Apendix: Remarks to the Vector Calculus

In physics and physical chemistry (and in this lecture) you can encounter a few conventions and tricks when using vectors. By a vector we usually understand a quantity that has a direction, or it can be a table of three (or more generally, N) numbers,

$$
\mathbf{v}=\left(\begin{array}{l}
v_{x} \\
v_{y} \\
v_{z}
\end{array}\right)
$$

v_{x}, v_{y}, v_{z} are individual components of the vector \mathbf{v}. Writing the numbers into a table (,,matrix") „ 3×1 " (number of lines \times number of columns) makes it possible to use matrix algebra. The exact form is not important, quite often one can see the „ 1×3 " in line notation $\left(v_{x} v_{y} v_{z}\right)$, etc. Very often the vector is written using an arrow above the letter, \vec{v}, perhaps more comfortable is just using bold letters, \mathbf{v}.

An important operation is the scalar product of two vectors \mathbf{u} and \mathbf{v},

$$
\mathbf{u} \cdot \mathbf{v}=\mathbf{u}^{t} \mathbf{v}=\sum_{\alpha=1}^{3} u_{\alpha} v_{\alpha}=u_{\alpha} v_{\alpha}=u_{x} v_{x}+u_{y} v_{y}+u_{z} v_{y}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3} .
$$

Above, we used five equivalent notations, which one can encounter: using the dot, matrix notation (\mathbf{u}^{t} is the transpose matrix, in this case the bold print is somewhat redundant), an explicit sum, sum using the Einstein convention (index, occurring in a product just twice is summed over all its possible values) and the explicit list (the coordinates can be written as letters or numbers). Clearly, the scalar product is not vector anymore, but a number, scalar. The commutation gives the same thing, $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$. We also say that the dots marks contraction of an index (α in this case), then one dimension disappears, that is, we obtain the scalar from the vector.

The magnitude, length of a vector is $r=|\mathbf{r}|$ can thus be also written as $r=\sqrt{\mathbf{r} \cdot \mathbf{r}}$, and its square $r^{2}=r_{x}^{2}+r_{y}^{2}+r_{z}^{2}$ can be written as \mathbf{r}^{2}.

On the other hand, vector product of vectors is a vector again, by convention the cross " x " is used for the multiplication:

$$
\mathbf{w}=\mathbf{u} \times \mathbf{v}
$$

Product components are $w_{x}=u_{y} v_{z}-u_{z} v_{y}, w_{y}=u_{z} v_{x}-u_{x} v_{z}$ a $w_{z}=u_{x} v_{y}-u_{y} v_{x}$. Note that $\mathbf{u} \times \mathbf{v}=-\mathbf{v} \times \mathbf{u}$. An alternate notation is $w_{\alpha}=\varepsilon_{\alpha \beta \gamma} u_{\beta} v_{\gamma}$. In the previous formula we again used the Einstein sum convention and the Levi-Civita antisymmetric tensor $\varepsilon_{i j k}$. $\varepsilon_{i j k}$ is 1 for
even and -1 for odd permutations of indices $i j k$, and 0 in case that two or more indices are equal. For example, $\varepsilon_{123}=1, \varepsilon_{132}=\varepsilon_{321}=-1, \varepsilon_{133}=\varepsilon_{111}=0$.

Relatively frequently can also be encountered a vector product again vectormultiplied by a vector. The result is a vector, and can be rewritten using the identity

$$
\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=\mathbf{b} \mathbf{a} \cdot \mathbf{c}-\mathbf{c} \mathbf{a} \cdot \mathbf{b},
$$

which some people remember phonetically as "bac - cab" or "first in the parenthesis scalarmultiplied by the other two minus second in the parenthesis scalar-multiplied by the other two ".

Another expression encountered, for example, when describing molecular electromagnetic properties, is a combined product, $\mathbf{a} \times \mathbf{b} \cdot \mathbf{c}$. We should immediately see that the result is a number, because vector $\mathbf{a} \times \mathbf{b}$ is scalar-multiplied by vector \mathbf{c}. When developing this expression we can use the rule „cross and dot stay on place, while the vectors are cyclically permuted". That means that

$$
\mathbf{a} \times \mathbf{b} \cdot \mathbf{c}=\mathbf{b} \times \mathbf{c} \cdot \mathbf{a}=\mathbf{c} \times \mathbf{a} \cdot \mathbf{b}, \text { etc. }
$$

Two \mathbf{u} and \mathbf{v} vectors can be linearly related, such as that $u_{\alpha}=a_{\alpha \beta} v_{\beta}$. The ensemble of nine coefficients $\left\{a_{\alpha \beta}\right\}$ can be called " 3×3 " matrix or tensor of the second order (or rank), since it has two indices. Sometimes we can see notation using a double-arrow, \vec{a}, in analogy to the vectors, but again it might be more practical just to print such objects in bold, as a. As for the vectors, we can use matrix notation here, $u=a v$ or $\mathbf{u}=\mathbf{a v}$, or use the "scalar" dot, $\mathbf{u}=\mathbf{a} \cdot \mathbf{v}$.

We can mention an inconsistency here because the expression av can be taken as a product of two matrices, but sometimes it may mean that a second rank tensor a is just standing in front of vector \mathbf{v}. In the latter case the results is a third-order tensor containing 27 components, e.g.. (av) $\alpha_{\alpha \beta \gamma}=a_{\alpha \beta} v_{\gamma}$. Similarly, product of two vectors ab may be vector dyad, that is a second order tensor, $(\mathbf{a b})_{\alpha \beta}=a_{o} b_{\beta}$, or somebody may understand it as a matrix multiplication, in this case $\mathbf{a b}=\mathbf{a} . \mathbf{b}$, and we have a scalar product. It the latter case it would be clearer to write $\mathbf{a}^{t} \mathbf{b}$, but some texts omit these details. When the notation is consistent the meaning is usually clear from the context, nevertheless we mentioned the loopholes of the formalisms for entertainment and better understanding of the vector conventions.

Finally, knowledge of differential operators is necessary to understand many quantum chemical and other texts. Quite often, the names came from $19^{\text {th }}$ century and the mechanics of continuum. Gradient of a variable dependent on coordinates \mathbf{r} is increasing dimensionality of the object, for example gradient of a scalar potential $\varphi(\mathbf{r})$ is a vector, \mathbf{G} :

$$
\mathbf{G}=\operatorname{grad} \varphi=\nabla \varphi, \text { or } G_{\alpha}=\frac{\partial \varphi}{\partial r_{\alpha}} .
$$

The Laplace operator is formally scalar product of two gradients, and thus it is a scalar operator,

$$
\operatorname{grad.grad} \varphi=\nabla \cdot \nabla \varphi=\Delta \varphi=\sum_{\alpha} \frac{\partial^{2} \varphi}{\partial r_{\alpha}^{2}}=\frac{\partial^{2} \varphi}{\partial r_{\alpha} \partial r_{\alpha}}=\frac{\partial^{2} \varphi}{\partial r_{x}^{2}}+\frac{\partial^{2} \varphi}{\partial r_{y}^{2}}+\frac{\partial^{2} \varphi}{\partial r_{z}^{2}} .
$$

The operator of divergence is a scalar, too, as it acts as a scalar product of gradient and a vector,

$$
\operatorname{div} \mathbf{a}=\nabla \cdot \mathbf{a}=\sum_{\alpha} \frac{\partial a_{\alpha}}{\partial r_{\alpha}}=\frac{\partial a_{\alpha}}{\partial r_{\alpha}}=\frac{\partial a_{x}}{\partial r_{x}}+\frac{\partial a_{y}}{\partial r_{y}}+\frac{\partial a_{z}}{\partial r_{z}} .
$$

Note that $\nabla \mathbf{a}$ (without the dot) would be something fundamentally different, that is gradient of a vector, which is a second rank tensor.

Operator of the rotation is vector product of gradient and a vector, and the result must then be also a vector

$$
\operatorname{rot} \mathbf{a}=\nabla \times \mathbf{a}
$$

of components $(\nabla \times \mathbf{a})_{x}=\frac{\partial a_{z}}{\partial y}-\frac{\partial a_{y}}{\partial z}, \quad(\nabla \times \mathbf{a})_{y}=\frac{\partial a_{x}}{\partial z}-\frac{\partial a_{z}}{\partial x}$ a $(\nabla \times \mathbf{a})_{z}=\frac{\partial a_{y}}{\partial x}-\frac{\partial a_{x}}{\partial y}$, which can be abbreviated as $(\nabla \times \mathbf{a})_{\alpha}=\varepsilon_{\alpha \beta \gamma} \frac{\partial a_{\gamma}}{\partial r_{\beta}}$.

Using the differential operators the vector symbolic can be conveniently used, but we must also take into account the differential function of them, acting on a function to the right. A good example of this is the expression $\nabla \times(\mathbf{b} \times \mathbf{c})$. Using the rule „bac-cab" blindly we get $\mathbf{b} \nabla \cdot \mathbf{c}-\mathbf{c} \nabla \cdot \mathbf{b}$, which would be correct for the vector transformation alone. However, the gradient still acts on both vectors \mathbf{b} and \mathbf{c}, and to get the derivatives right, we must rearrange the result as $\nabla \cdot \mathbf{c b}-\nabla \cdot \mathbf{b c}$.

The notation above can be sometimes extended to more complicated expressions, such as the (scalar) sum $\sum_{\alpha} \sum_{\beta} \sum_{\gamma} T_{\alpha \beta \gamma} a_{\alpha} b_{\beta} c_{\gamma}$ which could be (rarely) written as $\mathbf{T} \cdots \mathbf{a b c}$, that is third rank tensor \mathbf{T} (perhaps we can imagine it with three vector arrows above) is contracted with vectors a,b and \mathbf{c}. Summation of each index was indicated by the dot. Of course, this is rather unusual and often a specialist may be lost in such texts. In any case, it belongs to good manners that the used convention and symbols in technical texts are clearly explained.

Exercise: Show that $\nabla \mathbf{r}=\mathbf{1}$, where $\mathbf{1}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ is the unit tensor, and that $\nabla \cdot \mathbf{r}=3$ and
that $\nabla \times \mathbf{r}=\mathbf{0}$, where $\mathbf{0}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$. By the way, the units tensor components are $\delta_{\alpha \beta}$, which are known as Kronecker's delta symbol ($\delta_{\alpha \beta}=1$ for $\alpha=\beta$, otherwise $\delta_{\alpha \beta}=0$).

Exercise: Constant magnetic field is described by a field vector \mathbf{B}_{0}. Show that the corresponding vector potential is $\mathbf{A}=-\frac{1}{2} \mathbf{r} \times \mathbf{B}_{0}$ (remember that $\mathbf{B}=\nabla \times \mathbf{A}$).

