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Apendix: Remarks to the Vector Calculus     
 

 In physics and physical chemistry (and in this lecture) you can encounter a few 

conventions and tricks when using vectors. By a vector we usually understand a quantity that 

has a direction, or it can be a table of three (or more generally, N) numbers, 
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vx, vy, vz are individual components of the vector v. Writing the numbers into a table 

(„matrix“) „3 × 1“ (number of lines × number of columns) makes it possible to use matrix 

algebra. The exact form is not important, quite often one can see the „1 × 3“ in line notation  

(vx vy vz), etc. Very often the vector is written using an arrow above the letter, v
r

, perhaps 

more comfortable is just using bold letters, v. 

 An important operation is the scalar product of two vectors u and v, 
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Above, we used five equivalent notations, which one can encounter: using the dot, matrix 

notation (ut is the transpose matrix, in this case the bold print is somewhat redundant), an 

explicit sum, sum using the Einstein convention (index, occurring in a product just twice is 

summed over all its possible values) and the explicit list (the coordinates can be written as 

letters or numbers). Clearly, the scalar product is not vector anymore, but a number, scalar. 

The commutation gives the same thing, uvvu ⋅=⋅ . We also say that the dots marks 

contraction of an index (α in this case), then one dimension disappears, that is, we obtain the 

scalar from the vector. 

 The magnitude, length of a vector is || r=r  can thus be also written as rr ⋅=r , and 

its square 2222
zyx rrrr ++=  can be written as r2. 

 On the other hand, vector product of vectors is a vector again, by convention the 

cross “×” is used for the multiplication: 

vuw ×=  

Product components are yzzyx vuvuw −= , zxxzy vuvuw −=  a xyyxz vuvuw −= . Note that 

uvvu ×−=× . An alternate notation is γβαβγα ε vuw = . In the previous formula we again 

used the Einstein sum convention and the Levi-Civita antisymmetric tensor εijk. εijk is 1 for 
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even and -1 for odd permutations of indices ijk, and 0 in case that two or more indices are 

equal. For example, ε123 = 1, ε132 = ε321 = -1, ε133 = ε111 = 0. 

 Relatively frequently can also be encountered a vector product again vector-

multiplied by a vector. The result is a vector, and can be rewritten using the identity 

( ) baccabcba ⋅−⋅=×× , 

which some people remember phonetically as “bac - cab” or “first in the parenthesis scalar-

multiplied by the other two minus second in the parenthesis scalar-multiplied by the other 

two ”. 

Another expression encountered, for example, when describing molecular 

electromagnetic properties, is a combined product, cba ⋅× . We should immediately see that 

the result is a number, because vector ba ×  is scalar-multiplied by vector c. When 

developing this expression we can use the rule „cross and dot stay on place, while the vectors 

are cyclically permuted“. That means that 

bacacbcba ⋅×=⋅×=⋅× , etc. 

 Two u and v vectors can be linearly related, such as that βαβα vau = . The ensemble 

of nine coefficients {aαβ} can be called “3×3” matrix or tensor of the second order (or rank), 

since it has two indices. Sometimes we can see notation using a double-arrow, a
t

, in analogy 

to the vectors, but again it might be more practical just to print such objects in bold, as a. As 

for the vectors, we can use matrix notation here, avu =  or avu = , or use the “scalar” dot, 

vau ⋅= .  

We can mention an inconsistency here because the expression av  can be taken as a 

product of two matrices, but sometimes it may mean that a second rank tensor a is just 

standing in front of vector v. In the latter case the results is a third-order tensor containing 27 

components, e.g.. (av)αβγ = aαβvγ. Similarly, product of two vectors ab may be vector dyad, 

that is a second order tensor, (ab)αβ = aαbβ, or somebody may understand it as a matrix 

multiplication, in this case ab = a.b, and we have a scalar product. It the latter case it would 

be clearer to write at
b, but some texts omit these details. When the notation is consistent the 

meaning is usually clear from the context, nevertheless we mentioned the loopholes of the 

formalisms for entertainment and better understanding of the vector conventions. 

Finally, knowledge of differential operators is necessary to understand many 

quantum chemical and other texts. Quite often, the names came from 19th century and the 

mechanics of continuum. Gradient of a variable dependent on coordinates r is increasing 

dimensionality of the object, for example gradient of a scalar potential ϕ(r) is a vector, G: 



 3 

ϕϕ ∇== gradG , or 
α

α
ϕ
r

G
∂
∂= . 

The Laplace operator is formally scalar product of two gradients, and thus it is a 

scalar operator, 
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The operator of divergence is a scalar, too, as it acts as a scalar product of gradient 

and a vector,  
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Note that a∇  (without the dot) would be something fundamentally different, that is gradient 

of a vector, which is a second rank tensor.  

Operator of the rotation is vector product of gradient and a vector, and the result must 

then be also a vector 

aa ×∇=rot  
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 Using the differential operators the vector symbolic can be conveniently used, but we 

must also take into account the differential function of them, acting on a function to the right. 

A good example of this is the expression ( )cb××∇ . Using the rule „bac-cab“ blindly we get 

bccb ⋅∇−⋅∇ , which would be correct for the vector transformation alone. However, the 

gradient still acts on both vectors b and c, and to get the derivatives right, we must rearrange 

the result as cbbc ⋅∇−⋅∇ . 

 The notation above can be sometimes extended to more complicated expressions, 

such as the (scalar) sum ∑∑∑
α β γ

γβααβγ cbaT which could be (rarely) written as abcT ⋅⋅⋅ , that 

is third rank tensor T (perhaps we can imagine it with three vector arrows above) is 

contracted with vectors a, b and c. Summation of each index was indicated by the dot. Of 

course, this is rather unusual and often a specialist may be lost in such texts. In any case, it 

belongs to good manners that the used convention and symbols in technical texts are clearly 

explained. 
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Exercise: Show that 1r =∇ , where 
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1  is the unit tensor, and that 3=⋅∇ r  and 

that 0r =×∇ , where 
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0 . By the way, the units tensor components are δαβ, which are 

known as Kronecker‘s delta symbol (δαβ = 1 for α = β, otherwise δαβ = 0). 

Exercise: Constant magnetic field is described by a field vector 0B . Show that the 

corresponding vector potential is 0
2

1
BrA ×−=  (remember that AB ×∇= ). 

 


