NM. Frequency D R ξ

FM: 107 3388.8 18.9 −69.0 165.5◦

MC: 124 3094.9 1157.8 −2062.1 178.9 ◦

( �E01)y ( �M01)y

FM nuc el nuc+el nuc el nuc+el

Hs in N-H: −384.5 +339.3 −45.2 +518.7 −402.5 +116.2
All Ns: +194.5 −192.3 +2.2 −263.1 +301.3 +38.1
REST: −6.0 +5.8 −0.2 +7.1 −7.0 +0.0

TOTAL: −196.0 +152.8 −43.2 +262.7 −108.3 +154.4

( �E01)y ( �M01)y

MC nuc el nuc + el nuc el nuc+el

Hs in N–H: −378.7 +55.5 −323.2 +315.1 +244.6 +559.7
All Ns: +202.2 −219.6 −17.4 −177.7 +227.0 +49.2
REST: −17.8 +18.2 +0.4 +23.6 −26.6 −3.0

TOTAL: −194.2 −145.9 −340.1 +161.0 +445.0 +606.0

a Comparisons of the frequencies (Frequency), dipole (D) and rotational (R) strengths, angles ξ , and X and Y
Cartesian components of the electric ( �E01) and magnetic (Im[ �M01]) dipole transition moments. Units: Frequency
(cm−1), D(10−40esu2 · cm2), R(10−44esu2 · cm2), �E01(10−21esu · cm), Im[ �M01](10−25esu · cm).
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becomes much smaller (as expected), resulting in a much stronger dominance of the
nuclear contributions (−378.7 versus +55.5). For the MDTM the electronic component
reverses sign, thus reinforcing the nuclear component (+315.1 versus +244.6). Since the
contributions from the rest of the atoms are rather small (see Table 26.7), the net effect
is a large increase in magnitude for both EDTM and MDTM in the MC with respect
to the FM (e.g., EDTM: −43.2 in FM versus −340.1 in MC; MDTM: +154.4 in FM
versus +606.0 in MC). This, in turn, results in a huge enhancement of the IR and VCD
intensities in the MC with respect to the FM (see Table 26.7). As in the case of the
sign-change mechanism, the phenomenon can be traced back to the atomic DTMs [8].

26.3.3.6. Comparison with Experiment. In this section we will compare the
calculated (BP86/TZP) VCD spectrum calculated for �–δδδ · · · 5Cl− to an experimental
spectrum measured in solution with 10-fold excess Cl− ions (see Figure 26.17). The cal-
culated spectra have been obtained by broadening the calculated rotational strengths with
Lorentzian bands with half-widths of 8 cm−1 (for the fingerprint modes) and 15 cm−1

(for the stretching modes). The experimental spectra are not real experimental spectra;
that is, they have been obtained by broadening the experimental intensities reported by
Nafie et. al [23] with Lorentzian bands with half-widths of 8 cm−1 (for the fingerprint
modes) and 15 cm−1 (for the stretching modes). The calculated normal mode frequen-
cies have not been scaled. As can be seen in Figure 26.17, the calculated VCD spectrum
reproduces very well the “experimental” spectra. Almost all bands in the experimental
spectra can be unambiguously assigned. The calculated normal mode frequencies are
also very good—there is no need to scale the frequency. This validates further the VCD
sign-change and giant-enhancement mechanisms introduced in Section 26.3.3.4.

26.3.4. Transfer of Chirality

The transfer of chirality phenomenon occurs when an achiral molecule, which normally
is optically inactive, becomes optically active upon interacting with a chiral molecule.
The phenomenon is most often encountered when considering the interaction between
a chiral solute molecule and an achiral solvent molecule—for example, solute–solvent
molecular complex formation (via intermolecular hydrogen bonding).

The number of studies investigating the chirality transfer phenomenon using VCD
spectroscopy has increased very rapidly in recent years [9, 19, 20, 25–27].



COMPLEXATION, SOLVATION, AND CHIRALITY TRANSFER IN VIBRATIONAL CIRCULAR DICHROISM 777

1150120012501300135014001450

Frequency (1/cm)

–100

0

100

Exp.

Calc.

10
3 –

Δε
[L

/(
m

ol
-c

m
)]

 
10

3 –
Δε

[L
/(

m
ol

-c
m

)]
 

2900300031003200

Frequency (1/cm)

–10

0

10

20

Calc.

Exp.

Figure 26.17. Comparison between the

experimental and calculated VCD spectra of

[Co(en)3]3+. The computed spectrum was

obtained from BP86/TZP calculations for

�–δδδ · · · 5Cl−. The‘‘experimental’’ spectrum

was obtained by Lorentzian broadening of the

experimental VCD intensities reported by Nafie

and co-workers [23]. The experiments in

reference 23 were performed in solution with

10-fold excess Cl− ions.

From a physical point of view, the chirality transfer phenomenon is just another
consequence of the mode mixing and charge transfer perturbations induced by molecular
complex formation—that is, the cases discussed in Sections 26.3.2 and 26.3.3.

Due to symmetry constraints, the ETDM and MTDM associated to the fundamental
transitions of all normal modes are perpendicular in isolated achiral molecules. As a
result, the rotational strengths (i.e., the inner product between the ETDM and MTDM
vectors) of all normal modes of an isolated achiral molecules are zero. That is, the achiral
molecules are optically inactive. However, when involved in a molecular complex with
a chiral solute molecule, the achiral solvent molecule can become optically active. This
is because its EDTMs and MDTMs are affected by the mode mixing and charge transfer
perturbations discussed in Sections 26.3.2 and 26.3.3, respectively, and as a result are no
longer perpendicular.

To substantiate the above discussion, in the following we will compare (see
Table 26.8) the C–D stretching mode of the isolated CDCl3 molecule (FM) and of
the CDCl3 associated to a Pulegone molecule (MC)—that is, the molecular complex
studied in Section 26.2.5.1. As can be seen, the C–D stretching is minimally affected by
the molecular complex formations; that is, we have an overlap of 0.99 between the FM
and MC modes and the two modes also have a very similar frequencies. Furthermore,
as expected, the EDTM and MDTM of the FM are perpendicular (i.e., ξ = 90.0◦),
whereas in the MC the two vectors are no longer perpendicular (i.e., ξ = 91.8◦). It is
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TABLE 26.8. Transfer of Chirality in the 1:1 Pulegone–CDCl3 Molecular Complexa

Overlap: 0.99 �ξ = −1.9◦

C–D Stretching Frequency R ξ

FM 2309.0 0.0 90.0◦

MC 2308.2 −1.2 91.9◦

�E01

Molecule x y z | �E01|
FM −1.01 +0.2 0.0 1.1
MC +59.5 −4.6 −3.5 59.8

�M01

Molecule x y z | �M01|
FM −0.1 −0.4 −1.2 1.2
MC +2.8 +18.1 +57.5 60.3

a Comparison of the Frequencies (Freq.), Rotational Strengths (R), angles ξ , Cartesian components of the
total electric (EDTM), and magnetic (MDTM) transition dipole moments of the C–D stretching mode in the
free CDCl3 (FM) and in the 1:1 Pulegone–CDCl3 molecular complex (MC). Units: Frequency (cm−1), D
(10−40esu2 · cm2), R (10−44esu2 · cm2).

also important to note that the magnitudes of the EDTM and MDTM have increased
significantly (i.e., almost a factor of 60), in the MC compared to the FM. As shown in
reference 7, the perturbation responsible for the enhancement of the EDTM and MDTM
of this mode, and therefore also for chirality transfer, is the charge transfer mechanism
discussed in Section 26.3.3.3. Finally, we note that Bultinck et al. were indeed able to
measure a weak VCD signal for the C–D stretching mode of the CDCl3 [26].

Regarding the robustness of the C–D stretching mode of the CDCl3, it should be
clear that this mode is nonrobust: Not only its ξ angle is very close to 90.0◦, but also its
magnitude is very small. We note that this is in complete agreement with the conclusion
obtained in reference [9] when studying the chirality transfer observed in the VCD
spectra of the BBA–NH3, water–methyl lactate, and water–d-lactic acid complexes. We
can therefore conclude that since chirality transfer does not seem to lead to robust modes,
its ability in providing useful information regarding the relative orientations of the solute
and solvent molecule is very limited.

26.4. CONCLUSIONS

In this section, we will sum up the discussions presented in this chapter by giving a few
general guidelines for interpreting the similarities/discrepancies between calculated and
experimental VCD spectra.

First, according to the discussion in Section 26.2 and also in the Sections 26.3.1 and
26.3.3, it should be clear that the concept of robustness introduced in Section 26.2.4 is
a very useful tool for (1) evaluating the reliability of VCD predictions and (2) assess-
ing the significance of the similarities/discrepancies observed between experimental and
calculated VCD spectra.



COMPLEXATION, SOLVATION, AND CHIRALITY TRANSFER IN VIBRATIONAL CIRCULAR DICHROISM 779

As the studies of the VCD spectra of Pulegone and binaphthol (measured in CH2Cl2
solvent) have shown, the absolute configuration (AC) of the solute can be determined
accurately from calculations performed for single isolated solute molecules if the experi-
mental VCD spectra have been measured in nonpolar solvents. That is, both the computed
VCD spectra and the results of robust-mode analyses can be trusted in this situation. If,
however, the VCD experiments have been performed in polar solvents and intermolecu-
lar hydrogen bonding (between solute and solvent molecules) exists in the experimental
sample, the agreement between computed VCD spectra (obtained from calculations per-
formed for single isolated solute molecules) and experiments can often be suboptimal.
Moreover, since solute–solvent molecular complex formation can easily mix the solute
modes (see Section 26.3.3.2) or trigger the VCD sign-change mechanism (see Section
26.3.3.3), VCD sign discrepancies between calculations and experiment can be expected
even for peaks associated to modes assigned as robust in the VCD spectrum computed
for the isolated solute molecule. Therefore, when intermolecular hydrogen bonding exists
in the experimental sample, it is desirable to determine the AC of the solute by compar-
ing the experiment VCD spectrum to computed spectra obtained from VCD calculations
for the MC. As in the case of spectra computed for the FM, the reliability of the VCD
prediction can be determined by performing a robust modes analysis for the spectrum
calculated for the MC.

Second, it is important to realize that because the donor–acceptor interactions trigger-
ing the VCD sign-change and giant-enhancement mechanisms are typical interactions that
are commonly encountered in both organic and inorganic compounds, these two mech-
anisms are very general and should affect the VCD intensities whenever intermolecular
hydrogen bonding is present in the experimental sample. In fact, the sign-change and
giant-enhancement mechanisms affect also the ROA spectra.

Third, since, as shown in Section 26.3.3, upon molecular complex formation, VCD
sign changes can easily be induced even in robust modes, it is very important to determine
whether or not molecular complex formation occurs in the experimental sample. This
information can easily be obtained by performing an IR measurement in the C—H/N—
H/O—H stretching region. In IR spectroscopy, the giant enhancement of the intensities
of stretching modes also accompanied by large frequency shifts is a well-documented
phenomenon that has been associated with the presence of hydrogen bonding in the
experimental sample for a long time now [28].

Fourth, if intermolecular bonds between solute and solvent molecules are formed
in the experimental sample, then by performing a normal modes analysis by mapping
the calculated modes of the free molecule and of the molecular complex, one can get
very good estimations (1) on how large are the effects induced in the VCD spectra by
complexation and (2) regarding the frequency intervals where the VCD spectra are most
affected by complexation. As shown in Section 26.3.3.5, additional information regarding
possible VCD sign discrepancies between calculations and experiment can be obtained
by analyzing the relative magnitudes of the nuclear and electronic components to the
DTMs of normal modes of the FM.

Finally, the VCD sign-change and giant-enhancement mechanisms discussed in
Section 26.3.3 should provide much more reliable information regarding the actual sites
involved in the intermolecular complex and the bonding mechanism of complexation
between solute and solvent molecules than the chirality transfer mechanism discussed in
Section 26.3.4. As shown in Section 26.3.3, the VCD sign-change and giant-enhancement
mechanisms induced changes in the VCD spectra that are (a) comparable to or larger
than the typical VCD signals in the fingerprint region and (b) at least an order of
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magnitude larger than the typical VCD signals in the N—H/O—H stretching region. Fur-
thermore, the analysis of the VCD spectra in the frequency intervals below 1800 cm−1

and above 3000 cm−1 could in principle provide complementary information about the
solute–solvent interactions. On the other hand, the VCD signals associated with chirality
transfer are typically very weak—that is, approximately one order of magnitude smaller
than the average VCD signals of a chiral molecule. Moreover, as discussed in Section
26.3.4, these signals are almost always associated with nonrobust modes.

26.5. ACKNOWLEDGMENT

EJB acknowledges support from the Korea Science and Engineering Foundation through
the WCU program, grant no. R32-2008-000-10180-0.

REFERENCES

1. V. P. Nicu, J. Neugebauer, S. K. Wolff, E. J. Baerends, Theor. Chem. Account . 2008, 119 ,
245–263.

2. G. T. Velde, F. M. Bickelhaupt, E. J. Baerends, C. F. Guerra, S. J. A. Van Gisbergen, J. G.
Snijders, T. Ziegler, J. Comp. Chem . 2001, 22 , 931–967.

3. C. Fonseca Guerra, J. G. Snijders, G. Te Velde, E. J. Baerends, Theor. Chem. Account . 1998,
99 , 391–403.

4. Amsterdam Density Functional Program. Theoretical Chemistry. Vrije Universiteit, Amster-
dam, http://www.scm.com.

5. V. P. Nicu, E. J. Baerends, PCCP 2009, 11 , 6107–6118.

6. W. Hug, M Fredorovsky, Theor. Chem. Account . 2008, 119 , 113–131.

7. V. P. Nicu, E. Debie, W. Herrebout, B. Van der Veken, P. Bultinck, E. J. Baerends, Chirality
2010, 21 , E287–E297.

8. V. P. Nicu, J. Autschbach, E. J. Baerends, PCCP 2009, 11 , 1526–1538.

9. V. P. Nicu, J. Neugebauer, E. J. Baerends, J. Phys. Chem. A 2008, 112 , 6978–6991.

10. A. Aamouche, F. J. Devlin, P. J. Stephens, JACS 2000, 112 , 2346–2354.

11. F. J. Devlin, P. J. Stephens, J. R. Cheeseman, M. J. Frisch, J. Phys. Chem. A 1997, 101 ,
9912–9924.

12. A. Urakawa, D. M. Meier, H. Rugger, A. Baiker, J. Phys. Chem. A 2008, 112 , 7250–7255.

13. F. Wang, P. L. Polavarapu, J. Phys. Chem. A 2000, 104 , 1822–1826.

14. T. Burgi, A. Vargas, A. Baiker, J. Chem. Soc.,Perkin Trans. 2 2002, 1596–1601.

15. T. B. Freedman, X. Cao, R. K. Dukor, L. A. Nafie, Chirality 2003, 15 , 734–758.

16. V. W. Jurgensen, K. Jalkanen, Phys. Biol . 2006, 3 , S63–S79.

17. T. B. Freedman, X. L. Cao, L. M. Phillips, P. T. W. Cheng, R. Dalterio, Y. Z. Shu, H. Zhang,
N. Zhao, R. B. Shukla, A. Tymiak, S. K. Gozo, L. A. Nafie, J. Z. Gougoutas, Chirality 2006,
18 , 746–753.

18. T. Kuppens, W. Herrebout, B. Van der Veken, P. Bultinck, J. Phys. Chem. A 2006, 110 ,
10191–10200.

19. M. Losada, Y. J. Xu, PCCP 2007, 9 , 3127–3135.

20. M. Losada, H. Tran, Y. J. Xua, J. Chem. Phys . 2008, 128 , 014508.

21. P. Polavarapu. N. Jeirath, S. Walia, J. Phys. Chem. A 2009, 113 , 5423–5431.

22. E. J. Corey, J. C. Bailar, JACS 1959, 81 , 2620–2629.



COMPLEXATION, SOLVATION, AND CHIRALITY TRANSFER IN VIBRATIONAL CIRCULAR DICHROISM 781

23. T. B. Freedman, X. L. Cao, D. A. Young, L. A. Nafie, J. Phys. Chem. A 2002, 106 , 3560–3565.

24. P. J. Stephens, J. Phys. Chem . 1985, 89 , 748–752.

25. E. Debie, L. Jaspers, P. Bultinck, W. Herrebout, B. Van der Veken, Chem. Phys. Lett . 2008,
450 , 426–430.

26. E. Debie, P. Bultinck, W. Herrebout, B. Van der Veken, PCCP 2008, 10 , 3498–3508.

27. G. C. Yang, Y. J. Xua, J. Chem. Phys . 2009, 130 , 164–506.

28. G. C. Pimetel, A. L. McClellan, The Hydrogen Bond , W. H. Freeman and Company, San
Francisco, 1960.



INDEX

ab initio model, 558–560
absorbance flattening, 514
adiabatic approximation, of TDDFT, 601
alleno-acetylenic macrocycle treatment, 652–655
angular momentum operator, 14
anisotropy of circular dichroism (ACD), 527
apparent surface charges (ASC), 730
Apple-II undulators, 464
atomic axial tensor, 710
atomic polar tensor, 704, 709

Baranova model, 434, 436, 438
Barnett effect, 453
Beer–Lambert law, 42, 43, 71, 512, 514
biaxial crystals and bigyrotropy, 461–462
binaphthol molecule, 761, 764
BioCARS, 360–361
biological homochirality, 9
Biot, Jean-Baptiste, 3
Boltzmann averaging technique, 687, 689–690
Born–Oppenheimer approximation, 709, 737

camphor dimers, 427–428
carbon 1s core electron PECD

carvone, 420–423
fenchone, 418–420

carvone, 420–423
cavity ring-down polarimetry (CRDP), 292–293, 293, 295, 298,

687
cavity ring-down spectroscopy (CRDS), 293
cell pathlength calibration, 56
charge-coupled device (CCD) detectors, 166
cholesteric liquid crystals (ChLC), 449
circular birefringence (CB), 93, 101, 331, 339
circular dichrographs, 7
circular dichroism (CD), 7, 8, 21–24, 339. See also electronic

transitions, circular dichroism measurement of; See also
individual entries

assessing contribution of macroscopic anisotropies to spectra,
102–103

cast film, of bovine serum albumin, 104, 106
diffuse reflectance (DRCD), 107–110

Comprehensive Chiroptical Spectroscopy, Volume 1: Instrumentation, Methodologies, and Theoretical
Simulations, First Edition. Edited by N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

electronic, and circularly polarized luminescence, 223–224
dynamic coupling, 226–228
low-temperature measurements, 230–232
multiplet structures in Yb3+ complexes, 229–230
static coupling, 224–226
total and relative intensity of chiroptical properties,

228–229
and extinction, 335–336
measurement, 127–129
multichannel (MC) method, 110
PEM-based picosecond, and MCD, 198
of samples oriented by photoselection, 190
true measurement method, 99–100
true spectra of achiral films, 101–102
ultrafast ellipsometric, 199

circular differential Raman scattering, 8
circular intensity differential (CID), 462
circularly polarized light. See circularly polarized luminescence
circularly polarized luminescence (CPL), 10, 80, 337, 409, 440

as chiral structural probe, 81–83
and electronic circular dichroism, 223–224

dynamic coupling, 226–228
low-temperature measurements, 230–232
multiplet structures in Yb3+ complexes, 229–230
static coupling, 224–226
total and relative intensity of chiroptical properties,

228–229
from Ln(III) complexes with chiral ligands, 85–86
luminescence selectivity, 81
measurement, 71–75

artifacts in, 79–80
as probe of specific molecular chirality, 84–85
from racemic mixtures, 83–84
spectroscopy, 66–69
standards for, 77–79

circular polarization modulation and analysis, 167
exciting light, 167
scattered light, 168

circular polarization scrambling, 170–171
combination with linear polarization scrambling, 171–173

classical polarizability theory. See DeVoe theory
Clough, Lutz, and Jirgensons (CLJ) effect, 619–620



784 INDEX

coherent anti-Stokes Raman scattering (CARS), 359, 360
collinear scattering, 150, 158–159

fiber optics, 159
sample cells and sample size, 160–163
scattering zone and light collection, 159–160

complex gyration tensor, 459–461
complex polarization propagator (CPP), 485
configuration interaction (CI), 5, 8, 678–679
configuration interaction singles sum-over-states (CIS-SOS),

364–365
conformationally flexible systems, 661–668, 687
continuum multiple-scattering (CMS-Xα) method, 420
COSMO (COnductorlike Screening MOdel) method, 731, 736,

739
Couette flow cells, 496, 509, 512, 516
coupled cluster linear response theory, 682–684
coupled cluster theory

history, 677
fundamentals, 677–681

cross-polarization detection (CPD) technique, 209–210
crystal field splitting (CFS), 222
crystals, chiroptical imaging of, 325–327

artifacts, 340–342
circular dichroism and extinction, 335–336
complete versus incomplete polarimeters, 327–330
differential polarization imaging, 327
Mueller matrix microscopy, 337–340
nanoscale, 337
optical rotation, 331–334
outlook, 342–343

Curie symmetry, 458
cyclophane derivatives, theoretical treatment, 668–670
cytoskeletal proteins, linear dichroism of, 501–502
Czerny–Turner monochromator, 46

damping, 13
Davidson diagonalization techniques, 713
decadic absorbance, 39
degree of chiral excess (DCE), 377, 379, 393, 395, 397,

398
density functional theory (DFT), 6, 298, 365, 647–650, 711
density operator, 13
DeVoe theory, 554–558

calculations employing, 585–590
dielectric constant, 10
difference frequency generation, 25
differential intensity measurement method, 208
differential photon counter (DPC), 73–75
differential polarization imaging, 327
diffraction anomalous near-edge structure (DANES), 475, 476
diffuse reflectance CD (DRCD)

first CD measurement of 1:1 BQ–PYR complex,
108–110

specular component, 107–108
dipole length formula, 544, 548, 550, 644
dipole strength, 7
dipole velocity form, 548, 550, 644

Tinoco equation derivation in, 569–576
Dirac, P. A. M., 4

discrete reaction field (DRF), 736
DNA, linear dichroism of, 496–498
DNA-bound ligands, linear dichroism of, 498–501
dual circular polarization (DCP), 149
dual lens light collection, 168–169

and sample considerations, 157–158
dynamic coupling, 226–228

Einstein, Albert, 4
Einstein–deHaas effect, 453
electric dipole

interactions, 16
operator, 15

electric field–electric dipole interaction, 15
electric field gradient–electric quadrupole interaction, 15
electric-field-induced sum-frequency generation, 356–357
electric polarizability tensor, 10
electric quadrupole, 15, 24
electromagnet-permanent magnet hybrid undulator (EMPHU),

464
electron configuration, 5
electronic circular dichroism (ECD). See also independent

systems theory, for electronic circular dichroism
prediction; theoretical electronic circular dichroism
spectroscopy

and circularly polarized luminescence, 223–224
metal complexes and metal clusters, 620–621

representative examples and benchmark computations,
621–629

spectral assignments and analyses, 629–635
and ORD calculations

exact wavefunctions and sum-over-states equations,
594–596

general computational considerations, 606–608
lineshapes, ORD patterns Kramers–Kronig transforms,

605–606
origin dependence and GIAOs, 604–605
response methods in approximate wavefunction theories

and TDDFT, 597–600
TDDFT and molecular orbital linear response theory for

electronic chiroptical properties, 600–604
and ORD calculations, for organic molecules, 608–609

chiral sectors in molecules from ab initio perspective,
618–620

ECD spectra, 609–611
molecular vibrational effects, 616–618
optical rotatory dispersion, 613–615
single-wavelength optical rotation calculations, 611–613

solvation effects on natural optical rotation and, 732–733
general aspects, 733–734
optical activity of metal complexes, 736
optical activity of organic molecules, 735–736
optical activity of peptides and amino acids, 734–735
optical rotation, 732

electronics and computer systems
alternate approach to CD signal extraction, 52
circular dichroism measurement, 51
optical beam power conversion to voltage, 50–51
spectrometer computer systems, 52–53



INDEX 785

electronic transitions, circular dichroism measurement of, 37
absorbance, 38–40
conceptual CD spectrometer components, 44

classes based on photoelastic modulators, 44–49
photoelastic modulator operation, 49–50

electronics and computer systems
alternate approach to CD signal extraction, 52
circular dichroism measurement, 51
optical beam power conversion to voltage, 50–51
spectrometer computer systems, 52–53

ellipticity, 41–42
intrinsic absorption and, 42–43

CD-absorbance anisotropy ratio and multicomponent
spectra, 43

measurement, 40–41, 51
operations

performance and potential artifacts, 57–61
spectrometer calibrations, 55–56

optical components selection, 54–55
simultaneous measurement of absorption, 53–54

electro-optical absorption (EOA) spectroscopy, 525
discussion, 536–537
experimental

spectrometer and measurements, 530–531
UV-vis and EOA spectra, 531–534

quantitative analysis, 534–536
working equations for polarized spectroscopy and, 527–530

ellipticity, 41–42
emission-detected circular dichroism (EDCD), 66

example applications, 86–87
measurement, 75–77

artifacts in, 80
spectroscopy, 69–71

endo-borneol, 426–427
energy derivative theory

and perturbation-dependent basis sets (PDBS), 701–708
entrance speed optimization for interfacing, and ROA, 154
epichlorohydrin, 256–265
equation-of-motion coupled cluster, 684–685
etendue calculation, 153–154
Eulerian absorbance, 39, 40
European Synchrotron Radiation Facility (ESRF), 458, 459,

464
exciton chirality method, 525, 531
exciton coupling in merocyanine-dimer aggregate, 655–659
exciton model, 7, 8
extended X-ray absorption fine structure (EXAFS), 483

Faraday, Michael, 4
Faraday effect, 26, 433
femtosecond infrared circular dichroism and optical rotatory

dispersion, 203–204
active-and self-heterodyne detections of IR optical activity,

214–216
differential intensity measurement method, 208
experimental demonstration, 216–218
phase-and-amplitude measurement of IR optical activity,

208–209
cross-polarization detection (CPD) technique, 209–210

Fourier-Transform spectral interferometry of IOA FID,
212–214

time-domain IR optical activity free induction decay,
211–212

time correlation function theory, 205–208
fenchone, 418–420
Fermi Golden Rule, 66, 67
ferromagnetism, 29
Field Programmable Gate Array (FPGA) design, 74–75
fixed-angle-resolved electron detection, 413–415
fluorescence-detected circular dichroism (FDCD), 66
Fourier-Transform spectral interferometry of IOA FID,

212–214
Fourier Transform vibrational circular birefringence (FT-VCB)

measurement, 131–133
Fourier Transform vibrational circular dichroism (FT-VCD),

121–123, 131
advanced methods for measurement, 134

dual polarization modulation FT-VCD, 135–138
dual source FT-VCD, 138–139
rotating achromatic half-wave plate, 139–141
rotating sample cell, 141

measurement, 131–133
four-wave mixing, 25
Fresnel, Augustin, 3

gauge-including atomic orbitals’ (GIAOs), 604–605, 685. See
also London atomic orbitals (LAOs)

giant-enhancement mechanism, 772, 774, 775–776, 779
glycidol, 423–426
gyrotropsy tensor, 459

half-waveplate (HWP), 125, 170
rotating achromatic, 139–141

harmonic perturbation, 11
Hartree–Fock method, 6
Hartree–Fock theory, 645–646
helical undulators (HU), 464
Helios-II undulators, 464
Hellmann–Feynman theorem, 702
high-accuracy quantum chemistry, 675–676

coupled cluster theory
fundamentals, 677–681
history, 677

future directions, 691–692
performance, 686–690
response theory for chiroptical properties, 681–682

coupled cluster linear response theory, 682–684
equation-of-motion coupled cluster, 684–685
origin invariance, 685–686

High-accuracy universal polarimeter (HAUP), 328, 331
Hohenberg–Kohn theorem, 647
Hückel one-electron theory, 6
Hund’s paradox, 8
Huygens, Christiaan, 3
hybridization, 6

image distortion, and ROA, 154–156
incident circular polarization (ICP), 149, 152



786 INDEX

incident circular polarization Raman optical activity
(ICP-ROA), 737

indefinite integrations, 12
independent systems theory, for electronic circular dichroism

prediction, 543
applications, 558–560
DeVoe theory, 554–558
matrix method, 549–554
software, 560–561
Tinoco theory, 544–549

index of refraction, 10
induced electric polarization, 16–17
induced emission, 4–5
infrared electronic circular dichroism (IR-ECD), 115
infrared vibrational optical activity

advanced methods for FT-VCD measurement, 134
dual polarization modulation FT-VCD, 135–138
dual source FT-VCD, 138–139
rotating achromatic half-wave plate, 139–141
rotating sample cell, 141

circular dichroism measurement, 127–129
forms of, 116–120
Fourier Transform instrumentation

dispersive and Fourier Transform VCD, 134
FT-VCD and FT-VCB measurement, 131–133
general principles, 130–131
infrared VOA and VA spectra of alpha pinene, 133

overview of, 120–123
sampling methods for

dispersed solids, 142–143
films, 143–144

Stokes vectors and Mueller matrices, 123–127
vibrational circular birefringence (VCB) measurement,

129–130
inhomogeneous and anisotropic samples and photodegradation,

61
in situ measurement of chirality of molecules and molecular

assembly, 373–376
perspectives and future directions, 399–401
SHG-LD and SFG-LD application

chirality of Langmuir molecular assembly measured with
SHG-LD, 388–389, 391–398

chiral spectra and chirality of chiral liquid surface with
SFG-LD, 394–399

theory and formalism of SHG-LD and SFG-LD
experimental methods for SFG-LD determination of chiral

and achiral elements, 386–388
general issues, 376
selective probe of structural chirality by chiral SFG,

385–386
SFG-LD for chiral surfaces, 383–385
SHG-LD for chiral surface, 378–380
SHG-LD, SFG-LD, and degree of chiral excess, 376–377
symmetry relationships, 380–382

integral equation formalism polarizable continuum (IEF-PCM)
model, 730, 731, 735, 736, 741

intrinsic absorption, 42–43
CD-absorbance anisotropy ratio and multicomponent spectra,
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orbital angular momentum, 29
origin invariance, 685–686

Pariser–Parr-Pople (PPP) method, 647
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X-ray fluorescence photons, 466
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